
Integrating Caching Techniques on a Content
Distribution Network

Konstantinos Stamos, George Pallis, and Athena Vakali

Department of Informatics
Aristotle University of Thessaloniki,

54124, Thessaloniki, Greece
kstamos@csd.auth.gr, gpallis@ccf.auth.gr, avakali@csd.auth.gr

Abstract. Web caching and replication tune capacity with performance and they
have become essential components of the Web. In practice, caching and repli-
cation techniques have been applied in proxy servers and Content Distribution
Networks (CDNs) respectively. In this paper, we investigate the benefits of inte-
grating caching policies on a CDN’ s infrastructure. Using a simulation testbed,
our results indicate that there is much room for performance improvement in
terms of perceived latency, hit ratio and byte hit ratio. Moreover, we show that
the combination of caching with replication fortifies CDNs against flash crowd
events.

1 Introduction

The rapid evolution of the Internet along with the increasing interest of the end-user
for Web services has lead to the development of a wide variety of on-line applications
(video-on-demand (VOD), e-commerce, information retrieval (IR), on-line gaming).
Web sites (i.e. news sites), offering those services, have to deal with the increasing
number of requests, whereas, on the server side, this results in increasing demand for
processing time and overloading. On the end-user side, noticeable latency, connection
interrupts and Denial of Service (DoS) are perceived due to network traffic and server
overloading. For instance, in an application which gets real-time data from the NAS-
DAQ Stock Market and makes buying decisions, delayed (stale) data will lead to mis-
leading actions. In order to deal with such situations caching and replication have been
proposed.

The Caching Approach. The key idea behind caching [10,22] is to keep content close
to the end-user according to a cache replacement policy. Specifically, the end-user’s re-
quest for an object is posed to a proxy server, which may contain a cached version of
the object. If the proxy server contains a “fresh copy” of the requested object (cache
hit) then the end-user receives it directly from the proxy cache, elsewhere (cache miss)
the end-user is redirected to the origin server (where the Web site is located). Therefore
both the bandwidth consumption and the network traffic are reduced [11,2]. Addition-
ally, network availability is significantly improved since the end-user may receive a
copy even if the origin server is unavailable. Another advantage of caching is that fresh
content is added into the caches leading to better storage usage.

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 200–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Integrating Caching Techniques on a Content Distribution Network 201

A complementary to caching technique is prefetching [14]. Prefetching is proposed
to find meaningful object access patterns in order to predict future requests. Therefore,
objects may be transferred to the proxy server a priori (before they are even requested).

The Replication Approach. The main idea is to bring static content replicas close to
the end-user. This is currently applied in the Content Distribution Networks [16,23].
A CDN consists of a set of surrogate servers geographically distributed in the Web,
which contain copies (replicas) of content belonging to the origin server (according to
a specific storage capacity). Therefore, CDNs act as a network layer between the ori-
gin server and the end-users, for handling their requests. With this approach, content is
located near to the end-user yielding low response times and high content availability
since many replicas are distributed. The origin server is “relieved” from requests since
the majority of them is handled by the CDN, whereas, Quality of Service (QoS) and
efficiency are guaranteed in a scalable way. Finally an important characteristic of the
CDNs is the efficiency against flash crowd events [25]. Specifically, a flash crowd event
occurs when unpredictably numerous users access a Web site. Events that affect global
communities (i.e. Sept. 11th, Tsunamis etc) lead to flash crowd events affecting popular
news Web sites. The side effects are significant: DoS, increased network latency and
Web servers overloading. Therefore it is important to enhance content delivery man-
agement especially in unpredictable crisis situations.

Caching and replication deals with situation as separate approaches. While caching
is mainly addressed to proxy servers, replication is the main technology of CDNs. How-
ever, implementing caching techniques over a CDN may improve performance by al-
lowing fresh content to be replicated. In this paper, we focus on adapting representative
cache replacement policies over a CDN along with replication. We explore the poten-
tial performance benefit in terms of perceived latency, hit ratio and byte hit ratio by
using surrogate servers both as replicators and proxy caches. Caching and replication
may benefit if used together, shown by our extensive experimentation using a detailed
simulation model. Moreover, we demonstrate the robustness of the integrated approach
in a CDN during a flash crowd event since it is a crucial issue.

The rest of this paper is organized as follows. In Sect. 2 we discuss the motivation
of this work and present some previous related work. Section 3 formally presents the
problem of content management in CDNs when using replication and caching. In Sect.
4 a brief description of the developed simulation model is given which has been used
in order to perform the experiments presented in Sect. 5. Finally, the conclusion of this
work and potential future work are given in Sect. 6.

