
LRU-based algorithms for
Web Cache Replacement

A. I. Vakali

Department of Informatics
Aristotle University of Thessaloniki, Greece

E-mail: avakali@csd.auth.gr

Abstract. Caching has been introduced and applied in prototype and
commercial Web-based information systems in order to reduce the overall
bandwidth and increase system’s fault tolerance. This paper presents a
track of Web cache replacement algorithms based on the Least Recently
Used (LRU) idea. We propose an extension to the conventional LRU
algorithm by considering the number of references to Web objects as a
critical parameter for the cache content replacement. The proposed algo-
rithms are validated and experimented under Web cache traces provided
by a major Squid proxy cache server installation environment. Cache and
bytes hit rates are reported showing that the proposed cache replacement
algorithms improve cache content.

Key-Words : Web-based information systems, Web caching and proxies,
Cache replacement algorithms, Cache consistency.

1 Introduction

The continously rapid growth and worldwide expansion of the Internet has intro-
duced new issues such as World-Wide Web (WWW) traffic, bandwidth insuffi-
ciency and distributed objects exchange. Web caching has presented an effective
solution, since it provides mechanisms to faster web access, to improved load
balancing and to reduced server load. Cache efficiency depends on its content
update frequency as well as on the algorithmic approach used to retain the cache
content reliable and consistent. Several approaches have been suggested for more
effective cache management and the problem of maintaining an updated cache
has gained a lot of attention recently, due to the fact that many web caches often
fail to maintain a consistent cache. Several techniques and frameworks have been
proposed towards a more reliable and consistent cache infrastructure [5, 7]. In
[2] the importance of various workload characteristics for the Web proxy caches
replacement is analyzed and trace-driven simulation is used to evaluate the re-
placement effectiveness. The performance and the homogeneity of Web caching
is studied in [1] where a new generalized LRU is presented as an extension to the
typical SLRU algorithm. Hit ratios and robustness of the proposed replacement

K. Bauknecht, S. Kumar Madria, and G. Pernul (Eds.): EC-Web 2000, LNCS 1875, pp. 409−418, 2000.
 Springer-Verlag Berlin Heidelberg 2000

algorithm is compared with other Web replacement policies using both event
and trace-driven simulations.

Performance improvements due to Web caching have been investigated in
order to estimate the value and importance of Web caching. Research efforts
have focused in maintaining Web objects coherency by proposing effective cache
replacement policies. A number of Web replacement policies are discussed in [3],
and compared on the basis of trace-driven simulations. A web-based evolutionary
model has been presented in [12] where cache content is updated by evolving
over a number of successive cache objects populations and it is shown by trace-
driven simulation that cache content is improved. A Genetic algorithm model
is presented in [13] for Web objects replication and caching. Cache replacement
is performed by the evolution of Web objects cache population accompanied by
replication policies employed to the most recently accessed objects.

This paper presents a new approach to Web Cache replacement by propos-
ing a set of algorithms for cache replacement. The proposed set of algorithms is
based on the popular Least Recently Used (LRU) algorithm which replaces from
the Web cache the objects that have not been requested for the longest time.
Thus LRU uses only the time of the last request to a Web object and this time is
the critical factor for an objects purge from the Web cache. Here, we introduce a
variation of LRU which considers a “history” of Web objects requests. A similar
approach was presented in [10] for the page replacement process in database disk
buffering. The main idea is to keep a record for a number of past references to
Web objects, i.e. a history of the times of the last h requests is evaluated for
each cached Web object. This approach defines a whole set of cache replace-
ment algorithms called History LRU (notation HLRU(h)). A number of HLRU
algorithms is experimeneted under Squid proxy cache traces and cache log files.

The remainder of the paper is organized as follows. The next section intro-
duces and formulates the cache replacement problem. Section 3 presents the
typical LRU and the proposed HLRU algorithms whereas Web proxies ans their
performance issues are presented in Section 4. Section 5 discusses implemen-
tation and validation details and results from trace driven experimentation are
presented. Section 6 points some conclusions and discusses potential future work.

