
An evolutionary scheme for

Web Replication and Caching�

Athena Vakali
Department of Informatics

Aristotle University
����� Thessaloniki� Greece

email� avakali�csd�auth�gr

Abstract

Design and implementation of e�ective caching schemes has been a critical issue with
respect to World Wide Web objects circulation and availability� Caching and replica�
tion have been combined and applied in prototype systems in order to reduce the overall
bandwidth and increase system�s fault tolerance� This paper presents a model for opti�
mizing access performance when requesting Web objects across distributed systems� The
replication and caching scheme is designed by the use of an evolutionary computation
algorithm� Cached data are considered as a population evolving over simulated time�
replicating the most prominent data to dedicated replication servers� The simulation
model is experimented and tested under cache traces provided by the Squid proxy cache
server at the Aristotle University of Thessaloniki� Cache hit rates and bytes hit length are
reported showing that the proposed evolutionary mechanisms improve cache consistency
and reliability�

Index terms� World�Wide Web caching� Web replication and caching� cache consistency�
evolutionary computation� genetic algorithms�

�

� Introduction � Previous Work

The continously rapid growth and worldwide expansion of the Internet has introduced new
issues such as World�Wide Web �WWW� tra�c� bandwidth insu�ciency and distributed ob�
jects exchange� Web caching has presented an e�ective solution� since it provides mechanisms
to faster web access� to improved load balancing and to reduced server load� Cache e�ciency
depends on its content update frequency as well as on the algorithmic approach used to retain
the cache content reliable and consistent� Most web servers are reinforced with proxy cache
servers which result in web objects coming closer to end users by adding speci�c cache con�
sistency mechanisms and cache hierarchies� Several approaches have been suggested for more
e�ective cache management and the problem of maintaining an updated cache has gained a lot
of attention recently� due to the fact that many web caches often fail to maintain a consistent
cache� Several techniques and frameworks have been proposed towards a more reliable and
consistent cache infrastructure 	
� �� ���

Cache consistency mechanisms have been included in almost every proxy cache server �e�g�
	�� �� � and their improvement became a major research issue� In 	�� a survey of contemporary
cache consistency mechanisms in Internet is presented and the introduction of trace�driven
simulation shows that a weak cache consistency protocol reduces network bandwidth and server
load more than prior estimates of an objects life cycle or invalidation protocols� The potential
of document caching at the application level is discussed in 	� to address the need for better
resource management towards documents latency reduction� The design and e�ciency of a
Cache hierarchy is a major issue in most proxy caches and in various research e�orts 	�� �� ���
The improvement in performance of Internet information systems supporting hierarchical proxy
caches is argued since cache hierarchy is introduced in order to result in better systems scale�
In 	� it is shown that hierarchical caching of ftp �les could eliminate half of all �le transfers�
whereas the e�ciency of proxy cache operations is argued in 	�� under a distributed WWW
cache by using election algorithms and an hierarchy similar to the xFS� while in 	� a low�level
simulation of a proxy cache considers further details as connection aborts in order to extend
the high�level metrics being used so far�

Caching and replication is discussed in 	� where the performance of a proxy cache server
is evaluated and validated� Caching and replication have proved to be bene�cial in both the
circulation of web objects and the Web server�s functionality� The need for replication is
discussed in 	�� where an alternative approach suggests the wide distribution of Internet load
across multiple servers� Furthermore� prefetching and caching are techniques proposed to reduce
latency in the Web� Several bounds on the performance improvement seen from these techniques
have been derived under speci�c workloads 	��� The replication and caching methodology has
raised a lot of research and implementation interest� Some working groups and research teams
have been established for a co�ordinated replication and caching framework within the Internet
community 	�
� ���

Evolutionary computation policies have been used to solve scienti�c problems demanding
optimization and adaptation to a changing environment� The idea in these approaches is to