2 Previous Work and Motivation

2.1 Previous Work

The performance of CDNs is affected by three main issues:

– Surrogate servers placement over the network: The optimal selection of proper
spots over the network [12,19,20] where the surrogate servers should be placed
yielding optimized performance. Algorithms that proposed to solve this problem
are investigated in [19].

202 K. Stamos, G. Pallis, and A. Vakali

– Content outsourcing: The detection of the proper content for outsourcing[6]. Full
mirroring is a naive approach because even if disk prices are continuously dropping,
the sizes of Web objects increase and updating such a huge amount of Web objects
is a cumbersome task.

– Object replicas’ placement: Placing object replicas on surrogate servers
[7,17,18,8] in a way that leads to optimized performance. Benchmarks of algo-
rithms that manage this issue can be found in [7].

In this paper, we address the problems of object replicas selection and placement by
applying caching policies integrated with the existing replication scheme. The problem
of optimal content placement is proved to be NP-complete and therefore only heuristic
approaches are feasible [7] such as Greedy Global algorithm. Greedy global recursively,
for all objects and surrogate servers, detects the object that if placed at a specific surro-
gate server leads to optimized performance. Although Greedy Global seems to be the
choice, its complexity is too high for applying a per-object placement on a large set
of surrogate servers and objects. An alternative self-adaptive algorithm (lat-cdn) has
been proposed in [17] that requires no other knowledge (such as recorded access logs)
besides the network topology. The il2p algorithm [18] is proposed which takes into ac-
count the servers’ load. Specifically, il2p using recursively two phases selects which
object should be placed and where. During the first phase for each object the appro-
priate surrogate is selected minimizing network latency. Given the candidate pairs of
(object, surrogate server), at the second phase, the one that yields the maximum utility
value (depended on server’s load) is selected.

Since CDNs have to deal with large amounts of data it is crucial to apply several
data and communication management policies. Up to now, the uncooperative pull-based
[23,26], cooperative pull-based [1], cooperative push-based and uncooperative push-
based are the basic approaches, as reported in [16].

2.2 Motivation

The motivation of this work originates from the idea of improving a cooperative push
based CDN by solving problems arising from pure replication. More specifically:

– Due to replication and distribution cost, a replicas’ placement should be static for
a large amount of time. This leads to unoptimized storage capacity usage since the
surrogate servers would contain redundant content. If the end-users’ access pat-
terns change the replicas will no longer cover a large percentage of the requests.
Besides replication no other action, such as replacement of unpopular objects by
other currently popular, is performed.

– The placement of surrogate servers on the network is static reducing the flexibility
of the CDN.

A possible brute-force solution to fight these drawbacks is to upgrade the Web servers
and the network infrastructure. Faster Web servers and increased bandwidth solves the
problem of fast data transfer and handling large amount of requests. However, this
is a temporary solution. It includes increasing economic cost, since more and more
resource-demanding services would emerge flooding again the network. Furthermore,

Integrating Caching Techniques on a Content Distribution Network 203

it is not scalable since upgrading the hardware infrastructure is not always practically
and economically feasible.

In order to deal with the static nature of the information stored on the surrogate
servers we propose the integration of caching and replication. If replication and caching
cooperate they may be beneficial since both deal with the same problem but from a dif-
ferent approach. Although caching may suffer from low hit ratio and byte hit ratio [11]
(typically below 50%) the performance gain from static replication along with caching
in terms of response time (as we will show in the experiments) is significant. An eval-
uation of caching and replication as seperate approaches in CDNs is covered in [9],
where caching outperforms but replication is still preferred for content availability and
reliability of service. In [3] authors proved that integrating a simple LRU with replica-
tion, on a CDN, via a hybrid greedy algorithm yields performance outperforming a pure
caching or replication scheme. Specifically, in each iteration a benefit value for every
server-object pair is assigned and the one that produces the best benefit is selected for
replication. At the end of the algorithm a percentage of the available storage capacity
is reserved by static content and the rest is available for LRU. However, the possibil-
ity of using various representative cache replacement policies is not examined and the
proposed approach is not tested during flash crowd events.

To the best of our knowledge, in the past the possibility of using caching along with
replication on CDNs has not been studied in more extend. Therefore, the challenge is
to improve the performance by using caching and replication together. In the context of
integrating caching policies on a CDN’s infrastructure our primary contributions are:

– Extend the policies of content selection and placement on CDNs by adopting rep-
resentative cache replacement techniques. We select the LRU, LFU and SIZE as
representatives of the main categories of cache replacement algorithms namely Re-
cency, Frequency and Size based [24].

– Develop a detailed trace-driven simulation environment to test the efficiency of the
proposed integrated scheme. The development of such an environment is crucial
since we can capture the behavior of a realistic CDN infrastructure. Moreover, we
avoid the oversimplified approach of a hop-based implementation that may give
misleading results.

