Querying XML with Constraints

M.-S. Hacid E. Terzi

Department of Computer Sciences

Purdue University
West Lafayette, IN 47907 USA

Abstract XML is a language for the description
of structured documents and data. It is on the
way to become the new standard for data exchange,
publishing, and developing intelligent Web agents.
XML is based on the concept of documents com-
posed of a series of entities (i.e., objects). Each en-
tity can contain one or more logical elements. Each
of these elements can have certain attributes (prop-
erties) that describe the way in which it is to be pro-
cessed. XML provides a formal syntaz for describ-
ing the relationships between the entities, elements
and attributes that make up an XML document. In
this paper, we introduce a framework for querying
XML databases by specifying ordering constraints
over documents.

Keywords: Role Tress, Subsumption, Constraints,
Rules, Query Languages.

1 Introduction

XML [1] is a new standard adopted by the
World Wide Web Consortium (W3C) to com-
plement HTML for data exchange on the Web.
It is a data format for Web applications. XML
documents do not have to be created and
used with respect to a fixed, existing schema.
This is particularly useful in Web applications,
for simplifying exchange of documents and for
dealing with semistructured data. Its emer-
gence as a standard for data representation on
the Web is expected greatly to facilitate the
publication of electronic data by providing a
simple syntax for data that is both human- and
machine-readable.

In many respects, XML data is an instance

A. Vakali
Department of Informatics
Aristotle University
54006 Thessaloniki - Greece

of semistructured data [2]. XML documents
comprise hierarchically nested collections of
elements, where each element can be either
atomic (i.e., raw character data) or compos-
ite (i.e., a sequence of nested subelements).
Further, tags stored with elements in an XML
document describe the semantics of the data
rather than simply specifying how the element
is to be displayed (as in HTML). Thus, XML
data, like semistructured data, is hierarchically
structured and self-describing.

In this paper, we propose, in the form of
constraints, a notion of ordering to capture
the relationship between XML documents. In-
tuitively, ordering captures the fact that one
document is smaller than (or subsumes; or, ap-
prozimates) another document, or the fact that
one document is compatible with another. We
also show how these constraints can be used to
query XML databases.

Paper outline: Section 2 summarizes the
contributions of this paper. In Section 3 we
give our structure for representing XML docu-
ments, and the constraints we allow to reason
about the documents. In Section 4, we develop
our query language and give its syntax and se-
mantics. We conclude in Section 5.

2 Contributions

We present a class of constraints, namely, or-
dering constraints, that are of interest in XML
databases. Owur constraints are inspired by
Feature Logics [3, 4, 5]. Feature descriptions
are used as the main data structure of so-

called unification grammars, which are a popu-
lar family of declarative formalisms for process-
ing natural language . They provide for a par-
tial description of abstract objects by means
of functional attributes called features. On
top of this constraint language, we allow the
definition of relations (by means of definite
clauses) in the style of [6], leading to a declara-
tive, rule-based, constraint query language for
XML. The language we propose is based on
the general scheme for handling clauses whose
variables are constrained by an underlying con-
straint theory [7].

To summarize, the framework presented here
integrates formalisms developed in Databases,
Feature Logics and Constraint (Logic) Pro-
gramming. The paper builds on the works by
[4, 8,9, 7] to propose a structure for XML data
and a declarative, rule-based, constraint query
language that has a clear declarative and oper-
ational semantics. We make the following con-
tributions:

(1) We develop a simple and flexible structure
for representing XML data. The struc-
ture, called role trees, is inspired by Fea-
ture Constraint Systems. Trees are use-
ful for structuring data in modern appli-
cations. This gives the more flexible role
trees (our data structure) an interesting
potential.

(2) We propose a constraint language for
XML data. The ordering constraints allow
to declaratively specify relationships be-
tween trees representing XML data. Our
constraints are of a finer grain and of dif-
ferent expressiveness.

(3) We propose a declarative, rule-based, con-
straint query language that can be used
to infer relationships between XML data.
We view our query language as consist-
ing of a constraint language on top of
which relations can be defined by definite
clauses. The language has declarative and
operational semantics.