�

evolve a population of candidate solutions to a given problem� using operations inspired by
natural genetic variation and natural selection �expressed as �survival of the �ttest��� Usu�
ally grouped under the term evolutionary algorithms or evolutionary computation� we �nd the
domains of genetic algorithms� evolution strategies� and genetic programming� Genetic algo�
rithms �GAs� comprise one of the main evolutionary methods� applied to many computational
problems requiring either search through a huge number of possibilities for solutions� or adap�
tation to a changing environment� The innovation of GAs is that they work with a coding of
the parameter set� not the parameters themselves� they search from a population of points and
they use probabilistic transition rules� More speci�cally� GAs have been applied in the areas
of scienti�c modeling and machine learning� but recently there has been a growing interest in
their application in other �elds 	��� ��� �� ��� ��� ��

This paper presents a model based on an evolutionary computation approach in order to
design and simulate an e�ective Web replication and caching scheme� The model is implemented
by an algorithmic approach adapted to the Genetic algorithm process� The implementation
is based on the Squid proxy�cache server speci�cations for representing the Web objects as
individuals to be cached and replicated� The simulated model is experimented under real
Squid cache traces and cache log �les� The contributions of the paper are twofold� First� a
caching scheme is maintained by the use of evolution over a number of successive �populations�
of cached objects� Second� replication is introduced to extend the caching scheme and the
objects chosen for replication are identi�ed by their preservation on the successive steps of the
evolutionary scheme�

The remainder of the paper is organized as follows� The next section describes Web proxy
cache environments and various cache infrastructures� with emphasis on the Squid proxy cache�
Section � presents the design and structure of the replication and caching model which is
based on evolutionary computation� Section � discusses the model�s implementation details
and operational functions whereas results from trace driven experimentation are presented in
Section �� Results refer to cache hit rates� byte hit lengths and �le types hit rate� Section

points some conclusions and discusses potential future work�

� Web Proxy Caches

Caching was initially introduced to provide an intermediate storage space between the main
memory and the processor� relying on locality of reference by assuming that the most recently
accessed data has the highest potential of being accessed again soon� Caching was extended to
Web servers in order to improve client latency� network tra�c and server load�

A Web cache is an application residing between Web servers and clients� Cache server
watches requests for Web objects �html pages� images and �les�� If there is another request for
the same object� cache will use the copy it has� instead of asking the original server for it again
	��� The main Web caches advantages are the reduce in both latency since request is satis�ed

�

by the cache being closer to the client and tra�c since each object is gotten from the server
once� thus reducing the bandwidth used by a client� Proxy caches are reinforced with set of
rules to determine whether an object will be served by the cache or not� Some of these rules
are set in the http protocols and some are set by the cache administrator�

�

�

�

�

�

���

���

���

���

��

��

���

��

��

��

���

��

��

��

���

��

�����

�����

�����

�����

�����

�����

�����

�����

�����

Figure �� Structure of the Squid proxy cache area�

Nowadays a variety of cache servers are available for the World�Wide Web caching� most
of them freely�distributed on the Internet� Most of the recent Web servers application include
caching modules �e�g� Apache� Spinner� Jigsaw� Purveyor�� A brief description of the three
most wide�spreaded proxy cache servers follows �

� CERN proxy server has been widely adopted since there was a large infrastructure of the
CERN web servers already installed� A heuristic known as time�to�live �TTL�� was used
to manage object�s staleness� TTL is implemented by using the last date modi�cation
header included in every reply from a Web server� A TTL timing frame based on that
date� accompanies each document places in the cache 	��� ���

� Netscape Proxy Server has been available commercially since ���� and checks object�s
staleness by supporting TTL frame based on object�s age when it is cached� This server
also supports pre�emptively fetch groups of linked web pages according to a schedule and
has a variety of �ltering options for use as a �rewall proxy�

� Harvest cache software was developed with the aim of making e�ective use of the informa�
tion available on the Internet� by sharing the load of information gathering and publish�
ing between many servers� Harvest produced the ICP protocol for co�operation between

�

individual caches� Newest Harvest developments are available commercially whereas a
team from the National Laboratory for Advanced Networking Research �NLANR� have
continued to provide a free version under the name Squid 	�
� Squid has evolved by
additional features for objects refreshment and purging� memory usage and hierarchical
caching� Harvest and Squid have been adopted widely by many institutions and research
organizations as a new proposal for e�cient caching�

The Squid Proxy Cache is further discussed since the present paper develops a simulation
environment based on the Squid cache model and experiments are made by the use of Squid
trace log �les� Squid caching software has gained a lot of attention lately� since it is used
on an experimental network of seven major co�operating servers across U�S�A�� under a project
framework by NLANR 	��� These servers support links to collaborating cache projects in other
countries� Aristotle University has installed Squid proxy cache for main and sibling caches and
supports a Squid mirror site� The present paper uses data from this cache installation for
experimentation�

Figure � represents the organization of Squid cache hierarchy storage�wise� consisting of
a two�level directory structure� Assuming approximately ��
 objects per directory there is a
potential of a total of ��������
 ���
 ���
���
� cached objects� Squid uses a lot of memory
for performance reasons since an amount of metadata for each cached object is kept in memory�
Squid switched from the TTL base expiration model to a Refresh�Rate model� Objects are no
longer purged from the cache when they expire� Instead of assigning TTLs when the object
enters the cache� now a check of freshness requirements is performed when objects are requested�
The refresh parameters are identi�ed as min age� Percent and max age� Age is how much the
object has aged since it was retrieved whereas lm factor is the ratio of age over the how old was
the object when it was retrieved� expires is an optional �eld used to mark an object�s expiration
date� Client max age is the �optional� maximum age the client will accept as taken from the
http cache�control request header� The following algorithm is used by Squid to determine
whether an object is stale or fresh�

if Age � Client�max�age then

Return �STALE�

else if Age �� min�age then

Return �FRESH�

else if �expires� then �� expires field exists

if �expires �� NOW� then Return �STALE�

else Return �FRESH�

else if Age � max�age then

Return �STALE�

else if lm�factor � Percent then

Return �FRESH�

else Return �STALE�

Squid keeps size of the disk cache relatively smooth since objects are removed at the same rate
they are added and object purging is performed by the implementation of a Least�Recently�Used

�

�LRU� replacement algorithm� Objects with large LRU age values are forced to be removed
prior objects with small LRU ages� Squid cache storage is implemented as a hash table with
some number of hash �buckets� and store buckets are randomized so that same buckets are not
scanned at the same time of the day 	�
� ���

� The Replication and Caching Model

�����

������	
��

������

������

	�
	�	
���

��

�����

������	
��

	
���	��

����	���	��

	�
	�	
���

����	�

��
�
��� �

����
��	��

�������

��

�

Figure �� Structure of the algorithm for Caching and Replication�

As reported already caching alone cannot solve problems related to document retrieval
latency times� objects availability� reduction in data transfered and redistribution of network
accesses 	�� Replication has been suggested in order to increase availability of data while it
imposed the need for Web object changes propagation between the original and replicated sites�
Therefore� in the replication and caching scheme there is a need to maintain a mechanism in
order to result in consistency and reliability between the original and the replicated servers�
The basic idea of the model presented here is to support caching and replication under a scheme
which is evolved over simulated time by an iterative approach resembling the GA process�

�� Problem Statement �
A cache is maintained on a primary server with its entries being the �le objects stored
in the cache area� The problem is to improve the cache content on a primary server by
reinforcing it with accompanying caches formed by replication of selected �le objects on
nearby servers�

�� Encoding �
A string representation was used to identify each cached �le object� The actual Web
object that can be cached and replicated� is identi�ed by the �lename where it�s stored�
Squid objects are the last level in the cache storage hierarchy �Figure ��� stored in �les
with �lenames coded as hexadecimal numbers strings �e�g� ���af���� ���be��� are the
actual object�s �lenames�� Therefore� each individual cached object is encoded as a binary
bit string corresponding to the hexadecimal string of the object�s �lename�

�� Objective Function �
each cached object is assigned with a ��tness� value derived by a function used to char�
acterize its �freshness�� Since �tness function drives the evolution of the population� it
is important to reward the stonger�improved� cache content individuals� Therefore� a
metric characterizing cache object�s freshness will be the best choice for the evolution of
the replication and caching scheme� As described in Section � all proxy caches relate their
object�s refresh policy with timing object�s last modi�cation period� Therefore� in our
implementation for the replication and caching model� each individual object�s �tness will
be evaluated by a factor corresponding to the ratio of object�s �ages� since its retrieval
and its last modi�cation�

Therefore� the �tness function is given by�

Fitnessobject �
Tobject�retrieval

Tobject�age

where the nominator corresponds to the time that passed since the object�s retrieval and
the denominator is the age of the object at the time of its retrieval� The �tness function
for each cached object considers its �cost� while it remains in cache� It is important to
allow infeasible solutions into the population because good solutions are often the result
of breeding between a feasible and infeasible solution�

�� The Algorithm �
The algorithm commences with an initial population of individual cached Web objects�
which is updated at each evolutionary step resulting in a new �generation�� A Web object
requested by the client� could be in cache area or not� If its not in cache the caches of
the replicated servers are checked� The service of each request is performed according to
the following algorithm �

if �Request in Primary�Cache� then

Return cache�hit

else if �Request in Replica�cache� then

Return cache�hit

else file�in�cache

Return cache�miss

���

if �Refresh�time� then

Cache�Update

Replica�Update

���

The Refesh time is modeled as a �ag in the algorithm to identify whether to perform
the cache and replica refreshment according to the GA process� As depicted in Figure
� the cache refreshment is based on the evolution of a cache population by updating
the replicated sites at each evolution cycle� The Cache Update and the Replica Update
�marked as I� II in Figure �� are performed over simulated time by preserving successive
generations of objects to be cached according to the following criteria �

�

� Update I � the current population is refreshed by selection of individual objects
which could remain or be purged from the cache area based on their �tness value
and the operations of crossover and mutation� �The operations of crossover and
mutation are further discussed in the following paragraph��

� Update II � individuals to be replicated will be identi�ed by their strength at remain�
ing on the cache area� More speci�cally� objects that are present to the previous and
the resulted new generation are chosen for replication at the appropriate replication
server� The replication process directs the chosen Web objects to the dedicated cache
area at the appropriate replication server�

�� Operators �
The two genetically�inspired operations� known as crossover and mutation are applied to

�

� � � � � � � � � � � � � � � �

� � � � � � � �� � � � �� � �

���������

� � � � � � � �

���	�
��

� � � � � � �

Figure �� Genetic Algorithm operators� crossover and mutation�

selected individuals in order to successively create stronger generations� Figure � depicts
an example of applying these two operations in a ��bit string individual� Crossover is ap�
plied between two individuals �parents� with some probability� The crossover probability
determines whether the two parents will survive in the next generation or whether they
will be exchanged in order to result in two new o�springs� The exchanging of parents
parts are performed by cutting each individual at a speci�c bit position and produce two
�head� and two �tail� segments� The tail segments are then swapped over to produce
two new full length individual strings�
Mutation is introduced in order to prevent premature convergence to local optima by
randomly sampling new points in the search space� Mutation is applied to each child
individually after crossover� It randomly alters each individual with a �usually� small
probability �e�g� �������

� Implementation

The model described in the previous section has been implemented in order to optimize the
cache consistency and the Web objects access process by the replication of selected cacheable

�

������

���������

���	��

����	�

������
�	��

���������

���	��

�

���������

���	��

�

Figure �� Overview of the Caching and Replication scheme�

objects among the primary and replicated servers� Our GA model follows the Simple GA
proposed in 	��� The GA can be adapted to the cache management process since cache consists
of a large space of objects �stored �les�� Figure � presents the basic framework followed at the
simulation process in order to implement the GA model for replication and caching� In this
�gure there are three supported replication servers each one in close collaboration with the
primary server�

Caches in primary as well as on replicated servers are modeled as hash tables and replication
servers are implemented such that each one stores a speci�c Web object type �e�g� �html pages�
�gif� �jpeg �les�� The population evolves over successive generations progressing within a loop
limited by a number of maximum generations speci�ed at each cache and replica update at
the simulation run� The evolution process is implemented such that the �tness of the best
and the average individual in each generation is improved towards the global optimum� The
evolutionary cache environment is simulated such that individual objects are encoded as the
cached �les under Squid proxy cache� The Squid proxy cache server is installed at the Aristotle
University of Thessaloniki �AUTh� and is the top proxy server of Greek academic institutes�
Traces from AUTh log�les have been used to test our cache update model� Squid �in its default
con�guration� produces four log�les�

� logs�access�log� requests issued to the proxy server with information regarding how many
people use the cache� how much each one requested etc�

� logs�cache�log� information Squid wants to know such as errors� startup messages etc�

� logs�store�log� information of what�s happening with our cache diskwise� it shows when�
ever an object is added or removed from disk�

� cache�log� contains the mapping of objects to their location on the disk�

In order to identify the object�s �tness function the necessary �elds from Squid�s log �les
are used� As pointed out in the previous section each object�s �tness function is related to the

�

Store log �elds

time the time this entry was logged�
action either RELEASE� SWAPIN� or SWAPOUT�

RELEASE the object has been removed from cache�
SWAPOUT the object has been saved to disk�
SWAPIN the object existed on disk and has been swapped into memory�

status the HTTP reply code�
datehdr the value of the HTTP Date� reply header�
lastmod the value of the HTTP Last�Modi�ed� reply header�
expires the value of the HTTP Expires� reply header�
type the HTTP Content�Type reply header�
expect�len the value of the HTTP Content�Length reply header�
real�len the number of bytes of content actually read�
method HTTP request method�
key the cache key � often it�s simply the URL�

Table �� The �elds for each individual object in store�log

objects freshness � staleness factor� which will be implemented as �

fitnessobject �
now � datehdr

datehdr � lastmod

such that the nominator of the fraction corresponds to the time that passed since the object�s
retrieval and the denominator presents the age of the object at the time of its retrieval� Fields
of store�log �described in Table �� are used to evaluate each of these parameters�

� Experiments � Results

The present simulator modeled a replication and caching system based on the idea of the
GA policy such that the cache reform and the replication process evolves over a number of
generations� The simulator was tested under Squid cache traces and by the use of their �
corresponding log �les� Traces refer to the period from November to December ����� The
proposed replication and caching scheme was applied to cache population at simulated time
of reduced request stream� The �gures of the present paper� refer to a typical ��day run�
Simulation runs where tested with crossover probability � ��
 and mutation probability �
������� These probability values have been suggested as a representative trial set for most GA
optimizations 	���

Figures ��
 and � depict the e�ect of the number of generations to the cache metrics�
More speci�cally� Figure � presents the cache hit rate �percentage� for a cache population

��

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 30 40 50 60 70 80 90 100

ca
ch

e
_
h
it

ra
te

of generations

Cache hit_rate ; generations

no_replication
replication

Figure �� Cache hit rate over generations

1000

1500

2000

2500

3000

3500

4000

4500

5000

20 30 40 50 60 70 80 90 100

b
yt

e
s

le
n
g
th

 (
K

B
yt

e
s)

of generations

Bytes hit length

no_replication
replication

Figure
� Bytes hit length over generations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 30 40 50 60 70 80 90 100

fil
e
_
h
it

ra
te

of generations

File type hit_rate ; generations

.gif
.html
.jpeg
other

Figure �� File type hit rates � generations

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ca
ch

e
_
h
it

ra
te

crossover probability

Cache hit_rate ; crossover probability

no_replication
replication

Figure �� Cache hit rate over crossover

being reproduced for ��� ��� � � � � ��� generations� The cache hit rate curves refer to caching
with replication and caching without replication� As shown in Figure � the replication and
caching scheme is bene�cial to the overal Web object access since it results in increased cache
hit rates� The support of replication together with caching has its best improvement �reaching
�� �� compared to the simple caching when cache update evolves for
� successive generations�
The two schemes seem to converge for a quite small as well as for a quite large number of
generations�

Figure
 presents the Byte hit length �in KBytes� for simulated runs of ��� ��� � � � � ���
generations� As shown in this �gure� the two schemes result in quite similar curve slopes
with the replication and caching overpassing the simple caching scheme at almost ��� for
various maximum number of generations �e�g� ��� �� generations�� These results emphasize the
importance of adoption of the replication to the caching environment� Figure � presents the �le
type hit curves for the same numbers of ��� ��� � � � � ��� generation runs� Files are categorized
to html� gif� jpeg types which are the most common in cache populations and all other types

��

1500

2000

2500

3000

3500

4000

4500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
yt

e
s

le
n
g
th

 (
K

B
yt

e
s)

crossover probability

Bytes hit length

no_replication
replication

Figure �� Bytes hit length over crossover

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fil
e
_
h
it

ra
te

crossover probability

File type hit rate ; crossover

.gif
.html
.jpeg
other

Figure ��� File type hit rates � crossover

include mostly plain�text �les as well as application �les� These curves show that the log �les
include mostly requests for gif and html �les� whereas jpg and other �les are kept at similar
lower rates�

Figures �� � and �� depict the e�ect of crossover probability to the cache metrics� Fig�
ure � presents the cache hit rate �percentage� for a cache population being reproduced under
crossover probability ���� ���� ��
� ���� for �� successive generations and with mutation proba�
bility � ������� The crossover probability is a metric characterizing the overall evolutionary
computation run and it is quite interesting to note that the most bene�cial result for the repli�
cation and caching occurs under the ��
 crossover probability as suggested by the simple GA
trial set� Both replication and no�replication schemes seem to have a similar curve slope with
their bigger deviation under the value of ��
 crossover probability� Similarly� Figures � and ��
present the Byte hit length �in KBytes� and the �le type hit rate respectively� for simulated
runs of ���� ���� ��
� ��� crossover probability� The byts hit length is independent of the crossover
probability values whereas the �gif �les seem to be the most often cached objects for varying
crossover probabilities�

� Conclusions � Further Research

The Web replication and caching problem is studied under an evolutionary computational
scheme based on the genetic algorithm idea� A replication and caching model is implemented
in a simulation environment� The simulation process included almost all of the necessary
parameters to study the model under real traces� such that the most indicative cache metrics
�last modi�cation factor� cache length� actions and �le types� are represented� The model was
tested with the use of real traces provided by a Squid proxy cache server and certain conclusions
were raised about the proposed scheme� The replication and caching scheme has been proven
quite e�ective for cache populations evolved over the simulation time under increasing numbers

��

of generations� The replication combined with caching has resulted in bene�cial cache hit rates
with respect to maximum generation number and crossover probability�

Further research should adapt and examine the above scheme to a real environment and
collect results and statistics from a longer period of usage and experimentation� The bene�ts
of supporting Web replication and caching by evolutionary mechanisms should be documented
and formalized� Furthermore� the present scheme could be experimented under di�erent �tness
selection policies which might consider the number of times an object was accessed while in
cache or percentages of object �le types� Other evolving computation schemes such as simulated
annealing and threshold acceptance� could be adopted in repliation and caching� in order to
study their e�ect on maintaining a reliable cache while increasing data availability and system�s
fault tolerance�

Acknowledgments

The author thanks Panayotis Jounakis �System administrator� and Savvas Anastasiades �tech�
nical sta�� of the Network Operation Center at the Aristotle University� for providing access
to the Squid cache traces and trace log �les�

References

��� M� Baentsch et al�� Enhancing the Web�s Infrastructure� From Caching to Replication� IEEE
Internet Computing� Vol��� No�	� pp� �
�	�� Mar�Apr �����

�	� A� Bestavros� R�L� Carter and M� Crovella� Application�level Document Caching in the Internet�
Proceedings of �nd International Workshop in Distributed and Networked Environments� SDNE
����

��� P� Cao� J� Zhang and K� Beach� Active Cache � Caching Dynamic Contents on the Web� Pro�
ceedings of the IFIP International Conference on Distributed Platforms and Open Distributed