– Provide extensive experimentation covering all the possible combinations with real
and artificial datasets, using representative cache replacement policies and repli-
cation at different levels of integration showing that pure caching or replication
cannot meet the performance benefit of the integrated method.

– Demonstrate results proving that the integration has superior performance during
flash crowd events and address several considerations and future road maps for such
an integrated approach.

3 Integrating Caching in a Cooperative Push-Based CDN

Here we formally propose the problem of content management on cooperative push-
based CDNs using replication integrated with caching policies. We choose the cooper-
ative push-based scheme since it has been proved in [7] that is optimal. According to
this approach, replicas are selected and placed at the surrogates servers a priori. Then

204 K. Stamos, G. Pallis, and A. Vakali

the surrogate servers cooperate with each other in order to reduce the response times
and replication cost. Specifically, the end-users’ requests are directed to the closest sur-
rogate server. If the surrogate server contains the requested object then it is satisfied
without causing traffic to the network backbone. Otherwise, the request is redirected
to another server. The CDN may redirect the request to a surrogate server which con-
tains the requested object or to the origin server, if the object is not outsourced at all.
The bandwidth is shared among the surrogate servers and the objects replication redun-
dancy is reduced.

surrogate
server

STATIC CACHE
(il2p, G.G., ...)

DYNAMIC CACHE
with

cache replacement
policy

(LRU, LFU, SIZE, ...)

r%

c%

Network backbonerouter

clients group

M
(s)

Storage reserved
exclusively

for web site W

W
web site

origin
web server

Fig. 1. CDN infrastructure

Here, we propose a modification of the cooperative push based scheme. Specifically,
we consider the surrogate servers to operate both as static caches and proxy caches by
partitioning the available storage capacity into two parts. The first one is used for repli-
cating statically content and the second one for running a caching policy replicating
content dynamically (Fig. 1). Assigning such a “dual” role to surrogate servers is feasi-
ble due to their increasing capacities and capabilities. When a surrogate server receives
a request for an object a check to the static cache is performed. If it is a hit the request
is served, else another check to the dynamic cache is performed. In case the object is in
the dynamic cache, it is served and the cache is updated according to the cache replace-
ment policy. If the requested object is not outsourced either in the dynamic cache, it is
pulled from another server (selected based on proximity measures) and stored into the
dynamic cache according to the current cache replacement policy and then the end-user
receives the cached object. Therefore the end-user deals only with the nearest surrogate
server and is not redirected elsewhere. Cached objects will be available in cache for
future requests as long as they are allowed by the current cache replacement policy.
The content of a surrogate server adapts to the current needs for objects and the static

Integrating Caching Techniques on a Content Distribution Network 205

nature of replication is overcome. The surrogate server plays a more active role and per-
forms content management deciding which object should remain or not. Furthermore,
besides the static cache, the content selection and placement is automated and it fits to
the current objects’ access pattern. The reason to keep the static part of the cache, as we
will prove in the experiments, is to maintain content availability by distributing a large
number of replicas to the network.

Table 1. Variables description

Variable Description
W The Web site
N Number of objects of W

W (s) Web site’s size

U
(s)
k Size of kth object

M Number of surrogate servers

Mi The ith surrogate server

M
(s)
i Storage capacity of the ith surrogate server

M (s) Storage capacity of each surrogate server

fik Function indicating whether the kth object is placed at the ith surrogate server or not

r Percentage of the M (s) for replication

c Percentage of the M (s) for caching

Therefore, consider a Web server representative who has signed a contract with the
described CDN for outsourcing content of a Web site W . The Web site contains N
objects initially located only at the origin Web server (outside of the CDN). The total
size of W is W (s) and is given by the following equation:

W (s) =
N∑

k=1

U
(s)
k (1)

where U
(s)
k is the size of the kth (1 ≤ k ≤ N) object.

Let M be the number of surrogate servers consisting the CDN. Each surrogate server

Mi(1 ≤ i ≤ M) has a total cache size M
(s)
i dedicated (hired) for W . However, the

surrogate servers may contain content from other Web sites without interfering with

M
(s)
i . The M

(s)
i is exclusively reserved for replicating content of W , of which the

original copies are located in the origin Web server. For simplicity, we consider that

the surrogate servers are homogeneous (same storage capacity M
(s)
i = M (s)(1 ≤ i ≤

M)).
In order to apply replication and caching techniques the available storage capacity is

split into two parts (Fig. 1):

– Static cache: Dedicated for replicating content statically. Its size is a percentage
r, (r ∈ [0..1]) of M (s). Therefore, the replicated objects, in static cache, obey the
following constrain:

206 K. Stamos, G. Pallis, and A. Vakali

N∑

k=1

(fikU
(s)
k) ≤ rM (s) (2)

where fik is a function denoting if an object exists (outsourced) in cache or not.
Specifically, fik = 1 if the kth object is placed at the ith surrogate server and fik =
0 otherwise. The content of the static cache is defined by applying a replication
algorithm like il2p.

