
A Structure-Based Clustering

on LDAP Directory Information

Vassiliki Koutsonikola, Athena Vakali,
Antonios Mpalasas, and Michael Valavanis

Department of Informatics
Aristotle University

54124 Thessaloniki, Greece
{vkoutson,avakali,antoniom,mvalavan}@csd.auth.gr

Abstract. LDAP directories have rapidly emerged as the essential
framework for storing a wide range of heterogeneous information un-
der various applications and services. Increasing amounts of information
are being stored in LDAP directories imposing the need for efficient
data organization and retrieval. In this paper, we propose the LPAIR
& LMERGE (LP-LM) hierarchical agglomerative clustering algorithm
for improving LDAP data organization. LP-LM merges a pair of clus-
ters at each step, considering the LD-vectors, which represent the entries’
structure. The clustering-based LDAP data organization enhances LDAP
server’s response times, under a specific query framework.

1 Introduction

Directory services provide a generic and appropriate framework for accessing a
variety of information. They act as database repositories ensuring more efficient
data retrieval mechanisms through the usage of Lightweight Directory Access
Protocol (LDAP)[15]. LDAP is an open industry standard that gains wide ac-
ceptance due to its flexibility and the fact that it integrates with an increasing
number of data retrieval and management applications [6].

To date, there are multiple applications that rely on LDAP servers. Most of the
operating LDAP-based servers store information that describe user profiles and
address books for messaging applications, configuration files of network devices
and network security policies, under the Directory Enabled Networks (DEN)
initiative [5]. Directory servers are also used to store certificates and revocation
lists for PKI applications [1] as well as access control lists for authentication
systems [13]. The new H.350 standard uses LDAP to provide a uniform way to
store information related to video and voice over IP (VoIP) in directories [3].
Moreover, Grid computing has emerged as a very promising infrastructure for
distributed computing, having its foundation and core on the distributed LDAP
directories [2].

Due to the heterogeneity of LDAP data, finding appropriate data organization
schemes such as clustering will ensure LDAP servers’ functionality and perfor-
mance. Earlier research efforts have focused either on proposing application-
oriented LDAP schema definitions [12], or on introducing pure caching [7] and

A. An et al. (Eds.): ISMIS 2008, LNAI 4994, pp. 121–130, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



122 V. Koutsonikola et al.

indexing [8] approaches that can improve performance and scalability of direc-
tory based services. However, a framework that will propose a well-distributed
and scalable LDAP data organization, regardless of the underlying application,
enhancing at the same time system’s performance, is necessary.

In this paper we propose the LPAIR & LMERGE (LP-LM) algorithm, an
agglomerative structure-based clustering algorithm, for LDAP data organization.
According to the authors’ knowledge, LDAP and data clustering technologies
have been barely combined. A clustering approach of LDAP metadata has been
proposed to facilitate discovering of related directory objectclasses to better
enable their reconciliation and reuse [11]. Our work applies clustering analysis
on LDAP entries and uses clustering results in order to define the LDAP data
arrangement. More specifically, our main contributions can be summarized as
follows:

– We introduce the notion of LD-vectors to capture LDAP entries’ structure
– We propose the structure-based LPAIR & LMERGE clustering algorithm

which organizes LDAP data, regardless of the underlying applications.
– We carry out experiments to evaluate the LP-LM’s efficiency as well as LDAP

server’s performance that adjusts its data organization to clustering results.

The rest of the paper is organized as follows: Section 2 discusses some basic
concepts of LDAP data representation and the introduced LD-vector structures.
Section 3 describes our problem formulation and the proposed LDAP clustering
algorithm. Section 4 presents the experimentation while conclusions and future
work insights are given in Section 5.

