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ABSTRACT
The paper studies the problem of community detection
in tag networks, i.e. networks consisting of associations
between tags that are used within Social Tagging Sys-
tems (STS) to annotate online resources (e.g. book-
marks, pictures, videos, etc.). Community detection
methods aim at uncovering densely connected groups
of tags, which can reveal the topic structure emerging
in the STS. In this way, community detection in tag
networks leverages Collective Intelligence (CI), that is
the intelligence that is accumulated as a result of the
collective activities of masses of users.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Cluster-
ing; H.3.4 [Systems and Software]

General Terms
Algorithms, Experimentation

Keywords
collective intelligence, community detection, tag net-
works

1. INTRODUCTION
Web applications and web user behavior have under-
gone a significant transformation during the last years.
Today’s web applications are centered around their users:
they seek their input in the form of content and at the
same time they encourage them to react to existing con-
tent [1]. In addition, they promote social networking
and viral activities among their users. In turn, web
∗CKCaR’09.

users tend to embrace this call for increased participa-
tion and interaction: they contribute new content (e.g.
pictures, blog posts), they rate, express their opinion
and comment on digital content (e.g. articles, videos)
or real-world entities (e.g. products), they organize on-
line content by tagging it and they participate in online
communities.

As a result of this massive user participation in web ap-
plications, large amounts of user-generated data are col-
lected. Combining the behavior, preferences and ideas
of masses of users that are imprinted in this data can re-
sult into novel insights and knowledge [26]; this process
is frequently denoted to as the emergence of Collective
Intelligence. Although the term Collective Intelligence
has been used in broader contexts (cf. [28] for an exten-
sive discussion), in this paper we restrict the use of the
term in the context of intelligent processing and inter-
pretation of mass user-generated content and data (in
the spirit of [1, 26]).

A particular Collective Intelligence application archetype
is illustrated by web applications incorporating social
tagging features, often denoted as Social Tagging Sys-
tems (STS). Such systems enable their users to upload
digital resources (e.g. bookmarks, pictures, blog posts,
etc.) and annotate them with tags (i.e. freely chosen
keywords). It is customary to represent such systems
by use of the folksonomy model [20, 16], i.e. a tripartite
graph comprising the set of users U , resources R and
tags T as nodes and their associations as edges. Analyz-
ing the network1 structure of folksonomies can provide
valuable insights into the semantics that are attached
to online content by masses of users.

The approach adopted by this paper for extracting Col-
lective Intelligence from folksonomies is the use of com-
munity detection techniques on folksonomy-derived tag
networks. Community detection involves the analysis

1The terms network and graph are considered equivalent
in our discussion and are therefore used interchangeably
throughout the paper.



of the network structure with the goal of identifying
communities, i.e. groups of objects (which are repre-
sented as nodes in the network) that are more densely
connected (on the network) to each other than with the
rest of the objects. In this paper, we introduce a novel
method for detecting tag communities and we demon-
strate that its application on tag networks can reveal
the topic and semantic structure that emerges as a re-
sult of the tagging activities of masses of users.

The paper is structured as follows: Section 2 reviews
the most prominent research conducted in the context
of community detection methods, as well as other ap-
proaches which have been adopted for leveraging Col-
lective Intelligence from Social Tagging Systems. Sec-
tion 3 specifies the process for deriving a tag network
from a folksonomy. Section 4 introduces a new method
for community detection which is particularly suited for
the analysis of tag networks. This method is applied in
two tag networks derived from real-world social tag-
ging applications, namely the LYCOS iQ questions and
answers system and the BibSonomy bookmark sharing
application. The analysis results are discussed in Sec-
tion 5. Finally, the paper contains a discussion on the
major issues identified through this work (Section 6)
and concludes in Section 7.

2. RELATED WORK
2.1 Community detection
Due to the abundance of literature on community de-
tection, we will restrict our discussion to some selected
works that we deem as pertinent to our study. An ex-
tensive survey article on community detection is pro-
vided in [11].

Perhaps the most influential work in this area is the
method by Girvan and Newman [13]. According to
this, network edges are removed resulting in the pro-
gressive fragmentation of the network (splitting into dis-
connected components). The order in which edges are
removed depends on their betweenness centrality (the
higher their centrality the sooner they are removed).
Later, the same authors introduced the notion of mod-
ularity as a measure of the profoundness of community
structure in a network [23]. This spawned a whole class
of methods that attempted to detect community struc-
ture in a network by means of maximizing modularity.
For instance, an agglomerative hierarchical clustering
method is proposed in [21] and computationally refined
in [7], which successively agglomerates pairs of commu-
nities (starting from single-node communities) such that
each agglomeration results into the maximum possi-
ble modularity increase. More sophisticated techniques
were presented that tackled the problem of modularity
maximization by means of various techniques such as
simulated annealing [19], extremal optimization [9] and
spectral optimization [22].