– Dynamic cache: Reserved for applying cache replacement policies. The size re-
served for dynamic caching is a percentage c, (c ∈ [0..1]) of M (s). More specifi-
cally, the stored objects respect the following storage capacity constrain:

N∑

k=1

(fikU
(s)
k) ≤ cM (s) (3)

Initially, the dynamic cache is empty since it is filled with content at run-time ac-
cording to the selected cache replacement policy (upon misses).

Given the above cache segmentation scheme, the percentages (r, c) and must obey
the following:

r + c = 1 (4)

If c = 0 the cooperative push-based scheme is applied where the pulled objects are
not stored for future use (pure replication). If we set r = 0 the surrogate servers turns
into cooperative proxy caches (dynamic caching only). For c > 0 and r > 0 we get
the integrated approach where replication is used along with caching. Here the problem
addressed is to select the optimal values for r and c, given a replica placement and
caching algorithm, which improves the performance of the CDN.

4 CDNsim: The Simulation Testbed

For the experimentation needs, we have implemented a complete simulation environ-
ment, called CDNsim. CDNsim simulates a main CDN infrastructure and is implemented
in the C programming language. It is based on the ParaSol library1 which provides a par-
allel and discrete event simulation environment. Further details about CDNsim along
with the source code can be found at http://oswinds.csd.auth.gr/∼cdnsim/. Due to space
limitations, only the basic characteristics of the simulator are presented here.

CDNsim uses a network graph generated by the GT-ITM internetwork topology gen-
erator [27] in order to build the network backbone with a realistic TCP/IP protocol
implementation. This includes packets routing, retransmissions on errors or DoS, finite
bandwidth links, bottlenecks, etc. Packets routing is performed by following the shortest
paths generated by the Dijkstra algorithm. The nodes of the generated network topol-
ogy are assigned to specific network elements which include the following a) routers,
b) surrogate servers, c) origins servers and d) client groups (clients grouped accord-
ing to their domains). Communication via routers causes the main network traffic and

1 http://www.cs.purdue.edu/research/PaCS/parasol.html

Integrating Caching Techniques on a Content Distribution Network 207

perceived delays. Therefore, requests that lead to cache misses and must be pulled are
“expensive” in order to be satisfied. We avoid the oversimplified approach of network
latency depended only by the number of network-hops since we simulate a realistic
network.

There are several clients’ log files on the Web2 but we do not have the respective
Web sites’ structure, and vice versa. Moreover, the CDN providers do not offer their
log files. Therefore, we use articial workloads and Web sites. For that reason, we used
the R-MAT Web site generator [5] and we assigned sizes to the objects according to the
log-t distribution as described in [13]. For each of the generated sites we have produced
a set of object requests using the generator presented in [14].

An issue that may affect the performance of a simulation is cache consistency. Since
there is a certain amount of literature that deals with the problem of cache consistency
we assume that there is implemented an appropriate mechanism like Web server in-
validation [4] that ensures the freshness of the objects. Moreover the probability of
requesting for a stale object is low because according to [15] the duration between two
modifications in the same object is up to 24 hours.

5 Performance Evaluation and Experimentation

In this section we present results demonstrating the behavior of the integrated scheme
in terms of mean response time, hit ratio and byte hit ratio. Section 5.1 summarizes
the performance parameters evaluated in the experiments. In Sect. 5.2 the simulations’
setup and the used datasets are described while Sect. 5.3 presents the experimentation.

5.1 Parameters

Here we briefly present the performance criteria used in the experiments, namely the a)
mean response time, b) response time CDF, c) hit ratio and d) byte hit ratio. These cri-
teria have been used since they are the most indicative ones for performance evaluation.

– Mean response time. This is the expected time for a request to be satisfied. It is
the summation of all request times divided by their quantity. Low values denote
that content is close to the end-user.

– Response time CDF. The Cumulative Distribution Function (CDF) in our experi-
ments denotes the probability of having a response times lower or equal to a given
response time. The goal of a CDN is to increase the probability of having response
times around the lower bound of response times.

– Hit ratio. It is defined as the fraction of cache hits to the total number of requests.
A high hit ratio indicates an effective cache replacement policy and defines an in-
creased user servicing, reducing the average latency.

– Byte hit ratio. It is the hit ratio expressed in bytes. It is defined as the fraction of
the total number of bytes that were requested and existed in cache to the number of
bytes that were requested. A high byte hit ratio improves the network performance
(i.e. bandwidth savings, low congestion etc.).