The structure we use to represent XML doc-
wments is an adaptation of [10] where we intro-
duce two labels, namely subelement and value,
to name the edges of the tree.

The major improvement over existing XML
query languages (e.g., XML-QL [11] , chapter
5) is the use of new constraints to constrain the
retrieval of XML documents. To our knowl-
edge, no previous work considers the kind of
constraints we propose in this paper.
Although in the basic form that we give here,
the formalism does not account for all aspects
of XML data, it constitutes a kernel to be ex-
tended.

3 Data and Query Modeling

3.1 XML Data Representation

XML! is a textual representation of data. The
basic component in XML is the element, that
is, a piece of text bounded by matching tags
such as < faculty > and < /faculty >. Inside
an element we may have "raw” text, other el-
ements, or a mixture of the two. Consider the
following XML example:

< faculty >
< name > Clint < /name >
< room > 420 < /room >
< email > crm@cs.edu < /email >
< [faculty >

An expression such as < faculty > is called a
start-tag and < /faculty > an end-tag. Start-
and end-tags are also called markups. Such
tags must be balanced; that is, they should
be closed in inverse order to that in which
they are opened, like parentheses. Tags in
XML are defined by users; there are no pre-
defined tags, as in HTML. The text between
a start-tag and the corresponding end-tag, in-
cluding the embedded tags, is called an ele-
ment, and the structures between the tags are
referred to as the content. The term subele-
ment is also used to describe the relation be-
tween an element and its component elements.

'For more details, see [11].

Thus < email > ... < /email > is a subelement
of < faculty > ... < /faculty > in the example
above. As with semistructured data, we may
use repeated elements with the same tag to rep-
resent collections. The following is an example
in which several < faculty > tags occur next to
each other.

< people >
< faculty >
< name > Clint < /name >
< room > 420 < /room >
< email > crm@cs.edu < /email >
< [faculty >
< faculty >
< name > Marion < /name >
< room > 319 < /room >
< email > mj@cs.edu < /email >
< [faculty >
< /people >

The basic XML syntax is perfectly suited
for describing semistructured data. Recall
the syntax for semistructured data expressions.
The simple XML document

< faculty >
< name > Clint < /name >
< room > 420 < /room >
< email > crm@cs.edu < /email >
< [faculty >

has the following representation as a
semistructured data expression:

{faculty : {name : ”Clint”, room : 420,
email : "crm@cs.edu” }}

There is a subtle distinction between an
XML element and a semistructured data ex-
pression. A semistructured data expression is a
set of label /subtree pairs, while an element has
just one top-level label. XML denotes graphs
with labels on nodes?. In this paper, we con-
sider that an XML document is represented by
a role tree of a specific form. The only two
edge labels are subelement and value. Figure 1

*While semistructured data expressions denote
graphs with labels on edges.

illustrates our representation for the XML data
above.

faculty
< X,
é(é\ 1= 8)19)
o
9~§>é ;g >
name room email
value value value
clint 420 crm@cs.edu

Figure 1: Our labeled-tree representation for XML
data.

Path expressions describe path along the
graph, and can be viewed as compositions of
labels. For example, the expression

subelement.value

describes a path that starts in an object, con-
tinues to the subelement of that object, and
ends in the value of that subelement.

3.2 XML Tree Structure
3.2.1 Role Tree Structure

The Graph-Oriented Model. Formally,
XML data is represented by a directed labeled
graph G = (N, E) where N is a finite set of
labeled nodes and FE is a finite set of labeled
edges. An edge e is written as (n1, @, ng) where
n1 and ng are members of N and « is the label
of the edge.

In this paper, we use the notion of trees to
represent XML data. We investigate a set of
constraints over XML data. Before presenting
the constraint language, we shortly discuss fea-
ture and role trees.