Lately, the concept of modularity has gone through
scrutiny leading to the conclusion that communities of
small scales (smaller than some threshold that depends
on the network size and the degree of their interconnect-
edness) are likely to remain undetected from modular-
ity maximization methods [10]. Hence, methods inte-
grating different notions of community-ness have been
devised. For instance, the Clique Percolation Method
(CPM) by Palla et al. [24] consider communities as sets
of nodes that are reachable through a k-clique chain, i.e.
a set of adjacent k-cliques (k-cliques sharing at least
k − 1 nodes). A similar notion is used by the SCAN
algorithm [29], which devises the concept of structure
reachability between nodes and defines communities as
sets of nodes which are structure reachable from each
other.

Finally, a set of methods of particular interest to our
study are based on the notion of seed-based community
expansion. According to this paradigm, the commu-
nity detection process is seen as an expansion process,
which, starting from a seed node, progressively attracts
adjacent nodes with the goal of maximizing some local
community-ness measure, e.g. local modularity [6], sub-
graph modularity [18] or node outwardness [2]. These
methods are of particular importance to our study as
will become apparent from Section 4 since they can be
combined with community detection methods such as
SCAN [29] to yield sophisticated community models
that are valuable in the study of tag communities.

2.2 Analysis of social tagging systems
Tagging has attracted considerable research interest af-
ter the mainstream adoption of social bookmarking and
resource sharing applications such as delicious2, flickr3
and BibSonomy. Formally, a tripartite hypergraph model
has been established for the representation of users, re-
sources and tags in an STS [20]. Some of the first re-
search works in this area pertain to the statistical and
dynamical properties of tagging [15, 14]. In [15], Halpin
et al. note that tag-tag cooccurrence networks can be
useful in revealing the topic structure shaped by the
usage of the tagging system.

Other studies focused on the semantics emerging from
the tagging activities of users. Hotho et al. [16] applied
association rules mining in order to discover subsump-
tion relations between tags. Further, they devised a
variant of PageRank (named FolkRank) that enabled
them to rank the entities (tags, users and resources) of
a folksonomy. In addition, some research has targeted
the problem of tag clustering [3, 12], which is similar to
the problem of tag community detection. However, in
the aforementioned works, tag clustering has been tack-
led by means of vector-based agglomerative hierarchi-

2http://delicious.com
3http://flickr.com



cal clustering (i.e. each tag is represented by a feature
vector and pairwise distances are defined between tags)
which is only applicable to tag sets of limited size. More
sophisticated methods such as co-clustering have been
applied to produce clusters of tags and resources [17],
however these methods require extensive supervision for
tasks such as reducing the number of tag features and
parameter setting (e.g. number of clusters).

More recently, some preliminary results have been re-
ported on the application of community detection meth-
ods on tagging systems [27, 4]. Simpson [27] employs
a variant of the Girvan-Newman algorithm [13] to de-
tect communities of tags in delicious and in a corporate
bookmarking service, while Cattuto et al. [4] analyze
the community structure in a subset of delicious tags
by means of spectral dimensionality reduction.

3. DERIVING THE TAG NETWORK
We first consider an abstraction for STS-based appli-
cations. A commonly used formalism, under the name
folksonomy, was introduced in [20] as a means to model
the collective tagging activities of users within an STS:

Folksonomy: A representation of the entities involved
in an STS in the form of a tripartite graph model with
hyperedges. The set of the graph vertices is partitioned
into three disjoint sets U = {u1, ..., uk}, R = {r1, ..., rl},
and T = {t1, ..., tm} corresponding to the sets of users,
resources and tags respectively. The folksonomy is de-
fined as the set of tag assignments A ⊆ U ×R× T that
users of the STS perform in order to annotate the con-
tent of interest to them. Alternatively, the folksonomy
is denoted by the hypergraph H(A) = {V, E} where
V = U ∪R ∪ T and E = {{u, r, t}|(u, r, t) ∈ A}.