2 The Cache Replacement
Problem

Web proxies define a limited cache area, for storage of a number of Web objects.
Once the cache area is almost filled there has to be a decision to replace some of
the cached objects with newer ones. Therefore, a cached Web object “freshness”
has to be determined by specific rules and in Web caching terminology an object
is considered stale when the original server must be contacted to validate the
existence of the cache copy. Object’s staleness results from the cache server’s
lack of awareness about the original object’s changes. Each proxy cache server
must be reinforced with specific staleness confrontation. The most important

410 A. I. Vakali

parameters corresponding to attributes of each cached object are summarized in
Table 1.

parameter description

si server on which object resides.
bi object’s size, in KBytes.
ti time the object was logged.
ci time the object was cached.
li time of object’s last modification.
fi number of accesses since last time

object i was accessed.
keyi objects original copy identification

(e.g. its URL address).

Table 1. The most useful attributes of each cached object i.

Definition 1 : The cached object’s staleness ratio is defined by,

StalRatioi =
ci − li

now − ci

where the numerator corresponds to the time interval between the time of object
being cached and the time of the object’s last modification and the denominator
is the cache “age” of the object i.e. it determines the time that the object has
remained in cache. It is always true that StalRatioi ≥ 0 since ci − li ≥ 0 and
now − ci > 0 (now is the current time). The lower the value of StalRatioi the
more stale the object i is, since that indicates that it has remained in cache for
longer period.

Definition 2 : The cached object’s dynamic frequency is defined by

DynFreqi =
1

fi

since fi is the metric for estimating an object’s access frequency (Table 1). It is
true that the higher the values of DynFreqi, the most recently was accessed.

Definition 3 : The cached object’s retrieval rate is defined by

RetRatei =
lats
bands

where lats is the latency to open a connection to the server s and bands is the
bandwidth of the connection to server s. RetRatei represents the cost involved

411LRU-Based Algorithms for Web Cache Replacement

when retrieving an object from its original storage server.

Definition 4 : The cached object’s action function is defined by

acti =

{
0 if object i will be purged from cache
1 otherwise

Problem Statement : If N is the number of objects in cache and C is the
total capacity of the cache area, then the cache replacement problem is to :

MAXIMIZE
∑N

i=1 acti × StalRatioi × DynFreqi
RetRatei

subject to
∑N

i=1 acti × bi ≤ C

where the fraction DynFreqi
RetRatei

is used as a weight factor associated with each cached
object, since it relates the objects access frequency with its retrieval rate.

3 LRU and HLRU Cache Replacement

LRU cache replacement is based on the Temporal Locality Rule which states
that “The Web objects which were not referenced in the recent past, are not ex-
pected to be referenced again in the near future”. LRU is widely used in database
and Web-based applications. For example, in Squid, the LRU is used along with
certain parameters such as a low watermark and a high watermark to control
the usage of the cache. Once the cache disk usage is closer to the low watermark
(usually considered to be 90%) fewer cached Web objects are purged from cache,
whereas when disk usage is closer to the high watermark (usually considered to
be 95%) the cache replacement is more severe i.e. more cached Web objects
are purged from cache. There are several factors as of which objects should be
purged from cache.

Definition 5 [LRU Threshold] : A value identified as threshold is needed
for estimating the expected time needed to fill or completely replace the cache
content. This threshold is dynamically evaluated based on current cache size
and on the low and high watermarks. When current cache size is closer to low
watermark the threshold gets a higher value, otherwise when current cache size
is closer to high watermark the threshold value is smaller.

One of the disadvantages of the LRU is that it only considers the time of the
last reference and it has no indication of the number of references for a certain
Web object. Here we introduce a scheme to support a “history” of the number
of references to a specific Web object.