A feature tree is a tree with unordered, la-
beled edges and labeled nodes. The edge la-
bels are called features; features are functional

in that two features labeling edges departing
from the same node are distinct. In program-
ming, features correspond to record field selec-
tors and node labels to record field contents.
In our framework, we extend the notion of fea-
ture trees to role trees. A role tree is a possibly
infinite tree whose nodes are labeled with sym-
bols called sorts, and whose edges are labeled
with symbols called roles. The labeling with
roles is nondeterministic in that edges depart-
ing from a node need not to be labeled with
distinct roles.

An example of a role tree is shown on figure
1. Its root is labeled with the node label faculty
and the edge departing at this root is labeled
by the role subelement.

A role tree is defined by a tree domain and
a labeling function. The domain of a role tree
T is the multiset of all words labeling a branch
from the root of 7 to a node of 7. For in-
stance, the domain of the tree of figure 1 is
{€, subelement, subelement, subelement, subele-
ment.value, etc.}. The labeling function asso-
ciates each element of the domain to a set of
sorts.

A role tree is finite if its tree domain is finite.
In general, the domain of a role tree may also
be infinite in order to model XML data with
cyclic dependencies.

A role tree can be seen as a carrier of in-
formation. This viewpoint gives rise to an or-
dering relation on role trees in a very natural
way that we call information ordering. The
information ordering is illustrated by the ex-
ample of figure 2. The smaller tree is miss-
ing some information about the object it rep-
resents, namely that this object is a faculty and
that role subelement of the object has an addi-
tional tag, email, whose value is crm@cs.edu.
In order to have nodes without information,
we allow for unlabeled nodes depicted with a
o. Formally, this means that we do not require
a labeling function to be total.

Intuitively, a role tree 71 is smaller than a
role tree 7o if 7| has fewer edges and node la-
bels than 7. More precisely, this means that
every word of roles in the tree domain of 7
belongs to the tree domain of 7o and that the
partial labeling function of 7 is contained in
the labeling function of 7. In this case we
write 71 < 7. The notions of tree domains
and labeling function will be formally defined
below.

The following are examples of queries. In
these queries, x and y are tree variables (i.e.,
variables ranging over role trees), and «, 8 are
path variables (i.e., variables ranging over com-
position of roles). We use the predicate symbol
tree to denote the set of trees in the database.
The formal semantics of the constructs used in
constraints will be given later.

Answer(x) + tree(x)||{John}(,x)

This query returns the set of trees such that
there is a path (here the valuation of the vari-
able a) from the root (of each tree answer
to the query), leading to the sort (i.e., value)
{John}. In this query (expressed as a rule),
Answer(x) is called the head of the query and
tree(x)||{ John}(a, z) is called the body of the
query. The notation S(«,x) means that there
is a path « in the tree x leading from the root
to the set of sorts S.

Answer(x,y) + tree(x), tree(y)||x <y,

{John}(e, x), {John}(S,y)

This query returns a set of pairs (x,y) of
trees such that x subsumes y and there is a
path (i.e., valuation of &) in x and a path (i.e.,
valuation of §) in y leading to the same set of
sorts (here {John}).

Answer(x,y) < tree(x), tree(y)||x ~y

This query returns pairs of trees that are com-
patible. The symbol ~ stands for compatibil-
ity.

Juswe eqns

name room

value value

clint 420

name

value

clint

email

value value

420 crm@cs.edu

Figure 2: Example of an order over trees.

To give a rigorous formalization of role trees,
we first fix two disjoint alphabets & and F,
whose symbols are called sorts and roles, re-
spectively. The letters S, .S’ will always denote
sets of sorts, and the letters f, g, h will always
denote roles. Words over F are called paths.
The concatenation of two paths v and w re-
sults in the path vw. The symbol € denotes
the empty path, ve = ev = v, and F* denotes
the set of all paths.

A tree domain is a nonempty set D C F*
that is prefix-closed; that is, if vaw € D, then
v € D. Thus, it always contains the empty
path.

A role tree is a mapping t : D — P(S) from
a tree domain D into the powerset P(S) of S.
The paths in the domain of a role tree repre-
sent the nodes of the tree; the empty path rep-
resents its root. The letters s and ¢ are used to
denote role trees.