2 LDAP Background and Data Representation

Data is stored in LDAP directories in the form of entries arranged in hier-
archical information trees. Each LDAP entry is identified by a distinguished
name (DN) that declares its position in the hierarchy. The hierarchy’s struc-
ture forms the directory information tree (DIT), which originates from a root
(RootDN). In the basic LDAP notation, “dc” stands for domain component and
“ou” for organizational unit. For example, the RootDN of the DIT that maintains
clients’ and products’ data for a Greek company would be “dc=company-name,
dc=gr”, while the DN of the clients’ and products’ nodes would be “ou=clients,
dc=company-name, dc=gr” and “ou=products, dc=company-name, dc=gr” re-
spectively.

All information within a directory entry is stored as attribute-value pairs. The
set of attributes that can appear in a given entry is determined by the object-
classes that are used to describe it. The definition of an objectclass specifies that
some attributes may be mandatory while others optional. For example, the user
defined objectclass “client”, which can be used to describe a company’s clients,
would consider as mandatory the “surname” and “clientid” attributes while it
would define as optional the “email” attribute. Moreover, the user defined “prod-
uct” objectclass may consider as mandatory the “productNumber” and “price”



A Structure-Based Clustering on LDAP Directory Information 123

�� � � ���� ���	
�� �
�	� ���� �� ���	�
� �������� � ���	� �

� ��� �� ���� � � ���� �
� ���� ��� � 
��
�� ���� � � � ��� ��
�� � ��� � ���� ��� ��� ��� �� �� �

(a) A client’s entry

�� � � ����� 	
 �� �
 ������ ����� ����� 	� ������� �������� 
 ����� �
�� �
� 	� ���� � � ����� 	
�� �
� 	� ���� � ����
� ����� 	
 �� �
 �� ����
� ���
 � ���
����
 �� 
 � � �  �� ����
������� �
�� � ! � �� ��" � �� � !�
��� ��� �" �� # �

�


(b) A product’s entry

Fig. 1. LDAP entries LDIF

attributes, while the objectclass “shop”, the “shopName” and “shopAddress”
attributes that refer to the shop that the described product exists. Figures 1(a)
and 1(b) present the LDIF1 of a sample client and product entry respectively.

The set of rules that define the objectclasses and the attributes they contain
constitutes the LDAP schema. LDAP allows the definition of new objectclasses
and attributes while it supports objectclasses inheritance and thus new object-
classes can be created to extend existing ones. In each case, the LDAP schema
defines whether there is relation between pairs of objectclasses or objectlass-
attribute pairs.

In this paper, we consider a particular framework where we have as source a
set E = {e1, . . . , ef} of f LDAP entries. Let O = {o1, . . . , om} denote the set of
m objectclasses and A = {a1, . . . , an} the set on n attributes used to describe
E. As discussed above, the LDAP schema defines the related objectclasses pairs
(due to inheritance) or the related objectlass-attribute pairs.

Definition 1 (LD-Pair of an entry). Given an LDAP entry ei ∈ E, the LD-
Pair of ei is a set of pairs LDP (ei) = {(dx, dy)} : dx ∈ O, dy ∈ {O∪A}, dx �= dy,
if and only if ∀(dx, dy) pair, dy is an objectclass that inherits objectclass dx or
dy is an attribute describing dx in ei.

Example 1. Consider the two LDAP entries depicted in Figure 1. The LD-Pair
for the client entry denoted as eclient is LDP(eclient)={(client, clientid), (client,
surname), (client, email)} while the LD-Pair for the product entry denoted as
eproduct is LDP(eproduct)={(product, productNumber), (product,price), (shop,
shopName), (shop, shopAddress)}. �

The definition of the entry’s LD-Pair can also be extended to a set of entries.

Definition 2 (LD-Pair of an entries’ set). Given a set E∗�E of f∗ LDAP
entries where f∗ ≤ f , the LDP (E∗) is defined as LDP (E∗) = {∪LDP (ei)},
∀ei∈E∗.

Example 2. We consider the set E∗ = {eclient, eproduct} and the LDP(eclient),
LDP(eproduct) as discussed in the Example 1. According to Definition 2,

1 LDIF (LDAP Data Interchange Format) is a standard for representing LDAP entries
in human readable format.



124 V. Koutsonikola et al.

LDP(E∗)= {(client, clientid), (client, surname), (client, email), (product, pro-
ductNumber), (product,price), (shop, shopName), (shop, shopAddress)}. �

Next, we use the LD-Pair concept to define a vector data structure which rep-
resents the LDAP entries’ structure.