Since the tripartite hypergraph model is cumbersome to
work with, it is preferable to transform it to three bipar-
tite graphs [20], namely the association graphs between
users and resources (UR), users and tags (UT ) and re-
sources and tags (RT ); for instance, the weighted bipar-
tite RT graph is defined as follows: RT = {R×T, Ert},
Ert = {(r, t)|∃u ∈ U : (u, r, t) ∈ E}, w : Ert → N, ∀e :
(r, t) ∈ Ert, w(e) := |{u : (u, r, t) ∈ E}|.

Since we are interested in tag-tag association networks,
we need to further transform the two bipartite graphs
involving the set of tags T into a simple weighted tag
graph. For instance, starting from the resource-tag
association graph (RT ), the resulting tag-tag associa-
tion graph is defined as: GRT (T ) = {T, Ett}, Ett =
{(ti, tj) ∈ T×T |∃r ∈ R : (r, ti), (r, tj) ∈ Ert}, w : Ett →
N,∀e : (ti, tj) ∈ Ett, w(e) := |{r : (r, ti), (r, tj) ∈ Ert}|.

In practice, when two tags are used to annotate the
same resource a link is created between them in the GRT

tag network. In addition, the weight of this link is equal
to the number of different resources where this pair of

Figure 1: Three variants for deriving a tag-tag
association network from a folksonomy.

tags was used (co-occurrence frequency). This can be
normalized by dividing it with the number of resources
where either of the two tags was used. Thus, if tag ti
was used to annotate the set of resources Ri and tag tj
was used to annotate Rj , then the strength of the link
between these tags is quantified by the Jaccard index
of the two resource sets:

w(e) =
|Ri ∩Rj|
|Ri ∪Rj| (1)

A more relaxed mode of establishing associations be-
tween tags is to consider associations either between
tags that are used to annotate the same resource (inde-
pendent of the user) or between tags used by the same
user (independent of the resource). These three differ-
ent variants for deriving a tag network from a folkson-
omy are illustrated in Figure 1. In our experiments we
opted for the resource cooccurrence tag network cre-
ation (option B in Figure 1) due to the fact that associ-
ating tags based on user cooccurrence or based on cooc-
currence (irrespective of whether it is user or resource)
resulted into much denser tag networks, which renders
the application of community detection techniques very
challenging [11]. Furthermore, since a user may be in-
terested in a variety of topics, associating tags based
on user cooccurrence would create many spurious as-
sociations between tags that are by no means topically
related to each other. In contrast, resources usually
pertain to some specific topic or entity, therefore the
use of two tags to annotate the same resource provides
evidence in favor of their topical relatedness.

Alternatively, it would be possible to construct a tag
network by considering pairwise similarities/distances
between tags. For instance, Cattuto et al. [5] employ
the cosine similarity between tags in the vector space
Rm by use of the tag adjacency matrix of G(T )). The
authors provide evidence that the cosine similarity is
more appropriate for establishing equivalence, synonym



and subclass relations between tags compared to the
plain co-occurrence similarity. However, in our commu-
nity detection framework we are going to rely only on
the co-occurrence similarity between tags for two rea-
sons:

1. When a new tag assignment is recorded in the sys-
tem, only a single co-occurrence update operation
is necessary. In the case of cosine similarity, all
pairwise similarity values would need to be recom-
puted. Therefore, the use of cosine similarity is
prohibitive in a dynamic context.

2. Instead of using the cosine similarity, it is possi-
ble to draw similar conclusions about the relations
between tags by means of graph-based similarity
measures such as the structural similarity between
two nodes [29].

4. TAG COMMUNITY DETECTION
The detection of communities in tag networks cannot
be simply addressed by means of direct application of
existing community detection methods due to the fol-
lowing reasons:

(a) Overlapping community structure. Tag com-
munities are expected to overlap with each other since
there are several entities or sub-topics that are shared
between broader topics. For instance, high frequency
tags are expected to participate in multiple tag com-
munities.

(b) Tag-dependent network role. Most existing
community detection methods treat network nodes as
equivalent. In the case of tag networks, however, this
may lead to poor results. For instance, tags that are
used by many users tend to denote topics or categories
which are connected to a large number of tags. These
should be treated as “community bounds”, i.e. local
community expansion methods such [6, 18, 2] should
stop the expansion process when encountering such tags
in order to prevent topically irrelevant terms to spill-in
to the current community.

(c) Dynamic nature of STS. Although community
detection algorithms operate on static snapshots of net-
works, it would be necessary for a series of real-world
tasks to have community detection methods that can
operate in online mode. Thus, communnity detection
methods that rely on the complete network structure,
such as modularity maximization methods, would be
hardly applicable in real settings.