412 A. I. Vakali

Fig. 1. The History LRU cache replacement algorithm.

Definition 6 [History Function] : Suppose that r1, r2, . . . , rn are the
requests for cached Web objects at the times t1, t2, . . . , tn, respectively. A history
function is defined as follows :

hist(x, h) =

ti if there are exactly h− 1 references
between times ti and tn

0 otherwise

The above function hist(x, h) defines the time of the past h-th reference to a
specific cached object x.

Therefore, the proposed HLRU algorithm will replace the cached objects with
the maximum hist value. In case there are many cached objects with hist = 0,
the typical LRU is considered to decide on which object will be purged from
cache. The same idea of the threshold value (to decide when the cache replace-
ment will occur) still holds. In Table 2 the main structure of the cache hash

413LRU-Based Algorithms for Web Cache Replacement

LRU HLRU

struct HashTable struct HashTable
{ long LRU age { int OldT imeOfAccess

long positionInF ile long positionInF ile
boolean empty boolean empty
long timeOfF irstAccess long timeOfF irstAccess

} hashTable[50000] } hashTable[50000]

Table 2. The main LRU and HLRU data structure

table is presented. For LRU each cached object is assigned an LRU age to in-
dicate the time since its last reference. Variable positionInF ile declares the
position the specific object has in the file, whereas the boolean type variable
empty indicate whether the specific cache location is empty or not. Finally, vari-
able timeOfF irstAccess is used for the time the specific object was cached.
The HLRU data structure is quite similar, there are two different times kept for
each cached object. OldT imeOfAccess is the time the cached object was first
referenced whereas NewTimeOfAccess is the time of the last reference to the
cached object. Similarly, Figure 1 presents the implemented HLRU algorithm in
a pseudocode format, for the case of two (h = 2) past references. Under HLRU
a linked list has been used for each cached object in order to keep track of the
times of past references.

4 Web Proxies - Performance Issues

The performance metrics used in the presented approach focus on the cached
objects cache-hit ratio and byte-hit ratio :

– Cache hit ratio : represents the percentage of all requests being serviced
by a cache copy of the requested object, instead of contacting the original
object’s server.

– Byte hit ratio : represents the percentage of all data transferred from
cache, i.e. corresponds to ratio of the size of objects retrieved from the cache
server. Byte hit ratio provides an indication of the network bandwidth.

The above metrics are considered to be the most typical ones in order to capture
and analyze the cache replacement policies (e.g. [3, 1, 2]).

Furthermore, the performance of the proposed cache replacement algorithms
is studied by estimating the strength of the cache content. This strength is
evaluated by the consideration of the cached objects retrieval rates as well as
their frequency of access and their “freshness”. In order to evaluate the HLU
algorithms we have devised a function in order to have a performance metric
for assessing the utilization and strength of the cache content. The following
formula F (x) considers the main web cache factors as identified in the Cache
replacement problem statement in Secion 2. Here, we consider a cache content
x of N individual cached objects :

414 A. I. Vakali

&

$

&

+

(

���

���

�)�

���

��

��

���

))

��

��

���

))

��

��

���

))

ILOHV

ILOHV

ILOHV

ILOHV

ILOHV

ILOHV

ILOHV

ILOHV

ILOHV

Fig. 2. Structure of the Squid proxy cache area.

F (x) =
N∑
i=1

acti × StalRatioi × DynFreqi
RetRatei

(1)

The above function has been introduced in the present research effort in order to
consider the effect of staleness, access frequency and retrieval cost in the overall
cache replacement process.

5 Experimentation - Results

Aristotle University has installed Squid proxy cache for main and sibling caches
and supports a Squid mirror site. The present paper uses traced information
provided by this cache installation for experimentation. A simulation model was
developed and tested by Squid cache traces and their corresponding log files.
Traces refer to the period from May to August 1999, regarding a total of almost
70,000,000 requests, of more that 900 GB content. A compact log was created
for the support of an effective caching simulator, due to extremely large access
logs created by the proxy. The reduced simulation log was constructed by the
original Squid log fields needed for the overall simulation runs.

A track of the proposed HLRU algorithms has been tested. More specifically
the notations HLRU(2), HLRU(4) and HLRU(6) refer to the HLRU imple-
mentations for 2, 4 and 6 past histories respectively. Furthermore, the typical
LRU cache replacement policy applied in most proxies (e.g. Squid), has been
simulated in order to serve as a basis for comparisons and discussion.

415LRU-Based Algorithms for Web Cache Replacement

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

100 150 200 250 300

c
a
c
h
e
_
h
it
 r

a
te

cache size (MBytes)

Cache hit_rate ; cache size

LRU
HLRU(2)
HLRU(4)
HLRU(6)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

100 150 200 250 300
B

y
te

s
_
h
it
 r

a
te

cache size (MBytes)

Bytes hit_rate ; cache size

LRU
HLRU(2)
HLRU(4)
HLRU(6)

Fig. 3. Cache and Bytes hit; cache size

The performance metrics used in this simulation model focus on the cached
objects cache-hit ratio, byte-hit ratio and the strenth function F (x) (equation 1)
normalized to the interval [0,1]. Figure 3 depicts the cache hit and the bytes hit
ratio for all four algorithms with respect to cache size. More specifically, the left
part of Figure 3 presents the cache hit ratio for a cache size of 100, 150, · · · , 300
MBytes. The cache hit under HLRU(6) policy outperforms the corresponding
metric of all other policies whereas all HLRU algorithms have better cache hits
than the corresponding typical LRU approach. This was expected due to the
ability of the HLRU approach to keep track of a history of past references. It
should be noted that the cache hit ratios seem to get to a peak and remain
closer to this peak value as the cache size increases. This is explained due to
the fact that the larger the cache size, the less replacement actions need to be
taken since there is more space to store the cached objects and the cache server
can “afford” to accommodate them there with less replacement actions. Figure
3 (right part) depicts the byte hit ratio for the four different cache replacement
policies with respect to the cache size. The byte hit ratios follow a similar skew
as the corresponding cache hit ratios, but they never get in as hit high values as
cache hit ratios. a smoother curve as the cache size increases. Again HLRU(6)
algorithm is the best of all and as the byte hit rates decrease as the number of
past references (history set) decreases.

Figure 4 depicts the cache hit and the bytes hit ratio for all four algorithms
with respect to the number of requests. More specifically, the left part of Fig-
ure 4 presents the cache hit ratio for a cache of 50, 150, · · · , 250 thousands of
requests. Again, the cache hit under HLRU(6) policy outperforms the corre-
sponding metric of all other policies whereas all HLRU algorithms have better
cache hits than the corresponding typical LRU approach. It is important to note

416 A. I. Vakali

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

50 100 150 200 250

C
a
c
h
e
_
h
it
 r

a
te

of requests (thousands)

Cache hit_rate ; # of requests

LRU
HLRU(2)
HLRU(4)
HLRU(6)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

50 100 150 200 250
B

y
te

s
_
h
it
 r

a
te

of requests (thousands)

Bytes hit_rate ; # of requests

LRU
HLRU(2)
HLRU(4)
HLRU(6)

Fig. 4. Cache and Bytes hit; # of requests

that all approaches show better results as the number of requests increases and
the cache hit rates do get to considerable hit rates of almost 70%.

6 Conclusions - Future Work

This paper has presented a study of applying a history based approach to the
Web-based proxy cache replacement process. A history of past references is as-
sociated to each cached object and a track of algorithms has been implemented
based on a number of past histories. Trace-driven simulation was used in order
to evaluate the performance of the proposed cache replacement techniques and
the simulation model was based on the Squid proxy cache server. The experi-
mentation indicated that all of the proposed HLRU approaches outperform the
conventional Least-Recently-Used (LRU) policy adopted by most currently avail-
able proxies. Results have shown that the HLRU approach significantly improves
cache hit and byte hit ratios.