Definition 3 (LD-vector). Given the E∗ set of f∗ LDAP entries and its
LDP(E∗), we use l to denote the number of (dx, dy) pairs where (dx, dy) ∈
LDP (E∗). Then ∀ei ∈ E∗ we define the binary multivariate LD-vector
LDV (ei, :) of l values as follows:

LDV (ei, r)
1≤i≤f∗,1≤r≤l

=
{

1 if the r-th (dx, dy) pair of LDP(E∗) ∈ LDP(ei)
0 otherwise

Example 3. Given the set E∗ = {eclient, eproduct} and its LDP(E∗), then based
on Defintion 3 the LD-vectors of eclient and eproduct are LDV(eclient)=[1 1 1 0 0
0 0] and LDV(eproduct)=[0 0 0 1 1 1 1], respectively. �

3 LDAP Data Structure-Based Clustering

The binary nature of LD-vectors identifies them as categorical data. According
to [4],[10], pure distance-based clustering algorithms may not be as effective on
categorical data as link-based ones. The proposed clustering algorithm adopts the
link-based perspective which groups entries in terms of their common neighbors,
as expressed by the link value.

3.1 Problem Formulation

The representation of LDAP entries as binary vectors makes dissimilarity coef-
ficients an appropriate choice for measuring distance between them. We choose
Czekanowski (or Dice) dissimilarity coefficient as distance measure, instead of
popular Jaccard, to give more gravity to the elements that two entries have in
common. Given two binary vectors LDV (ei, :) and LDV (ej , :) of length l where
ei, ej ∈ E, i �= j, their distance D(ei, ej) in terms of Czekanowski coefficient is
defined as:

D(ei, ej) =
b + c

2a + b + c

where, for 1 ≤ t ≤ l, a = |t| : {LDV(ei, t) = LDV(ej , t) = 1}, b = |t| :
{LDV(ei, t) = 1 ∧ LDV(ej , t) = 0}, c = |t| : {LDV(ei, t) = 0 ∧ LDV(ej , t) = 1}.

The values of D range between 0 and 1 with higher values indicating higher
dissimilarity between the involved entries. The Czekanowski dissimilarity coeffi-
cient has been used to capture distances in various clustering approaches [14],[9].

Two entries are considered to be neighbors if their distance is less than a user
defined threshold θ. The set LN(ei) contains the LDAP entries that are neighbors
to ei ∈ E and is defined as LN(ei) = {∪ej} : D(ei, ej) ≤ θ, ∀ei, ej ∈ E. Moreover,



A Structure-Based Clustering on LDAP Directory Information 125

for each of the entries belonging to one of the obtained clusters we compute the
expected number of its neighbors as follows: Let Ci denote the i − th of the
k obtained clusters of size ci. When θ = 0, each entry belonging to a cluster
Ci is expected to have only 1 neighbor, itself, while for θ = 1 any other entry
belonging to Ci is neighbor of ei (their distance is always ≤ 1), resulting in ci

neighbors. For any other value of θ, where 0 < θ < 1, it is expected that higher
values of θ will result in more neighbors of ei. A quantity that applies to the
above situation and can express the expected number of neighbors for an ei entry

is given by c
2θ

1+θ

i .
Furthermore, the link between two entries ei and ej expresses the number of

their common neighbors and is calculated by link(ei, ej) =| LN(ei) ∩ LN(ej) |
∀ei, ej ∈ E. Given the expected number of neighbors for each ei entry in cluster

Ci, the ei contributes to a link value equal to c
4θ

1+θ

i (one for each pair of its
neighbors)2. Then, the total number of expected links in Ci cluster caused by

all ci in number entries will be c
1+ 4θ

1+θ

i .
The link-based clustering approach aims at maximizing the link between each

pair of entries belonging to a single cluster. According to the Definition 3, there
may be a set of LDAP entries that are represented by the same LD-vector,
which our structure-based clustering algorithm will assign to the same cluster
(due to their common structure). This could lead to unbalanced cluster and thus,
inspired by [4], we define a criterion function J(E) where the total number of
links between a cluster’s entries is divided by the expected link value for this
cluster weighed by the the number of its entries.