2 Traces available in the Internet Traffic Archive: http://ita.ee.lbl.gov/html/traces.html

208 K. Stamos, G. Pallis, and A. Vakali

5.2 Simulation Configuration

Network and CDN Topology. Using the GT-ITM we have indicatively created an AS
network topology with a total of 3037 nodes. Given a standard link speed of 1MB per
second we have generated the shortest paths of all nodes to all nodes for optimal packets
routing. A set of 20 surrogate servers is randomly attached in the existing network
backbone.

For the experimentation needs we express M (s) as a percentage p of the origin
server’s Web site size W (s) (i.e. M (s) = pW (s)). For the static cache, we have used
the il2p algorithm since its complexity is acceptable on a per-object replication. Specif-
ically, we follow the following steps to initialize and run the surrogate servers caches:

1. Initially the surrogate servers are empty. We set the (r, c).
2. We fill the static cache specified by the r by running the il2p algorithm.
3. We set the cache replacement policy for the dynamic cache specified by c. In our

experiments the caching policy may be LRU, LFU or SIZE.

The (r, c) pairs that we used for the simulator are i) (1,0) for pure replication, ii)
(0.8,0.2), iii) (0.5, 0.5), iv) (0.2, 0.8) and v) (0, 1) for pure caching. Additionally for
setting the upper and lower bound of performance we have configured CDNsim for
full mirroring of the Web sites and then to have empty disks (caches) without possible
addition of objects into the cache.

Datasets. With the above described configuration we present three experiments using
three datasets. The first dataset concerns an artificial Web site of 2994 objects, size
746.86 MBs and set of 1969114 requests. We set p = 0.15 leading to a cache size of
112.03 MBs. As mentioned before, we had to use synthetic datasets due to the lack
of real CDN traces. The second dataset includes the same Web site but it runs under
a flash crowd event. We have shrunk the time window of the requests in order to in-
crease their density and rate. This leads to greater network traffic since more packets
travel simultaneously and the surrogate servers’ load is increased because of the greater
number of simultaneously active sessions. The final dataset is a real Web site. We have
used the Standford’s Web site 3 which contains 281904 objects and its size is 8.66 GBs.
The number of requests is 3744460 and the p = 0.015, since it is much larger than the
artificial Web sites, leading to storage capacity of 133,15 MBs. Table 2 summarizes the
overall experimentation configuration.

5.3 Simulation Results

In this section we present the results and we compare the performance parameters of
pure replication, pure caching and integration of replication with LRU, LFU and SIZE
(representatives of Recency, Frequency and Size based policies [24]).

Experiments Without Flash Crowd Event
Artificial Data. The resulting mean response times are depicted in Fig. 2. The x axis
represents the integration level of replication and caching (the (r, c) values) while the

3 http://www.stanford.edu/∼sdkamvar/research.html

Integrating Caching Techniques on a Content Distribution Network 209

Table 2. Experimentation configuration summary

Network topology AS 3037 nodes
Link speed 1MB/s
N 20
(r, c) (1, 0), (0.8, 0.2), (0.5, 0.5), (0.2, 0.8), (0, 1), full mirroring, empty disks
Rep. alg. il2p
Caching policies LRU, LFU, SIZE
Dataset 1 Artificial, 2994 objects, 746.86 MBs, 1969114 reqs., p = 0.15
Dataset 2 Artificial, 2994 objects, 746.86 MBs, 1969114 reqs., p = 0.15, flash c.e.
Dataset 3 Real, 281904 objects, 8.66 GB, 3744460 reqs., p = 0.015

y axis is the resulting mean response times of the requests. The performance limits are
bounded by the cases of full mirroring and empty disks. By using pure replication the
mean response time is reduced significantly denoting that the existence of replicas on
the network participates to the improvement of performance setting the limits of pure
replication. However, there is still room for optimization. For the integration level where
(r, c) = (0.5, 0.5) the mean response times are reduced up to 40% compared to pure
replication and 15% compared to pure caching, for all caching schemes. Reducing c
the results are gradually worsen for values of c > 0.8 meaning that there is still need
for static replicas to exist. This behavior is presented also in Fig. 3 which shows the
hit ratio at the y axis and the integration level at x axis. The combination of replication
with SIZE outperforms all the other combinations in terms of hit ratio. The hit ratio
gain may reach 70% compared to pure replication and around 10% compared to pure
caching. Examining the byte hit ratio (y axis) at Fig. 4 at different pairs of (r, c) (x
axis), we can conclude that the performance gain in terms of byte hit ratio is not signifi-
cant, however a gain around 10% is still possible with all cache replacement algorithms
demonstrating the same behavior. Another illustration of the situaton is shown in Fig. 5.
The x axis contains the response times of all requests ascending while the y represents
the portion of requests that their response time is lower than a given value. The CDFs
of the intergrated approach tend to fit the ideal situation of full mirroring with SIZE as
the leading algorithm.