Further research should extend current experimentation and the present
scheme in order to integrate most popular cache replacement algorithms. More
specifically, different schemes such as SLRU, MFU, RR algorithms could be in-
troduced in the proposed cache replacement in order to study their impact and
effectiveness on the Web cache content replacement.

Acknowledgments

The author thanks Panayotis Junakis (System administrator) and Savvas Anas-
tasiades (technical staff) of the Network Operation Center at the Aristotle Uni-
versity, for providing access to the Squid cache traces and trace log files.

417LRU-Based Algorithms for Web Cache Replacement

References

1. C. Aggarwal, J. Wolf and P.S.Yu: Caching on the World Wide Web,IEEE Trans-
actions on Knowledge and Data Engineering, Vol.11,No.1,pp.94-107,Jan-Feb 1999.

2. M. Arlitt, R. Friedrich and T. Jin: Performance Evaluation of Web Proxy Cache
Replacement Policies, Hewlett-Packard Technical Report HPL 98-97, to appear :
Performance Evaluation Journal, May 98.

3. A. Belloum and L.O. Hertzberger : Document Replacement Policies dedicated to
Web Caching , Proceedings ISIC/CIRA/ISAS’98 Conference , Maryland, USA,
Sep. 1998.

4. R. Caceres, F. Douglis, A. Feldmann, C. Glass, M. Rabinovich : Web Proxy Caching
: The Devil is in the Details, Proceedings of the SIGMETRICS Workshop on In-
ternet Server Performance, Jun 1998.

5. P. Cao, J. Zhang and K. Beach: Active Cache : Caching Dynamic Contents on the
Web, Proceedings of the IFIP International Conference on Distributed Platforms
and Open Distributed Processing , pp. 373-388, Middleware 1998.

6. A. Chankhunthod, P. Danzig and C. Neerdaels: A Hierarchical Internet Object
Cache, Proceedings of the USENIX 1996 Annual Technical Conference, pp.153-
163,San Diego,California,Jan 1996.

7. S. Michel, K. Nguyen, A. Rosenstein and L. Zhang: Adaptive Web Caching : To-
wards a New Global Caching Architecture, Proceedings of the 3rd International
WWW Caching Workshop, Manchester, England, Jun 1998.

8. A Distributed Testbed for National Information Provisioning,
http://ircache.nlanr.net/, 1998.

9. M. Nottingham: Web Caching Documentation,
http://mnot.cbd.net.au/cache docs/, Nov 1998.

10. E. J. O’Neil, P. E. O’Neil, and G. Weikum : The LRU-K Page Replacement Algo-
rithm For Database Disk Buffering, Proceedings of the ACM SIGMOD Conference,
pp.297-306, Washington DC, USA, 1993.

11. Squid: Squid Internet Object Cache, mirror site, Aristotle UNiversity,
http://www.auth.gr/Squid/, 1999.

12. A. Vakali: A Web-based evolutionary model for Internet Data Caching, Proceed-
ings of the 2nd International Workshop on Network-Based Information Systems,
NBIS’99,IEEE Computer Society Press, Florence,Italy, Aug 1999.

13. A. Vakali: A Genetic Algorithm scheme for Web Replication and Caching, Pro-
ceedings of the 3rd IMACS/IEEE International Conference on Circuits, Systems,
Communications and Computers, CSCC’99, World Scientific and Engineering So-
ciety Press, Athens, Greece, Jul. 1999.

418 A. I. Vakali

	1 Introduction
	2 The Cache Replacement Problem
	3 LRU and HLRU Cache Replacement
	4 Web Proxies - Performance Issues
	5 Experimentation - Results
	6 Conclusions - Future Work