Processing � pp� �����

� Middleware ���
�

��� A� Chankhunthod� P� Danzig and C� Neerdaels� A Hierarchical Internet Object Cache� Proceedings
of the USENIX ���� Annual Technical Conference� pp�������� San Diego� California� Jan �����

�� R� Collins and D� Je�erson� Selection in Massively Parallel Genetic Algorithms� Proceedings of
the �th International Conference on Genetic Algorithms� Morgan�Kaufmann� pp 	���	�� �����

��� P� Danzig� NetCache Architecture and Deployment� Proceedings of the �rd International WWW

Caching Workshop� Manchester� England� Jun ���
�

��� B� Dengiz� F� Atiparmak� A� E� Smith � Local Search Genetic Algorithm for Optimization of
Highly Reliable Communications Networks� IEEE Transactions on Evolutionary Computation�
Vol��� No� �� pp� �����

� Aug �����

��

�
� R� Caceres� F� Douglis� A� Feldmann� C� Glass� M� Rabinovich � Web Proxy Caching � The Devil
is in the Details� Proceedings of the SIGMETRICS Workshop on Internet Server Performance�
Jun ���
�

��� R� Fieldings et al�� Hypertext Transfer Protocol HTTP����� HTTP Working Group Internet
Draft� August ���
�

���� J� Gettys� T� Bl and H� F� Nielsen � Replication and Caching Position Statement� W�C position

statement� http���www�w��org�Propagation�� �����

���� D� Goldberg� Genetic Algorithms in Search� Optimization� and Machine Learning� Addison�
Wesley� ��
��

��	� J� Gwertzman and M� Seltzer� World Wide Web Cache Consistency� Proceedings of the USENIX
���� Annual Technical Conference� pp�������� San Diego� California� Jan �����

���� T� Kroeger� D�D�E� Long and J� Mogul � Exploring the Bounds of Web Latency Reduction from
Caching and Prefetching� Proceedings of the USENIX Symposium on Internet Technologies and

Systems� pp����		� Monterey� California� Dec �����

���� M� Kurcewicz� W� Sylwestrzak� A� Wierzbicki� A Distributed WWW Cache� Proceedings of the
�rd International WWW Caching Workshop� Manchester� England� Jun ���
�

��� M� Mitchell� An Introduction to Genetic Algorithms� The MIT Press� Cambridge� London� ���
�

���� J� Martin � Web Replication and Caching �WREC� � Internet Engineering Task Force Working

Group on Web Replication and Caching� http���www�terena�nl� tech� wrec�� Dec ���
�

���� Z� Michalewicz� Genetic Algorithms � Data Structures 	 Evolutionary Programs� Springer Ver�
lag� New York� ���	�

��
� S� Michel� K� Nguyen� A� Rosenstein and L� Zhang� Adaptive Web Caching � Towards a New
Global Caching Architecture� Proceedings of the �rd International WWW Caching Workshop�
Manchester� England� Jun ���
�

���� A Distributed Testbed for National Information Provisioning� http���ircache�nlanr�net�� ���
�

�	�� M� Nottingham� Web Caching Documentation� http���mnot�cbd�net�au�cache docs�� Nov ���
�

�	�� O� Pearson� The Squid Cache software� Squid Users Guide� http���www�auth�gr� SquidUsers��
���
�

�		� D� Povey and J� Harrison� A Distributed Internet Object Cache� Proceedings of the �
th Aus�

tralasian Computer Science Conference� Sydney� Australia� Feb �����

�	�� T� Starkweather� D� Whitley and K� Mathias� Optimization Using Distributed Genetic Algo�
rithms� Parallel Problem Solving� Springer Verlag� �����

�	�� D� Wessels� Intelligent Caching World�Wide Web Objects� Proceedings of the INET��� Confer�

ence� Jan ����

�	� D� Wessels � Con�guring Squid Caches� Squid Hierarchy Tutorial� http���www�auth�gr� Squid��
Aug �����

�	�� D� Wessels� Squid� Squid Internet Object Cache� http���www�auth�gr�Squid�� ���
�

��

