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Designing a Learning-Automata-Based Controller
for Client/Server Systems: A Methodology

G.I.Papadimitriou, A.I.Vakali and A.S.Pomportsis

Abstract— Polling policies have been introduced to sim-
plify the accessing process in client/server systems by a
centralized control access scheme. This paper considers a
client/server model which employs a polling policy as its
access strategy. We propose a learning-automata-based ap-
proach for polling in order to improve the throughput-delay
performance of the system. Each client has an associated
queue and the server performs selective polling such that
the next client to be served is identified by a learning au-
tomaton. The learning automaton updates each client’s
choice probability according to the feedback information.
Under the considered approach, a client’s choice probability
asymptotically tends to be proportional to the probability
that this client is ready. Simulation results have shown that
the proposed polling policy is beneficial in comparison to
the conventional round-robin polling when operating under
bursty traffic conditions. The benefits are significant for the
delay reduction in the considered client/server system.

Keywords—client/server systems, polling policies, learning
automata, time-delay, throughput improvement.

I. Introduction

MANY computer and communication systems have
considered polling due to its applicability and effec-

tiveness. A typical polling model considers a number of
queues served by a single server that visits the queues in
a round-robin fashion to perform servicing of the requests
waiting at the clients queues.

Polling models have been studied extensively and their
applicability to computer communication networks has
been investigated [1]-[3]. More specifically, in [1] asymmet-
ric cyclic polling systems are considered with an arbitrary
number of queues in heavy traffic. Closed form expres-
sions are derived which explicitly characterize the complete
waiting-time distributions at each of the queues. Further-
more, an extensive overview of the applicability of polling
models is given in [3]. A novel approach to queue stabil-
ity analysis of polling models is introduced in [4], based on
a concept queue stability orderings and it is shown that
stabilities of any two queues can be compared based on
the queue arrival rate. Multiple server polling systems
have been also investigated such that each server visits the
queues according to its own cyclic schedule [5].

Optimization of polling policies has been studied before
in order to minimize clients delays. In [6] a server in a
multiple queues polling system is scheduled according to
a neural network policy and numerical results have shown
that this approach is quite beneficial especially for asym-
metric polling systems. However, this approach is based
on the assumption that the controller has global knowl-
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edge of the states of the clients’ queues. An assumption
which is difficult to be satisfied, especially when the num-
ber of clients is large. Optimal polling in communication
networks is studied in [7], where optimal polling algorithms
are presented for several classes of graphs. Also the lower
bound on the time complexity of any polling algorithm for
any graph and polling station is estimated.

Here, we concentrate on an adaptive polling model which
is based on the use of Learning Automata (LA) [8]-[16].
The Learning automata approach has been successfully ap-
plied in various topologies and systems, including optical
networks [13],[14], broadcast communication systems [10]
and multiple disk subsystems [15],[16].

The present paper considers a new polling algorithm in
order to improve the accessing process in a client/server
environment. Our approach is based on the following key
issues:

• the servicing/response time could be improved by re-
ordering of the polling access cycle among clients,

• due to the burstiness of traffic, it is possible to predict
the behavior of each client in the near future, based
on its behavior in the recent past.

• the system’s performance could be improved if each
client is being polled with a probability proportional
to the probability that its queue is not empty. In this
way, each client takes an amount of the system re-
sources (communication bandwidth and service time)
proportional to its needs. In this way, the number of
unsuccessful polls is decreased and consequently, the
performance of the system is improved.

The remainder of the paper is organized as follows. The
next section presents the learning automata based model
and the performance metrics are defined. In Section III
the asymptotic analysis of the proposed model is carried
out and theorem proofs are given. Section IV presents the
simulation results and discusses the performance improve-
ments due to the presented polling model. Finally, conclu-
sions are summarized and future work areas are suggested
in Section V.

II. The Learning-Automata-Based Polling

Algorithm (LPA)

Requests arrive to the system randomly, by various inde-
pendent processes. Some requests arrive while others are
being serviced, and so queues are created in each client. Re-
quests arrival rate could be either constant or independent
and exponentially distributed or bursty. Overall, a polling
system is considered as a system that includes servers,
queues and clients. The clients enter the different queues
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Fig. 1. The Learning-automata-based polling model.

and wait for service. A server polls the clients to find out if
there are clients that need service and serves the clients if
needed. The order of polling can be pre-determined (cyclic
or by table) or random. The most common policies for
serving customers in a queue are:

• Exhaustive : in which the server serves the queue until
it becomes completely empty.

• Gated : in which the server serves in a given service
period all the customers which were at the queue when
the queue was polled.

• Limited-1 : in which at most one customer is served
in each visit to the queue.

The latter policy is considered in this paper. Under round-
robin polling (RRP) clients are visited and questioned by
the server in a sequential order.

When the polled client has a non-empty queue it trans-
mits a positive acknowledgement, followed by the first job
of its queue. When the job has been serviced, the server
sends a polling message to the next client and once all
clients have been polled, a cycle is completed and a new
polling cycle begins. The time TP which is required for a
successful poll (including the job service time) is given by
the relation:

TP = tpoll + tprop + tproc + tack + tdata + tprop + tservice (1)

The time parameters that appear in this relation are de-
fined in Table I.

When the polled client has no jobs in its queue, then
it responds with a negative acknowledgement. When the
server receives the negative acknowledgement, it continues
by polling the next station. The time TN which is spent in
an unsuccessful poll is given by the relation:

TN = tpoll + tprop + tproc + tnack + tprop (2)

TABLE I

The Basic Time Metrics.

Parameter Description

tpoll time to transmit a poll
tprop propagation time
tproc time to process a poll

before acknowledging
tack time to transmit a poll

acknowledgement
tdata time to transfer the data

tservice time to service a client’s
request

tnack time to transmit a negative
poll acknowledgement

TABLE II

The Basic Parameters.

Parameter Description

B mean burst length
ci identity of client i
N number of clients
Q queue capacity

Pi(n) basic choice probability
of client i at poll n

di probability that client i
is not idle

Here, we propose an adaptive polling policy where the
polling order is determined by means of learning automata.
We consider a single server polling system of N clients, with
each client having an associated queue. The arrivals at the
clients’ queues are assumed to be bursty.

The server is provided with a learning automaton which
determines the basic choice probability Pi(n) of each client
ci (i = 1, . . . , N), at a certain poll n. Figure 1 depicts the
LA based polling process on a client/server system with a
single server and N clients. The most important model’s
parameters are described in Table II.

At each poll n, the client c(n) which grants permission
to be served is selected according to the normalized choice
probabilities Πi(n) for i = 1, . . . , N , where:

Πi(n) =
Pi(n)∑N

k=1 Pk(n)
(3)

If client c(n) = cm has a non-empty queue, then it trans-
mits the top job of its queue. After the receipt of the job,
the server immediately begins servicing it, while the basic
choice probability Pm(n) of client cm is updated. When
the job has been serviced the polling process is continued.
The server selects a new client c(n) based on the new choice
probabilities and sends a poll message to it. On the other



3

hand, if the queue of client c(n) = cm is empty, then the
basic choice probability Pm(n) of the selected client cm is
updated, and a new client is selected according to the new
choice probabilities.

The probability updating scheme is based on the feed-
back information f(n). If the selected client had no job to
sent (f(n) = 0) then, due to the burstiness of traffic, it is
probable that this client will remain idle in the near future.
Therefore, its choice probability is decreased. On the other
hand, if the selected client responded to the poll by sending
a job to be serviced (f(n) = 1), then, due to the burstiness
of traffic it is probable that this client will remain active
in the near future. Therefore, its choice probability is in-
creased. The following probability updating scheme is used
[10] (where L, a ∈ (0, 1)):

Pi(n + 1) =
{

Pi(n) + L(1 − Pi(n)) if f(n)=1
Pi(n) − L(Pi(n) − a) if f(n)=0 (4)

Parameter a is introduced to improve the adaptivity of
the proposed LPA scheme, since it is used to prevent the
client choice probability values to be taken from the neigh-
borhood of 0. This is needed since once a choice probabil-
ity (let Pi(n)) converges to 0 it is highly probable that this
client will not be involved in the polling cycle for a long
period. Thus, in case that the client ci has an arrival at its
queue again, it will become a poll candidate and the server
will need to be notified accordingly by the LA process.