J(E) =
k∑

i=1

ci ∗
∑

ex,ey∈Ci

link(ex, ey)

c
1+ 4θ

1+θ

i

(1)

Our goal is to maximize the link value of entries contained in a cluster. There-
fore, we define the LDAP Clustering problem as follows:

Problem 1 LDAP Clustering . Given a set E of f LDAP entries, an integer
value k, and the criterion function J(E), find a CL clustering of E into k clusters
such that the J(E) is maximized.

3.2 The LPAIR & LMERGE (LP-LM) Clustering Algorithm

The proposed LPAIR & LMERGE (LP-LM) algorithm is a hierarchical agglom-
erative clustering algorithm aiming at finding a solution to Problem 1. Since the
goal of LP-LM is the maximization of the criterion function J(E) (Equation 1),

2 The total number of pairs that have ei as neighbor is given by 2

(
c

2θ
1+θ

i

2

)
+ c

2θ
1+θ

i =

c
4θ

1+θ

i (each pair is measured twice, e.g. (ex,ey) and (ey,ex) while each entry ex forms
the (ex,ex) pair).

( )



126 V. Koutsonikola et al.

we need to specify the best pair of clusters to be merged at each step of the
algorithm.

According to Equation 1, the maximization of J(E) signifies maximization
of each cluster’s link value. Thus, in each iteration, the best pair of (Ci,Cj)
clusters candidate for merging is the one with the highest link value defined
as link(Ci, Cj) =

∑
ex∈Ci,ey∈Cj

link(ei, ej). Similarly to the definition of J(E),
in order to prevent the continuous merging of large-size clusters, we divide the
link(Ci, Cj) with an expected link value between Ci and Cj clusters. To compute
the expected link value between two clusters we need to calculate the total link
value of the two clusters if we considered them as one (i.e. (ci + cj)1+

4θ
1+θ ) and

subtract the link value of Ci (i.e. c
1+ 4θ

1+θ

i ) and Cj (i.e. c
1+ 4θ

1+θ

j ). We use this
normalization factor as a heuristic to steer towards the maximization of the
criterion function value. Therefore, the merging criterion mc(Ci, Cj) of clusters
Ci and Cj is defined as:

mc(Ci, Cj) =
link(Ci, Cj)

(ci + cj)1+
4θ

1+θ − c
1+ 4θ

1+θ

i − c
1+ 4θ

1+θ

j

(2)

The pair of clusters that maximizes mc will be merged at each algorithm’s
step.

The LP-LM algorithm takes as input a set E of f LDAP entries, the number
k of clusters to be created and a decimal θ (distance threshold), 0 ≤ θ ≤ 1 and
results in the assignment of LDAP entries to the k clusters.

Algorithm 1. The LPAIR & LMERGE algorithm
Input: A set E = {e1 . . . ef} of f LDAP entries, a threshold θ and the number of

clusters k.
Output: Assignment of the LDAP entries in the k clusters, such that J is maximised.
1: /*Preprocessing*/
2: LDP = CreateLDPair(E)
3: LDV = CreateLDV ectors(LDP)
4: D = ComputeDistance(LDV)
5: LN = ComputeNeighbors(D,θ)
6: link = ComputeLink(LN)
7: /*Clustering process*/
8: while NumClusters ≥ k do
9: (C1, C2) = FindMergingClusters(link,mc)