Consequently, we introduce a hybrid technique for com-
munity detection, which takes into account the afore-
mentioned particularities of tag networks. The pro-
posed technique is based on two steps: (a) community

seed set detection based on the notion of (µ, ε)-cores in-
troduced in [29] and (b) local expansion of the identified
cores to maximize the subgraph modularity introduced
in [18] while respecting the bridge bounding constraint
introduced in [25].

4.1 Community seed set detection
The community seed set detection step of our method is
based on the concept of (µ, ε)-cores introduced in [29].
The definition of (µ, ε)-cores is based on the concepts of
structural similarity and ε-neighborhood that we repeat
here for convenience. We also repeat the definition of
direct structure reachability.

Structural similarity: The structural similarity be-
tween two nodes v and w of a graph G = {V, E} is
defined as:

σ(v, w) =
|Γ(v) ∩ Γ(w)|√
|Γ(v)| · |Γ(w)| (2)

where Γ(v) is the structure of node v and is defined as

Γ(v) = {w ∈ V |(v, w) ∈ E} ∪ {v} (3)

ε-neighborhood: This is the subset of a node’s struc-
ture containing only those nodes that are at least ε-
similar with the node; in math notation:

Nε(v) = {w ∈ Γ(v)|σ(v, w) ≥ ε} (4)

(µ, ε)-core: A vertex v is called a (µ, ε)-core if its ε-
neighborhood contains at least µ vertices; formally:

COREµ,ε(v) ⇔ |Nε(v)| ≥ µ (5)

Direct structure reachability: A node is directly
structure reachable from a (µ, ε)-core if it is at least ε-
similar to it: DirReachµ,ε(v, w) ⇔ COREµ,ε(v) ∧ w ∈
Nε(v).

Once the (µ, ε)-cores of a network have been identified,
it is possible to start attaching adjacent nodes to them
provided that they are reachable through a chain of
nodes which are directly structure reachable from each
other. We call the resulting set of nodes as a community
seed set. The aforementioned technique for collecting
community seed sets is computationally efficient (O(n)
for a network of n edges) as discussed in [29].

One issue that is not addressed in [29] pertains to the
selection of parameters µ and ε. Setting a high value for
ε (the maximum possible value for ε is 1.0) will render
the core detection step very eclectic, i.e. few (µ, ε)-cores
will be detected. Moreover, higher values for µ will
also result in the detection of fewer cores (for instance,
all nodes with degree lower than µ will be excluded
from the core selection process). For that reason, we



carry out the community seed set selection steps mul-
tiple times with different values of µ and ε and select
parameter values that lead to seed sets with the follow-
ing characteristics: (a) the number of community seed
sets should be sufficiently large, (b) the seed set sizes
should be relatively balanced.

4.2 Community expansion
Starting from a community seed set S, the second step
in the proposed community detection method involves
an expansion process, which aims at the maximization
of subgraph modularity [18] and at the same time pre-
vents the expansion process from crossing edges that
act as “bridges” [25]. The modularity of a subgraph
S ∈ V is defined as:

M(S) =
|{(v, w) ∈ E|v, w ∈ S}|

|{(v, w) ∈ E|v ∈ S ∧ w ∈ V − S}| (6)

Also, we consider the local bridging function of an edge:

bL((v, w)) = 1− |N(v) ∩N(w)|
min[(d(v)− 1), (d(w)− 1)]

(7)

where N(v) and d(v) denote the set of nodes that are
adjacent to v and the degree of v respectively. In or-
der for bL((v, w)) to have a low value, v and w need
to have a lot of common neighbors (relative to their
degree). Effectively, this means that in order to move
from v to w, one has multiple options in addition to
the link between them. Thus, (v, w) is considered as
an intra- (or within-) community edge. In the opposite
case, when the two endpoints of a bridge have very few
or no neighbors in common, then this edge is crucial for
the connection between its endpoints. For that reason,
we consider in the latter case (high bL value) that (v, w)
is an inter-community edge or bridge.

In order to derive a decision threshold BL for identify-
ing the bridge edges of the network (Line 2 of Algorithm
1), one needs to inspect the distribution of bL values
among the edges of the graph. Figure 2 illustrates how
the position of edges on a graph with community struc-
ture affects their local bridging values. The graph of
Figure 2(a) was generated to comprise a synthetic four-
community structure. Edges that link different com-
munities with each other, i.e. inter-community edges,
are drawn in dashed line. According to the distribution
of Figure 2(b), these edges are characterized by high
bL values, therefore they can be separated by means of
thresholding from the intra-community edges.