III. Asymptotic Analysis

The learning-automata-based polling algorithm updates
the clients choice probabilities by considering their queue
status as feedback. In the present section we will prove that
in a client server model, the choice probability of polling at
a client converges to the probability of having a non-empty
queue of messages at this client. The following theorem
(presented in [9]) is needed to carry out the asymptotic
analysis :

Theorem 1: Let x(n)n≥0 be a stationary Markov pro-
cess dependent on a constant parameter θ ∈ [0, 1]. Each
x(n) ∈ I, where I is a subset of the real line. Let
δx(n) = x(n + 1) − x(n). The following are assumed to
hold:
(i) I is compact.
(ii) E[δx(n)|x(n) = y] = θ ω(y) + O(θ2).
(iii) E[|δx(n)|2 | x(n) = y] = θ2 b(y) + O(θ2).
(iv) E[|δx(n)|3 | x(n) = y] = O(θ3), where:

sup
y∈I

O(θk)
θk

<∞ for k = 2, 3 and sup
y∈I

O(θ2)
θ2

→0 as θ→0

(v) ω(y) has a Lipschitz derivative in I.
(vi) b(y) is Lipschitz in I.

If assumptions (i)-(vi) hold, ω(y) has a unique root y∗

in I and dω/dy|y=y∗ < 0, then:
(a) var[x(n)|x(0) = x] = O(θ) uniformly for all x ∈ I and
n ≥ 0.

(b) For any x ∈ I the differential equation dy(τ)
dτ = ω(y(n))

has a unique solution y(τ ) = y(τ, x) with y(0) = x and
E[x(n)|x(0) = x] = y(nθ) + O(θ) uniformly for all x ∈ I
and n ≥ 0.
(c) (x(n)− y(nθ))/

√
θ has a normal distribution with zero

mean and finite variance as θ → 0 and nθ → ∞.

Theorem 2: Under the learning-automata-based
polling algorithm in a client server model, the choice prob-
ability of polling at client ci converges to the probability of
having a non-empty queue of messages at client ci. If the
learning algorithm (2) is used and di is the probability that
client ci is not idle (for i = 1, . . . , N), then for any client
ci:

lim
n→∞,L→0,a→0

Pi(n) = di

Proof. We use Theorem 1 to the proof of the current
theorem. Here we have to identify x(n) (of Theorem 1)
with Pi(n), θ (of Theorem 1) with L and I (of Theorem 1)
with (a, 1). We have:

E[δPi(n)|Pi(n) = Pi]

=
Pi∑N

k=1 Pk

(diL(1 − Pi) − (1 − di)L(Pi − a))

= L
Pi∑N

k=1 Pk

(−Pi + di + a(1 − di))=Lω(Pi) (5)

E[|δPi(n)|2|Pi(n) = Pi]

= L2 Pi∑N
k=1 Pk

(di(1−Pi)2+(1−di)(Pi−a)2)=L2b(Pi) (6)

E[|δPi(n)|3|Pi(n) = Pi]

= L3 Pi∑N
k=1 Pk

(di(1−Pi)3+(1−di)(Pi−a)3)=O(L3) (7)

The functions ω(Pi) and b(Pi) are defined as follows:

ω(Pi) =
Pi∑N

k=1 Pk

(−Pi + di + a(1 − di)) (8)

b(Pi) =
Pi∑N

k=1 Pk

(di(1 − Pi)2 + (1 − di)(Pi − a)2) (9)

It is immediately seen that assumptions (i)-(iv) are sat-
isfied. It can also be proved that b(Pi) and ω′(Pi) are
Lipschitz in (a,1) by showing that their first derivatives
(b′(Pi) and ω′′(Pi) correspondingly) are bounded [17] for
Pi ∈ (a, 1).