In this experiment we can conclude that LRU, LFU and SIZE has similar behavior in
terms of mean response time, byte hit ratio and CDFs. The leading algorithm, in the hit
ratio case, is SIZE which can be explained by the fact that SIZE favors smaller objects
leading to increased number of objects in cache.

Real Data. The second experiment, given the same execution environment, is run with
the Standfors’s Web site. Figure 6 illustrates the mean response time. As we can see
the pure replication is unable to offer considerable performance benefit. This can be
explained by the fact that W (s) � M (s), therefore a relatively small set of replicas
cannot cover a large enough percentage of the requests. However, for (r, c) = (0.8, 0.2)
we get a 70% which is peak for all caching policies. Pure caching seems to be the choice
here because the average object size is too small (around 33 Kb). Although the pure
caching outperforms the use of integration is preferred because it has comparable results
to the pure caching and distributes a number of replicas over the network increasing

210 K. Stamos, G. Pallis, and A. Vakali

Replication vs Caching precentage

M
ea

n
re

sp
on

se
ti

m
e

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% c 100% c

0.5

1

1.5

2

Fig. 2. Artificial Web site - Mean response time

Replication vs Caching precentage

H
it

ra
ti

o

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c

0

0.2

0.4

0.6

0.8

1

Fig. 3. Artificial Web site - Hit ratio

B
yt

e
hi

tr
at

io

Replication vs Caching precentage

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c

0

0.2

0.4

0.6

0.8

1

Fig. 4. Artificial Web site - Byte hit ratio

Response time

R
es

po
ns

e
ti

m
e

C
D

F
FULL mirroring
LRU
LFU
SIZE
EMPTY disks

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Fig. 5. Artificial Web site - CDF (r, c) = (0.5,
0.5)

Replication vs Caching precentage

M
ea

n
re

sp
on

se
ti

m
e

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% c 100% c
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 6. Real Web site - Mean response time

Replication vs Caching precentage

H
it

ra
ti

o

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c

0

0.2

0.4

0.6

0.8

1

Fig. 7. Real Web site - Hit ratio

content availability. Both in hit ratio Fig. 7 and byte hit ratio Fig. 8 the peak occurs at
the same integration level ((r, c) = (0.8, 0.2)) with SIZE slightly better in terms of hit
ratio and worse in terms of byte hit ratio. At (r, c) = (1.0, 0.0) the estimated values are
quite low since the available storage capacity is too limiting and therefore the replica
placement algorithm does not perform well. The reasons we have selected this storage
capacity constrain (p = 0.015) are: a) the il2p execution time for the real dataset was
restricting and b) we would like to monitor the system performance with low cache
sizes. It is clear that in low cache sizes caching is preferred since it updates the content

Integrating Caching Techniques on a Content Distribution Network 211

Replication vs Caching precentage

B
yt

e
hi

tr
at

io

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c

0

0.2

0.4

0.6

0.8

1

Fig. 8. Real Web site - Byte hit ratio

Response time

R
es

po
ns

e
ti

m
e

C
D

F

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Fig. 9. Real Web site - CDF (r, c) = (0.8, 0.2)

while replication is not recommended since the static replicas cannot cover a satsifying
portion of the requests. In Fig. 9 for (r, c) = (0.8, 0.2) can the intergrated approach fits
to the upper bound performance limit.

As a conclusion for this experiment, pure caching outperforms in case the objects
have small sizes. However, at the integration level where (r, c) = (0.8, 0.2), the results
are comparable. As expected, LRU and LFU has similar behavior while SIZE is leading
in terms of hit ratio and it is not recommended for optimizing byte hit ratio.

Experiments with Flash Crowd Event
As mentioned in the Introduction, it is crucial to enhance content delivery during flash
crowd events. Therefore the integration of caching with replication should be tested
appropriately.

Artificial Data. In this experiment we record the behavior of the CDN during a flash
crowd event in the considered logs. The CDN’s operation is intensive since a large
amount of requests is served simultaneously. Figure 10 depicts the mean response times.
The situation where the disks are empty leads to an unstable state where, as expected,
increased response times are observed. In the case of full mirroring the performance is
similar to the no flash crowd event case (Fig. 2) since the entire network backbone is
skipped. Using pure replication an important performance benefit exists, however, now
the response times are 100% larger than the no flash crowd event operation. For (r, c) =
(0.8, 0.2) the percieved mean response times are comparable to the ones depicted in Fig.
2 during no flash crowd event, meaning that the CDN copes with the flash crowd event
efficiently. For LRU and LFU the performance of the model is the same as the no flash
crowd event but for SIZE at c > 0.2 it is worse but still better than pure replication
or caching. In terms of hit ratio (Fig. 11) the combination of SIZE with replication
for (r, c) = (0.2, 0.8) yields performance 60% greater than replication and around 8%
better than caching. For this integration level, all caching policies reach peak in their
performance. The expected byte hit ratio Fig. 12 seems to follow the same behavior
just like the no flash crowd event case. Looking the model from the perspective of CDF
Fig. 13 for (r, c) = (0.8, 0.2) we notice that in the case of empty disks the distribution
is uniform explained by the flash crowd event. For the inergated approach the choice
algorithm is the SIZE.