A path p is a finite sequence of roles in F.
The empty path is denoted by e and the free-
monoid concatenation of paths p and p’ as pp';
we have ep = pe = p. Given paths pand p', p' is
called a prefiz of p if p = p'p” for some path p”.
A tree domain is a non-empty prefixed-closed
set of paths.

Definition 1 (Role Trees). A role tree 7 is
a pair (D, L) consisting of a tree domain D

and a partial labeling function L : D — P(S).
Given a role tree 7, we write D, for its tree
domain and L, for its labeling function. A role
tree is called finite if its tree domain is finite,
and infinite otherwise. We denote the set of
all role trees by R. If p € D, we write as
T[p] the subtree of T at path p which is formally
defined by Dy = {(®',S) | pp' € D:} and
LT[p] = {(p,aS) | (pp,aS) € LT}

3.3 Constraints over Role Trees

3.3.1 Syntax and Semantics of Con-

straints

In the following, we introduce the syntax and
semantics of ordering constraints over role
trees. We assume an infinite set (which we de-
note by V) of tree variables ranged over by z, y,
an infinite set (which we denote by V) of path
variables ranged over by «, 3, an infinite set F
of roles® ranged over by f,g, and an arbitrary
multiset S of sorts denoted by S,T containing
at least two distinct elements.

Syntax. An ordering constraint ¢ is de-
fined by the following abstract syntax.

pu=z <y|So,z)|z[flylz~y| w1 Ape

An ordering constraint is a conjunction of
atomic constraints which are either atomic or-
dering constraints x < y, generalized labeling

3In our case, a role is either subelement or value.

constraints S(a,), selection constraints z(f]y,
or compatibility constraints x ~ y.

Semantics. The signature of the structure
contains the binary relation symbols <, ~, and
S(e,e) (for every set of labels S), and for every
role f a binary relation symbol e[f]s. The do-
main of the structure R is the set of possibly
infinite role trees. The relation symbols are in-
terpreted as follows:

T1ST2 iff
T [fle iff

D, CD,, and L,, C L,

D,,={p| fp€ Dy} and

L, ={(p,5) | (fp,5) € L, }

u(a) € D, and (u(a),S) € L,

L., UL, is a partial function
(on D, U D)

S(a,) iff
T1 ~ T2 iff

where 4 is a valuation from V to the set of
elements JF*.

3.3.2 Satisfiability Test

We present a set of axioms valid for our con-
straint system and then interpret these axioms
as an algorithm that solves the satisfiability
problem of our constraint system.

Table 1 contains axioms schemes F1 - F6 that
we regard as sets of axioms. The union of these
sets of axioms is denoted by F. For instance, an
axiom scheme z < z represents the infinite set
of axioms obtained by instantiation of the meta
variable . An axiom is either a constraint o,
an implication between constraints ¢ — ¢/, or
an implication ¢ — false.

The role tree structure 7 is defined as fol-
lows:

o The domain of 7 is the set of all role trees.

e t € A7 if and only if t(¢) = A (#'s root is
labeled with the sort A).

o (s,t) € fTifandonlyif f € Dyandt = fs
(¢ is the subtree of s at f).

Proposition 1 The structure T is a model of
the axioms in F.

4 Constraint-Based
Language for XML

Query

We now present a construction that, given the
constraint language, let us call it C (for order-
ing constraints) and a set of relation symbols,
extends C to a constraint query language R(C).
Hence, we view our query language as consist-
ing of a constraint language on top of which re-
lations can be defined by definite clauses. The
language has a declarative and operational se-
mantics. Regarding the operational semantics,
we show that the immediate consequence op-
erator is monotonic and continuous. Hence,
queries can be evaluated in a bottom-up itera-
tive fashion.

Definition 2 (Predicate Symbol) we de-
fine the predicate symbol tree to denote XML
data represenied as trees.