It remains to show that ω(Pi) has a unique root P r
i near

the point P ∗
i = di and that dω(Pi)/dPi|Pi=P r

i
< 0. It is

immediately seen that ω(Pi) has a unique root at the point
P r

i = di + a(1 − di). Since a can be arbitrarily small, it
follows that P r

i is in the neighborhood of the point P ∗
i = di.

The derivative of ω(Pi) at this point is:

dω(Pi)
dPi

|Pi=P r
i

=
d

(
Pi∑N

k=1
Pk

(−Pi+di+a(1−di))
)

dPi
|Pi=P r

i
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= − 1

1 +
∑N

k=1,k �=i
Pk

P r
i

< 0 (10)

It has been shown that ω(Pi) has a unique root P r
i in the

neighborhood of the point P ∗
i = di and that the derivative

of ω(Pi) at this point is negative.
If we set Pi(τ ) = P r

i , the differential equation dPi(τ)
dτ =

ω(Pi(τ )) is satisfied (0=0). Thus, Pi(τ ) = P r
i is a solu-

tion of the above differential equation. From Theorem 2,
it is derived that this solution is unique, thus all the solu-
tions starting in (a, 1) of the differential equation dPi(τ)

dτ =
ω(Pi(τ )) converge to the point Pi(τ ) = P r

i � P ∗
i = di.

According to Theorem 2, we have:

lim
n→∞,a→0

E[Pi(n)] = P ∗
i + O(L)

and
var[Pi(n)] = O(L) for all t.

Consequently,

lim
n→∞,L→0,a→0

Pi(n) = di q.e.d. (11)

The exact values of a and L depend on the environment
where the automata operate. When the environment is
slowly switching or when the environmental responses have
a high variance, a and L must be very close to 0 in order to
guarantee a high accuracy. On the other hand, in a rapidly
switching environment or when the variance of the envi-
ronmental responses is low, higher values of a and L can
be used, in order to increase the adaptivity of the protocol.
Thus, when the burst length is high or the queue length
is low, then small values of a and L must be selected. On
the other hand, when the burst length is low or when the
queue length is high, then a and L can be much higher.

According to Theorem 2, for any two clients ci and cj

(with dj �= 0), the learning-automata-based polling algo-
rithm asymptotically tends to satisfy the relation:

Pi

Pj
=

di

dj
(12)

This relation also holds for the normalized choice prob-
abilities Πi and Πj :

Πi

Πj
=

Pi∑N

k=1
Pk

Pj∑N

k=1
Pk

=
Pi

Pj
=

di

dj
(13)

IV. Simulation Results

In the following, the proposed Learning-automata-based
Polling Algorithm (LPA) is compared to the well-known
Round-Robin Polling (RRP) scheme [18]. The polling
schemes which are under comparison were simulated to be
applied to four client/server systems (namely, S1, S2, S3

and S4) under bursty traffic conditions.
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Fig. 2. The Delay versus Throughput characteristics of LPA and
RRP when applied to system S1.
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Fig. 3. The Delay versus Throughput characteristics of LPA and
RRP when applied to system S2.