212 K. Stamos, G. Pallis, and A. Vakali

Summarizing this experiment, during a flash crowd event the absence of a caching or
replication mechanism leads to unacceptable response times. However, pure replication,
as applied currently in CDNs, improves the performance. The performance may be
significantly ameliorated using replication with caching showing the robustness of the
integrated approach.

Replication vs Caching precentage

M
ea

n
re

sp
on

se
ti

m
e

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c
0

0.5

1

1.5

2

625,5

Fig. 10. Artificial Web site - Mean response
time at flash crowd event

Replication vs Caching precentage

H
it

ra
ti

o

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c

0

0.2

0.4

0.6

0.8

1

Fig. 11. Artificial Web site - Hit ratio at flash
crowd event

Replication vs Caching precentage

B
yt

e
hi

tr
at

io

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c

0

0.2

0.4

0.6

0.8

1

Fig. 12. Artificial Web site - Byte hit ratio at
flash crowd event

Response time

R
es

po
ns

e
ti

m
e

C
D

F

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Fig. 13. Artificial Web site - CDF (r, c) = (0.8,
0.2) at flash crow event

Summary of Experiments
To summarize the experiments, we can conclude that the integration of replication with
caching leads to improved performance in terms of perceived network latency, hit ratio
and byte hit ratio. The results reinforce the initial intuition that replicating replicas
statically for content availability along with caching policies improves the performance.
Our experimentation has shown that:

– The integrated approach demonstrates mean response times up to 40% better than
pure replication.

Integrating Caching Techniques on a Content Distribution Network 213

– A performance benefit of 15% may be achieved when compared with pure caching
in terms of mean response time.

– Pure replication yields poor performance, 70% worse than the integrated approach,
in terms of hit ratio.

– Pure caching demonstrates performance in hit ratio which may be 10% worse than
the caching-replication combination.

– It can be observed in the experiments that there is not a fixed pair of (r, s) that gives
us the peak of performance.

– As presented in the experimentation , CDNs using the integrated approach, demon-
strate improved performance during a flash crowd event, comparable to the case of
a no flash crowd event.

– The performance peak appears to be independent from the selected cache replace-
ment policy.

6 Conclusion and Future Work

This paper investigates the potential performance gain occurring by replication and
caching if used together in a CDN. We offered an extensive set of experiments ex-
ploring the performance limitations. For the purposes of the experiments a detailed
simulation environment has been developed. It has been shown that caching outper-
forms static content replication. Moreover, a possible integrated scheme outperforms
the pure replication or caching scheme as separate implementations. CDNs may take
advantage of the dynamic nature of cache replacement policies while maintaining static
object replicas for availability, reliability and bounded update propagation cost. Finally
our experiments shown that CDNs are effectively fortified against flash crowd events.

The integrated approach should be tested and applied on several network topolo-
gies such as ad-hoc mobile wireless networks [21]. Currently we are working on the
extension of the replicas placement in terms of dynamic data and various dynamic pa-
rameters of QoS, since it is an open issue in this work. Moreover, the development of an
automated mechanism for detecting the appropriate level of integration (i.e. (r, c) pair)
which leads to performance peak is crucial. Finally, another consideration is the imple-
mentation of a mechanism that dynamically recalculates the (r, c) at run-time adapting
to the varying needs.

References

1. Annapureddy, S., Freedman, M.J., Mazières, D.: Shark: Scaling file servers via cooperative
caching. In: 2nd Symposium on Networked Systems Design and Implementation, USENIX,
ACM SIGCOMM, ACM SIGOPS (2005)

2. Arlitt, M., Friedrich, R., Jin, T.: Performance evaluation of Web proxy cache replacement
policies. Lecture Notes in Computer Science 39 (2000) 149–164

3. Bakiras, S., Loukopoulos, T.: Increasing the performance of CDNs using replication and
caching: A hybrid approach. In: 19th International Parallel and Distributed Processing Sym-
posium, IEEE Computer Society (2005)

4. Cao, P., Liu, C.: Maintaining strong cache consistency in the world wide web. IEEE Trans-
actions on Computers 47(4) (1998) 445–457

214 K. Stamos, G. Pallis, and A. Vakali

5. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph mining. In:
4th SIAM International Conference on Data Mining, SIAM (2004)