In brief, the proposed community expansion process
successively attaches nodes to community S with the
goal of maximizing M(S) (Equation 6). The set of
nodes that are considered as candidates for attachment
to S are pooled from the “community frontier”, i.e. the
set of all nodes that are adjacent to at least one node of

(a) Graph G ≡ (V, E)
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Figure 2: Comparison between intra- versus
inter-community edge local bridging. Edges
drawn with dashed lines in Figure 2(a) are also
the ones with the highest local bridging values.

the community, under the condition that the edge con-
necting them is not a “bridge”, i.e. its local bridging
value (Equation 7) does not exceed a certain threshold.
The expansion process is specified in Algorithm 1.

Algorithm 1 LocalCommunityDetection
Require: Network G = (V, E), community seed set

S ∈ V , local bridging function bL, subgraph modu-
larity M

1: Set of community nodes: CS = S, M = M(CS)
2: Frontier set F = {v ∈ V |(s, v) ∈ E ∧ s ∈ CS ∧ v /∈

CS ∧ bL(s, v) ≥ BL}
3: while |F | > 0 do {F is non-empty}
4: ∀c ∈ F compute Mnew,c = M(CS ∪ {c})
5: Select c which resulted in maximum Mnew,c

6: if Mnew,c > M then
7: M = Mnew,c

8: Update frontier set F (Line 2)
9: else

10: Return CS

11: end if
12: end while

5. CASE STUDIES
Here, we present two case studies, through which we
attempt to exemplify the principles of tag community
detection that we presented above. The case studies are
based on two tag datasets, coming from the LYCOS iQ
QA system and the BibSonomy publication sharing ap-
plication. Table 1 provides an overview of the datasets.

LYCOS iQ is a collaborative QA system where people
ask and answer questions on any topic. The application
incorporates tagging functionalities, similar to the one
used in typical STS such as delicious and flickr. Our
dataset comes from the English version of the applica-
tion (which is not operational anymore).

BibSonomy is a social bookmarking and publication
sharing application. It aims to integrate the features



of bookmarking systems by offering users the ability
to store and organize their bookmarks and publication
entries. The BibSonomy dataset was made available
through the ECML PKDD Discovery Challenge 20094.
We used the “Post-Core” version of the dataset.

In order to derive tag networks from the two folksonomies,
we used technique “B” of Figure 1 (co-occurrence in the
context of resources). The resulting networks consist
of 26,758 nodes and 109,340 edges (LYCOS iQ) and
13,276 nodes and 262,683 edges (BibSonomy) respec-
tively. Both networks are relatively sparse, but present
significant difference in their density. We then carried
out multiple runs of the two-step community detection
process of Section 4 using different values for parame-
ters µ, ε and BL. Table 2 summarizes some of the com-
munity detection results we obtained for each dataset.
Careful inspection of the community detection results
leads us to the following conclusions:

1. There is a trade-off between the size and the num-
ber of the resulting communities. Increasing µ re-
sults into larger and fewer communities, while in-
creasing ε leads to communities of smaller size.

2. The smaller the value of the bridging threshold
(BL), the less tags are attached to a community
seed during the community expansion step of the
algorithm.

3. Community coverage (i.e. the percentage of tags
that are assigned to some community) is low which
means that many of the network tags are not as-
signed to any community. The coverage can be
increased at the expense of the topical coherence
(i.e. the degree that same-community tags are as-
sociated to each other) by relaxing the community-
ness constraints (set low values for µ and ε, set a
high value for BL).

Tables 3 and 4 present a set of sample communities
detected by the algorithm on the LYCOS iQ and the
BibSonomy tag networks respectively. The tag groups
directly connote to the reader some specific topic and
the majority of the groups (not only the ones presented
in the table) contain tags that are pertinent to their
topic (based on our judgement).

6. DISCUSSION
The case studies presented above demonstrated the util-
ity of the proposed tag community detection method.
However, there are several limitations that one should
consider before applying it to a new setting.