The bursty traffic was modelled in a way similar to the
ones presented in [19] and [20]. The time axis of the arrival
process is assumed to be slotted with an arrival slot size
equal to TP . (Note: The LPA scheme is unslotted. Slots
are used only for the modeling of the arrival process. In the
rest of the paper ”arrival slots” are simply called ”slots”).
Each client can be in one of two states X0 and X1. When
a client is in state X0 then it has no job arrivals. When a
client is in state X1 then, at each slot, it has a job arrival
with probability Z. Given a client is in state X0 at slot
t, the probability that this client will transit to state X1

at the next slot is P01. The transition probability from
state X1 to state X0 is P10. It can be shown that, when
the load offered to the system is R jobs/slot and the mean
burst length is B slots, then the transition probabilities are:
P10 = 1/B and P01 = R

B(NZ−R) . The total service time of
each job (including the job transmission time and the job
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RRP when applied to system S3.
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Fig. 5. The Delay versus Throughput characteristics of LPA and
RRP when applied to system S4.

service time) is assumed to be an exponentially distributed
random variable with a mean equal to (Tdata + Tservice).

For all simulated systems the number of clients N was
taken to be equal to 10, while the traffic parameter Z was
assumed to be equal to 1. The queue capacity Q, the
mean burst length B and the time spent on an unsuccessful
polling TN were taken to be as follows:
a) System S1: Q=30 jobs, B=20 jobs, TN=0.45 slots.
b) System S2: Q=30 jobs, B=20 jobs, TN=0.15 slots.
c) System S3: Q=8 jobs, B=5 jobs, TN=0.45 slots.
d) System S4: Q=8 jobs, B=5 jobs, TN=0.15 slots.

The parameters of the simulated systems were selected
in such a way, that, the reader of the paper can study how
the change of parameters B and TN affects the performance
of each polling scheme.

We have used the delay versus throughput characteristics
in order to compare the two protocols. The delay versus

throughput characteristics of the compared schemes when
they are applied to systems S1, S2, S3 and S4 are appeared
at Figures 2, 3, 4 and 5, correspondingly.

The following results can be extracted from the above
graphs:

1) The proposed LPA scheme achieves a signifi-
cantly higher delay-throughput performance than the RRP
scheme, when operating under bursty traffic. According to
the RRP scheme, all clients are polled in a round-robin
fashion. On the other hand, LPA is based on the sys-
tem feedback information in order to poll clients that are
most likely to have at least one job in their queues. In
this way, the number of unsuccessful polls is decreased and
consequently the performance of the polling system is sig-
nificantly improved.

2) From a comparison of Figures 2 and 3 with figures
4 and 5, correspondingly, it becomes clear that the per-
formance improvement which is achieved by the use of the
learning-automata-based scheme is higher when the offered
traffic is more bursty (i.e. when B is high). As the traffic
becomes more bursty, the number of idle clients increases.
Under these conditions, if the classic RRP scheme is used,
the number of unsuccessful polls dramatically increases, re-
sulting to a significant performance degradation. On the
other hand, LPA is practically unaffected from the bursti-
ness of the traffic because it is capable of using the sys-
tem feedback information, instead of blindly selecting the
clients which are polled.

3) From a comparison of Figures 2 and 4 with figures 3
and 5, correspondingly, it is derived that the performance
advantage of LPA over the RRP scheme is even higher
when the time TN which is spent for an unsuccessful poll is
high. When TN is high, then the performance improvement
which is achieved by reducing the number of unsuccessful
polls is also high.

Therefore, LPA achieves a significantly higher perfor-
mance than RRP. The performance advantage of LPA over
the RRP scheme is higher when the burst length is high
or when the time which is spent for an unsuccessful poll is
high.

V. Conclusions - Further Research

This paper has presented a new adaptive polling pol-
icy for client/server systems. According to the proposed
polling policy the polling cycle is determined by each
client’s feedback evaluated by means of a learning au-
tomata scheme. The server supports the learning automata
by an effective probability update scheme adapted to each
client’s traffic state. The new polling policy is capable of
achieving lower delays and a high throughput under bursty
traffic conditions.

Future work could extend the proposed polling idea to
other systems such as on a client/server system with mul-
tiple servers and multiple clients as in [5]. In such a sys-
tem, we could introduce a polling process such that each
of the servers will visit the queues according to a learning-
automata-based scheme which will determine each server’s
polling cycle.
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