6. Chen, Y., Qiu, L., Chen, W., Nguyen, L., Katz, R.H.: Clustering web content for efficient
replication. In: 10th IEEE International Conference on Network Protocols, IEEE Computer
Society (2002) 165–174

7. Jin, S., Wang, L.: Content and service replication strategies in multi-hop wireless mesh
networks. In: 8th ACM International Symposium on Modeling, analysis and simulation of
wireless and mobile systems, ACM Press (2005) 79–86

8. Karlsson, M., Karamanolis, C.: Choosing replica placement heuristics for wide-area sys-
tems. In: 24th International Conference on Distributed Computing Systems, IEEE Computer
Society (2004) 350–359

9. Karlsson, M., Mahalingam, M.: Do we need replica placement algorithms in content delivery
networks? In: 7th International Workshop on Web Content Caching and Distribution, IWCW
(2002) 117–128

10. Katsaros, D., Manolopoulos, Y.: Caching in web memory hierarchies. In: 19th Annual ACM
Symposium on Applied Computing, ACM Press (2004) 1109–1113

11. Kroeger, T.M., Long, D.D.E., Mogul, J.C.: Exploring the bounds of web latency reduction
from caching and prefetching. In: USENIX Symposium on Internet Technologies and Sys-
tems, USENIX (1997)

12. Li, B., Deng, X., Golin, M.J., Sohraby, K.: On the optimal placement of web proxies in
the internet: The linear topology. In: 8th International Conference on High Performance
Networking, Kluwer, B.V. (1998) 485–495

13. Mitzenmacher, M., Tworetzky, B.: New models and methods for file size distributions. In:
41st Annual Allerton Conference on Communication, Control, and Computing. (2003) 603–
612

14. Nanopoulos, A., Katsaros, D., Manolopoulos, Y.: A data mining algorithm for generalized
web prefetching. IEEE Transactions on Knowledge and Data Engineering 15(5) (2003)
1155–1169

15. Padmanabhan, V.N., Qiu, L.: The content and access dynamics of a busy web site: ndings
and implications. In: ACM SIGCOMM Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, ACM Press (2000) 111–123

16. Pallis, G., Vakali, A.: Insight and perspectives for content delivery networks. Communica-
tions of the ACM 49(1) (2006) 101–106

17. Pallis, G., Vakali, A., Stamos, K., Sidiropoulos, A., Katsaros, D., Manolopoulos, Y.: A
latency-based object placement approach in content distribution networks. In: 3rd Latin
American Web Congress, IEEE Computer Society (2005) 140–147

18. Pallis, G., Stamos, K., Vakali, A., Katsaros, D., Sidiropoulos, A., Manolopoulos, Y.: Repli-
cation based on objects load under a content distribution network. In: 22nd International
Conference on Data Engineering Workshops, IEEE Computer Society (2006)

19. Tang, X., Xu, J.: QoS-aware replica placement for content distribution. IEEE Transactions
on Parallel and Distributed Systems. 16(10) (2005) 921–932

20. Szymaniak, M., Pierre, G., van Steen, M.: Latency-driven replica placement. In: International
Symposium on Applications and the Internet, IEEE Computer Society (2005) 399–405

21. Tseng, Y.C., Ni, S.Y., Shih, E.Y.: Adaptive approaches to relieving broadcast storms in a
wireless multihop mobile ad hoc network. In: 21st International Conference on Distributed
Computing Systems, IEEE Computer Society (2001) 481–488

22. Vakali, A.: LRU-based algorithms for web cache replacement. In: 1st International Confer-
ence on Electronic Commerce and Web Technologies, Springer-Verlag (2000) 409–418

23. Vakali, A., Pallis, G.: Content delivery networks: Status and trends. IEEE Internet Computing
7(6) (2003) 68–74

Integrating Caching Techniques on a Content Distribution Network 215

24. Wang, J.: A survey of web caching schemes for the internet. Computer Communication
Review 29(5) (1999) 36–46

25. Wang, L., Pai, V., Peterson, L.: The effectiveness of request redirection on cdn robustness. In:
5th Symposium on Operating System Design and Implementation, USENIX (2002) 345–360

26. Yu, H., Vahdat, A.: Minimal replication cost for availability. In: 21st Annual Symposium on
Principles of Distributed Computing, ACM Press (2002) 98–107

27. Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an internetwork. In: Confer-
ence on Computer Communications, Fifteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies, Networking the Next Generation, IEEE (1996) 594–
602

	Introduction
	Previous Work and Motivation
	Previous Work
	Motivation

	Integrating Caching in a Cooperative Push-Based CDN
	CDNsim: The Simulation Testbed
	Performance Evaluation and Experimentation
	Parameters
	Simulation Configuration
	Simulation Results

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