An important consideration pertains to the fact that
some information loss takes place during the simplifica-
tion of the graph structures through the aforementioned
4http://www.kde.cs.uni-kassel.de/ws/dc09

graph projections (tripartite hypergraph → bipartite
graphs → undirected tag graphs). This can sometimes
lead to “topic blending”, i.e. to two or more different
topics to be detected as belonging to the same commu-
nity due to some polysemous tags that are connected to
all of them. Such a multi-topic community is depicted
in Figure 3. Apart from the two tags “fl studio” and
“fruity loops”, which refer to the digital music compo-
sition and mixing software Fruity Loops, the rest of the
tags refer to real estate in the state of Florida. The rea-
son for this blending is the polysemous tag “FL” which
stands for both Fruity Loops and Florida.

It is possible that such failures could be prevented by ex-
ploiting the bipartite structure of the resource-tag net-
work. In order for this to be possible, community detec-
tion techniques that operate directly on bipartite graphs
need to be employed. An example of such a method is
BiTector [8]. A comparative study between bipartite
and unipartite community detection techniques (in the
context of STS) would be necessary in order to quantify
the impact that the graph projection (from bipartite
tag-resource to unipartite tag-tag network) has on the
quality of the identified communities.

An additional issue that should be taken into account
pertains to the low community coverage, i.e. lack of
community assignment for many of the tags. In the
previous section, we empirically showed that coverage
can be increased by appropriate tuning of the algorithm
parameters; however, this comes at the cost of commu-
nity topical coherence, i.e. several unrelated tags may
be introduced in existing communities or “loose” com-
munities (groups of tags which are not closely related to
each other) may be detected. So far, we have not con-
sidered the use of text-based techniques (e.g. stemming,
lexical similarity) or semantic resources (WordNet, DB-
pedia) for improving coverage without harming topical
coherence.

Finally, a significant issue troubling the application of
the proposed community detection algorithm arises from
the need to manually set parameters. Although several
insights were provided in the previous discussion regard-
ing the effect of the different parameters on the obtained
communities, in the future we need to investigate effi-
cient ways to estimate appropriate parameters for our
algorithm without the need to execute it multiple times.

7. CONCLUSIONS
In this paper we presented an approach towards Col-
lective Intelligence extraction from folksonomies using
community detection techniques on folksonomy-derived
tag networks. We addressed the major issues involved
in the application of community detection in tag net-
works, namely the derivation oftag association networks
from folksonomies and the detection of tag communi-
ties by means of a hybrid scheme which is based on



Table 1: Folksonomies used in our case studies.
source users resources tags tag assignments

LYCOS iQ 22,177 62,497 26,758 134,601
BibSonomy 1,185 64,120 13,276 253,615

Table 2: Summary of community detection results. The columns correspond to the following: algo-
rithm parameters (µ, ε, BL), number of communities (C), mean community size (Mall), number and
percentage of tags assigned to communities (Coverage #, %), number of nodes belonging to (> 1)
communities (O), mean and st. deviation of community seed and expansion set sizes (Mcore, Mexp).

µ ε BL C Mall
Coverage

O
Mcore Mexp

# (%) AVG STD AVG STD
LYCOS iQ

3 0.7 0.3 417 6.1 2529 9.5 32 4.9 2.1 1.3 2.5
3 0.8 0.1 227 5.6 1274 4.8 2 4.8 1.8 0.8 2.1
5 0.5 0.1 252 10.0 2510 9.4 13 8.6 9.5 1.4 3.2
10 0.5 0.3 21 29.52 607 2.3 13 18.5 16.9 11.1 16.6

BibSonomy
5 0.7 0.3 178 15.7 2640 19.9 157 11.1 8.9 4.6 9.8
8 0.8 0.1 53 16.3 834 6.3 29 14.4 7.4 1.9 1.9
10 0.8 0.1 38 17.8 674 5.1 1 16.3 7.7 1.5 2.4
15 0.7 0.1 23 28.7 619 4.7 42 24.5 16.9 4.3 8.1

Figure 3: An example of “topic blending”.

a community-seed selection and local seed expansion
step. Finally, we applied the proposed methodology on
two web applications that incorporate the folksonomy
paradigm, namely LYCOS iQ and BibSonomy. One
should note that the community detection technique
introduced here is also applicable to relational data of
other kinds (e.g. user and web resource networks).

In the future, we would like to integrate the proposed
community detection process in a tag recommendation
application. In addition, we plan to investigate ways
to deal with the limitations of the proposed method,
namely manual parameter setting and direct applica-
tion to bipartite networks. Finally, we are interested
in extending our community detection method to cope

with two additional aspects of communities: (a) hierar-
chical structure and (b) temporal evolution.
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