10: C∗ = merge(C1, C2)
11: update(link, C∗)
12: end while

Initially in LP-LM, a preprocessing takes place, where given the initial set
E of LDAP entries the algorithm computes the entries’ LD-Pairs (line 2) and
then the respective LD-vectors (line 3). Using the Czekanowski coefficient (Sec-
tion 3.1), the table D of distances between LDAP entries is computed (line 4)



A Structure-Based Clustering on LDAP Directory Information 127

and then, based on D and θ, the algorithm calculates each entry’s neighbors and
stores them in table LN (line 5). The LN table is used for the computation of
the link value for each pair of entries, resulting in table link (line 6). After the
preprocessing step, an iterative process follows which constitutes the main clus-
tering process. This process lasts until k clusters are obtained (line 8). During
each iteration 3 of this step, the LP-LM algorithm finds the best pair of clusters
(C1,C2) to me merged according to the mc values (line 9). The two clusters C1

and C2 are merged and a new C∗ cluster is obtained (line 10). The table link is
updated (line 11) with the new link values in terms of C∗ cluster.

4 Experimentation

Our data consists of around 10000 entries that describe DBLP data4. The DBLP
dataset contains about 2000 entries for each of the following publication cate-
gories: articles, inproceedings, masterthesis, phdthesis and www. The LDAP
schema involves a set of objectclasses (e.g. article, phdthesis) and a set of at-
tributes (e.g. author, title, pages). For the experiments we have used the OpenL-
DAP directory server with Berkeley DB backend, setting cache size to zero (to
obtain unbiased results) and having the “publicationid” attribute indexed.

In the first section of our experimentation we study the LP-LM algorithm’s
performance for different values of θ and k = 5, given that our entries belong to
5 different categories, and we calculate the percentage of successfully clustered
entries per category. The results for θ = 0.2, 0.3, 0.4 and 0.5 are depicted in
Figure 2(a). Lower values of θ demand higher similarity between two entries in
order to be considered as neighbors, resulting in lower percentages of entries
successfully assigned to clusters. Increasing the values of θ, the LP-LM manages
to cluster successfully more entries while for θ = 0.5 (and θ > 0.5) there is no
missclustered entry. The proper clustering is achieved for θ = 0.5 and not for
a lower value, because our dataset is described by a large number of distinct
LD-vectors (e.g. there are 38 different LD-vectors capturing articles’ structure).
A higher number of LD-vectors indicates more dissimilar in structure LDAP
entries and demands a higher value of θ to result in the proper clustering.

Moreover, as depicted in Figure 2(a), articles can not comprise a cluster for
θ < 0.5 because of the greater dissimilarity that exists between them compared
to the other categories’ entries. Furthermore, entries of both inproceedings and
masterthesis categories can not be successfully clustered for low values of θ, even-
though lower percentages of their entries compared to articles, are not assigned
properly. The LP-LM algorithmn assigns www and phdthesis entries correctly,
even for low θ values. In all cases, the overall calculated percentage of successfully
assigned entries is over 90% which proves the efficiency of the LP-LM algorithm.

In the second section of our experimentation we evaluate an LDAP server’s
performance, comparing its response times to a set of queries, in case of an un-
3 In the first iteration, the pair of clusters is a pair of entries.
4 DBLP data: http://www.sigmod.org/dblp/db/index.html The DBLP data were re-

trieved in XML format and converted to LDAP entries.



128 V. Koutsonikola et al.

0.2 0.3 0.4 0.5
0  

20 

40 

60 

80 

100

θ

P
er

ce
n

ta
g

e 
o

f 
en

tr
ie

s

articles
inproceedings
masterthesis
phdthesis
www

(a) Entries successfully assigned to clus-
ters per category

0

10

20

30

40

50

60

Query Category

(%
) 