We reason about XML data by a program P
which contains a set of rules defining ordinary
predicates. The rules are of the form:

H(X) « Li(Y1),-. -, Ln(Y)llet, - - -y em

for some n > 0 and m > 0, where X, Y7,...,Y,
are tuples of tree variables or path variables.
We require that the rules are safe, i.e., a vari-
able that appears in X must also appear in
Y1 U...UY,U { path variables and tree vari-

ables occurring in ¢y, ..., ¢, }. The predicates
Ly,..., L, may be either tree or ordinary pred-
icates. ¢i,...,¢y are ordering constraints (C-

constraints). In the following, we use the term
(positive) atom to make reference to predicates
Li,... Ly

Our language has a declarative model-
theoretic and fixpoint semantics.
5 Conclusion

There is a growing interest in XML. As XML
data (e.g., on the Web) proliferate, aids to

F1.1 z<zx

F1.2 z<yANy<z—=z<z

F2 z[fle' Nz <yAylfly -2 <y

F3.1 T~

F3.2 z<YyYANy~z—=>x~2

F3.3 T~y —=Y~ZT

F4 zlfle’ Ne ~yAylfly' = 2’ ~y

F5 S(a,) A S'(a,z) = falsefor S # S’

F6 S(a,z) NS (a,y) ANz ~y — false for S £ 5’

Table 1: Axioms of Satisfiability: F1-F6

browsing and filtering become increasingly im-
portant tools for interacting with such expo-
nentially growing information resources and for
dealing with access problems. In this paper
we have shown how a class of constraints can
lead to make a flexible query language for XML
data. In this paper, sorts appearing in order-
ing constraints (i.e., constraints of the form
S(a,x)) are constants (i.e., S is a set of con-
stants). In order our query language to be
more flexible, it will be very important to con-
sider sorts as first class values. As a conse-
quence, we will allow constraints of the form
Z(a,x), where Z is a variable ranging over sets
of sorts.

References

[1] Tim Bray, Jean Paoli, C. M. Sperberg-
McQueen, and Eve Maler. Extensible
Markup Language (XML) 1.0 (Second Edi-
tion), W3C Recommendation. Technical re-
port, http://www.w3.org/TR/REC-xml, Oc-
tober 6 2000.

[2] Serge Abiteboul. Querying Semi-Structured
Data. In Proceedings of the International Con-
ference on Database Theory (ICDT’97), Del-
phi, Greece, pages 1-18, Janvier 1997.

[3] S. M. Shieber. An Introduction to Unification-
Based Approaches to Grammar. volume 4 of
CSLI Lecture Notes. Center for the Study of
Language and Information, Stanford Univer-
sity, 1986.

[4] Hassan Aft-Kaci, Andreas Podelski, and Gert
Smolka. A Feature-Based Constraint System

for Logic Programming with Entailment. The-
oretical Computer Science, 122:263-283, 1994.

Gert Smolka and Ralf Treinen. Records for
Logic Programming. Journal of Logic Pro-
gramming, 18(3):229-258, April 1994.

Markus Hohfeld and Gert Smolka. Definite
Relations over Constraint Languages. LILOG
Report 53, IWBS, IBM Deutschland, Postfach
80 08 80, 7000 Stuttgart 80, Germany, October
1988.

Hans-Jiirgen Biirckert. A Resolution Principle
for Constrained Logics. Artificial Intelligence,
66:235-271, 1994.

Rolf Backofen. Regular Path Expressions in
Feature Logic. Journal of Symbolic Computa-
tion, 17:421-455, 1994.

Martin Miiller, Joachim Niehren, and An-
dreas Podelski. Ordering Constraints over Fea-
ture Trees. In Gert Smolka, editor, Prin-
ciples and Practice of Constraint Program-
ming - CP97, Third International Conference
(CP’97), Linz, Austria, LNCS 1330, pages
297-311. Springer Verlag, 1997.

Bret Bos. The XML Data Model
http://www.w3.org/XML/Datamodel.html,
1999.

Serge Abiteboul, Peter Buneman, and Dan Su-
ciu. Data on The Web, From Relations to
Semistructured Data and XML. Morgan Kauf-
mann, San Francisco, California, 2000.