Im
p

ro
ve

m
en

t

k=5
k=7
k=9

subset boolean boolean exact
matching

boolean approximate
matching

(b) LDAP server’s response time improve-
ments

Fig. 2. Experimentation results

clustered data organization (flat DIT) and a clustered one, as indicated by the
LP-LM clustering algorithm, for θ = 0.5 and k = 5, 7, 9. In order to benefit
from the data organization proposed, we apply a query processing which directs
users’ queries to specific LDAP data clusters. The idea behind the query pro-
cessing operation is that, based on the users’ queries keywords (expressed by the
contained attributes and objectclasses) and a mapping scheme (which reveals
the relations between clusters and sets of objectclasses and attributes), the re-
sponses’ pathways in the LDAP DIT are determined. In the worst case scenario,
the query’s keywords will be found in all clusters and the search will have to
start by the RootDN, resulting in response time equal to that of the unclustered
scheme. In any other case, the search space would be reduced, resulting in im-
proved response times. We have examined LDAP server’s performance running
a set of queries that belong to the following four categories:

– Subset queries : Queries that retrieve subsets of entries providing no query
filter (e.g. all articles, all inproceedings).

– Boolean queries : Queries containing boolean expressions without involving
specific attributes value (e.g. entries that have a booktitle but not an ISBN).

– Boolean queries of exact matching: Queries containing boolean expressions
and filters specifying an exact matching (e.g. all inproceedings, www of 2002).

– Boolean queries of approximate matching: Boolean queries with approximate
matching filters (e.g. articles, www containing in title the term “database”).

It should be noted, that in all cases we executed the same set of queries for each
category, and calculated the difference in response times. For all query categories,
the response times were better in the clustering-based data organization. The
obtained improvements were averaged and are depicted in Figure 2(b).

In case of “subset queries” we observe the same levels of improvements for the
different values of k because the search space is reduced equally regarding the



A Structure-Based Clustering on LDAP Directory Information 129

clustered data. For instance, in an unclustered data organization, a query look-
ing for all phdthesis, must search all 10000 entries in order to retrieve them while
in the clustering-based data organization, the query processing locates the one
cluster containing the phdthesis, reducing the search space to 2000 entries. For
k = 7, the LP-LM has created one cluster for each of the articles, inproceedings,
masterthesis and www entries while the phdthesis have been distributed in 3
clusters. The search space for phdthesis remains to 2000 entries while the trans-
mission between clusters causes negligible delay to the response time. For k = 9,
the LP-LM creates one cluster for each of the masterthesis and www categories,
3 clusters for phdthesis, 2 clusters for articles and 2 clusters for inproceedings
without affecting the search space of the “subset queries”.

The improvement observed in case of “boolean queries” depends significantly
on the query and the obtained clusters. For example, a query asking for “ee”
values of phdthesis will be directed to the one of the 3 phdthesis clusters which
is the only one containing entries with “ee” attribute, reducing significantly the
search space and resulting in high improvements of about 78% (for k = 7, 9). On
the other hand, asking for “volume” values results in 14% improvement (for all
k values), since “volume” is a common attribute contained in entries that belong
to all categories except for masterthesis.

Similarly, for the boolean queries of exact and approximate matching, the
obtained improvement is dependent of the query’s keywords and the way they
restrict the search space. For example, a query requesting articles that contain
in their title the word “database” resulted in 75% improvement while a query
retrieving articles, phdthesis, www and inproceedings published in one of the
IEEE journals led to 15% improvement.

The above indicative (due to the lack of space) discussion clearly shows that
the clustering-based data organization yields enhancement of LDAP server’s per-
formance, in terms of all LDAP query types. The recorded improvements depend
on the search space defined by the query keywords (e.g. www or inproceedings)
as well as the distinctiveness of attributes. The response time improvements
are noticeable even in case of common attributes (e.g. “title”) but they are re-
markable when attributes appearing in restricted publication types (e.g. “ee”)
are involved. Moreover, the discussed improvements refer to a rather homoge-
neous dataset since publications are not described by a considerable variety of
attributes and objectclasses. An LDAP server storing more heterogeneous data
is expected to be more benefitted from the proposed clustering approach.

5 Conclusions and Future Work

This paper presents a structure-based clustering algorithm which is used to
define the organization of the LDAP Data Information Tree. The proposed
LPAIR & LMERGE (LP-LM) algorithm has been proved to perform efficiently
in case of LDAP data described by different sets of objectclasses and attributes.
Moreover, the LDAP server that adjusts its data organization to the clustering
results presents improved response times, under a specific query framework. The



130 V. Koutsonikola et al.

recorded improvements are especially high in case of queries containing keywords
that correspond to distinctive clusters. Therefore, the LP-LM algorithm can be
particularly beneficial for an LDAP server storing various information such as
multimedia, network device configuration files and user profiles, enhancing the
performance of the underlying applications.

For the future, we plan to incorporate knowledge about data’s content to the
overall clustering process and experiment with more distance metrics.

References

1. Chadwick, D.: Deficiencies in LDAP when used to support PKI. Communications
of the ACM 46, 99–104 (2003)

2. Fan, Q., Wu, Q., He, Y., Huang, J.: Optimized Strategies of Grid Information
Services. In: Proc. of the First Int. Conf. on Semantics, Knowledge, and Grid, p.
90 (2005)

3. Gemmill, J., Chatterjee, S., Miller, T., Verharen, E.: ViDe.Net Middleware for
Scalable Video Services for Research and Higher Education. In: ACM Southeastern
Conf. GA. ACM 1-58113-675-7/030/03, pp. 463–468 (2003)

4. Guha, S., Rastogi, R., Shim, K.: ROCK: A Robust Clustering Algorithm For Cat-
egorical Attributes. In: Proc. 15th Int. Conf. Data Eng., pp. 512–521 (1999)

5. Howes, T., Smith, M.: LDAP: Programming Directory-Enabled Applications with
Lightweight Directory Access Protocol. Macmillan Technical Publishing, Bas-
ingstoke (1997)

6. Koutsonikola, V., Vakali, A.: LDAP: Framework, Practices, and Trends. IEEE
Internet Computing 8, 66–72 (2004)

7. Kumar, A., Gupta, R.: Edge Caching for Directory Based Web Applications: Al-
gorithms and Performance. In: Proc. of the 8th international workshop in Web
content caching and distribution, pp. 39–56 (2004)

8. Lee, H., Mun, S.-G., Huh, E.-N., Choo, H.: Efficient Data Indexing System Based
on OpenLDAP in Data Grid. In: Int. Conf. on Computational Science, vol. 1, pp.
960–964 (2006)

9. Li, T.: A Unified View on Clustering Binary Data. Machine Learning 62, 199–215
(2006)

10. Lian, W., Cheung, D., Mamoulis, N., Yiu, S.-M.: An Efficient and Scalable Algo-
rithm for Clustering XML Documents by Structure. IEEE Trans. on Knowledge
and Data Engineering 16, 82–96 (2004)

11. Liang, J., Vaishnavi, V., Vandenberg, A.: Clustering of LDAP directory schemas to
facilitate information resources interoperability across organizations. IEEE Trans.
on Systems, Man and Cybernetics, Part A 36, 631–642 (2006)

12. Lim, S., Choi, J., Zeilenga, K.: Design and Implementation of LDAP Component
Matching for Flexible and Secure Certificate Access in PKI. In: Proc. of the 4th
Annual PKI R&D Workshop, pp. 41–51 (2005)

13. Park, J., Sandhu, R., Ahn, G.-J.: Role-based access control on the web. ACM
Trans. on Information and System Security (TISSEC) 4, 37–71 (2001)

14. Ponaramenko, J., Bourne, P., Shindyalov, I.: Building an Automated Classification
of DNA-binding Protein Domains. Bioinformatics 18, S192–S201 (2002)

15. Whal, M., Howes, T., Kille, S.: Lightweight Directory Access Protocol (v3). IETF
RFC 2251 (1997)


	A Structure-Based Clustering on LDAP Directory Information
	Introduction
	LDAP Background and Data Representation
	LDAP Data Structure-Based Clustering
	Problem Formulation
	The LPAIR & LMERGE (LP-LM) Clustering Algorithm

	Experimentation
	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /MTEX
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




