
Running head: INTEGRATING CACHING TECHNIQUES IN CDNS USING A
CLASSIFICATION APPROACH

Integrating Caching Techniques in CDNs using a
Classification Approach

George Pallis

Department of Computer Science
University of Cyprus,

20537, Nicosia, Cyprus
E-mail: gpallis@cs.ucy.ac.cy

Konstantinos Stamos
Department of Informatics

Aristotle University of Thessaloniki,
54124, Thessaloniki, Greece
E-mail: kstamos@csd.auth.gr

Athena Vakali

Department of Informatics
Aristotle University of Thessaloniki,

54124, Thessaloniki, Greece
E-mail: avakali@csd.auth.gr

Charilaos Thomos

Department of Informatics
Aristotle University of Thessaloniki,

54124, Thessaloniki, Greece
E-mail: chthomos@csd.auth.gr

George Andreadis

School of Engineering
Aristotle University of Thessaloniki,

54124, Thessaloniki, Greece
E-mail: andreadi@eng.auth.gr

 1

Abstract
Content Delivery Networks (CDNs) provide an efficient support for serving “resource-
hungry” applications while minimizing the network impact of content delivery as well as
shifting the traffic away from overloaded origin servers. However, their performance gain is
limited since the storage space in CDN’s servers is not used optimally. In order to manage
their storage capacity in an efficient way, we integrate caching techniques in CDNs. The
challenge is to decide which objects would be devoted to caching so as the CDN’s server may
be used both as a replicator and as a proxy server. In this paper we propose a nonlinear non-
parametric model which classifies the CDN’s server cache into two parts. Through a detailed
simulation environment, we show that the proposed technique can yield significant reduction
in user-perceived latency as compared with other heuristic schemes.

 2

Integrating Caching Techniques in CDNs using a
Classification Approach

INTRODUCTION

With the enormous growth of Web traffic on the Internet, it is essential that Web's
scalability and performance keep up with the increasing demands and expectations. On a
daily basis, clients use the Internet for “resource-hungry” applications which involve content
such as video, audio on-demand and distributed data. For instance, the Internet video site
YouTube (http://www.youtube.com) hits more than 100 million videos per day. Estimations
of Youtube's bandwidth go from 25TB/day to 200TB/day. At the same time, more and more
Web content servers are delivering greater volumes of content but with high sensitivity to
delays. For instance, a delay on financial data-feed Web site (e.g., USD to EUR currency
stock markets) may cause serious problems to the end-users. Thus, the efficient and scalable
content delivery on the Web remains a challenge. Which technologies could meet the above
challenge? The answer to this question lies in combining replica placement and caching
techniques in Content Delivery Networks (CDNs) (Bakiras & Loukopoulos, 2005; Stamos et
al., 2006b).

 The key idea behind caching is to keep content close to the end-user according to a
cache replacement policy. Specifically, the end-user’s request for an object is posed to a
proxy server, which may contain a cached version of the object. If the proxy server contains a
“fresh copy” of the requested object (cache hit) then the end-user receives it directly from the
proxy cache, elsewhere (cache miss) the end-user is redirected to the origin server (where the
Web site is located). Therefore, both the bandwidth consumption and the network traffic are
reduced. Additionally, network availability is significantly improved since the end-user may
receive a copy even if the origin server is unavailable. Another advantage of caching is that
fresh content is added into the caches leading to better storage usage. A complementary to
caching technique is prefetching (Sidiropoulos et. al., 2008). Prefetching is proposed to find
meaningful object access patterns in order to predict future requests. Therefore, objects may
be transferred to the proxy server a priori (before they are even requested).

As far as the replication approach is concerned, its main idea is to bring static content
replicas close to the end-user. This is currently applied in the CDNs (Bent et al., 2006;
Sidiropoulos et. al., 2008). A typical CDN is depicted in Figure 1. A CDN consists of a set of
surrogate servers geographically distributed in the Web, which contain copies (replicas) of
content belonging to the origin server (according to a specific storage capacity). Therefore,
CDNs act as a network layer between the origin server and the end-users, for handling their
requests. With this approach, content is located near to the end-user yielding low response
times and high content availability since many replicas are distributed. The origin server is
“relieved” from requests since the majority of them is handled by the CDN, whereas, Quality
of Service (QoS) and efficiency are guaranteed in a scalable way. Finally an important
characteristic of the CDNs is the efficiency against flash crowd events. Specifically, a flash
crowd event occurs when unpredictably numerous users access a Web site (i.e. Sept. 11th,
Tsunamis etc).

Caching and replication deals with situation as separate approaches. Caching is
mainly addressed to proxy servers, whereas, replication is based on CDNs. However, the
content replication practice of CDN includes inherent limitations. The major limitation is that
CDN infrastructure does not manage in an efficient way the replicated content. Replicas

 3

placement is static for a considerable amount of time. The static nature of the outsourced
content leads to inefficient storage capacity usage since the cache of surrogate servers after a
period of time may contain unnecessary objects. As a result, if user access patterns change,
the replicas in surrogate servers could not satisfy the future users’ requests. A solution to the
above issue would be to integrate both caching and replication policies to the storage space of
CDN surrogate servers. The experimental results in (Stamos et al., 2006b) showed that a
scheme which combines caching and replication outperforms the stand-alone Web caching
and static content replication implementations.

Figure 1. A Typical Content Delivery Network

In this paper we focus on deploying a new scheme for CDNs which takes advantages
of caching and replication. Specifically, we consider a CDN whose surrogate servers act
simultaneously both as proxy servers and content replicators. The major contributions of this
work are:

• Proposing a CDN framework where the surrogate servers act both as proxy caches and
static content replicators under a cooperative environment.

• Presenting a method, the so-called R-P (Reward-Penalty), which partitions the surrogate
servers’ cache into two parts: The first part is devoted to caching and the second one is
devoted to replication. The replicas are classified to one of the above categories by using
a nonlinear model. The nonlinear model is preferred since it classifies better the replicas
than any linear model (Koskela et. al., 2003).

 4

• Providing an experimentation showing that our method performs better than the examined
algorithms. We evaluate the performance of the proposed method using a dataset which
captures the workloads of a streaming media Web site.

The rest of this paper is organized as follows. In Section 2 we formulate the problem.
The related work is presented in Section 3. The proposed R-P method is described in Section
4. Section 5 presents the simulation testbed, and section 6 evaluates the experiment results.
Finally, the conclusion of our work is given in section 7.

PROBLEM FORMULATION

In this section we formally define the problem; the paper’s notation is summarized in
Table 1. To formally define the integration approach, consider a Web content server
representative W who has signed a contract with a CDN provider. The Web site contains N
objects initially located only at the content provider (outside of the CDN). The total size of W
is and is given by the following equation: sW

∑
=

=
N

k

s
k

s UW
1

(1)

where is the size of the k-th (s
kU Nk ≤≤1) object. Let M be the number of surrogate servers

consisting the CDN. Each surrogate server (iM Mi ≤≤1) has a total cache size
dedicated for replicating the content of W. The original copies are located in the content

provider. For simplicity, we consider that the surrogate servers are homogeneous (same
storage capacity =

s
iM

s
iM sM ()) and do not contain content from other Web sites. Mi ≤≤1

In this context, the cache of each CDN’s surrogate server could be partitioned into
two partitions:

• Static cache partition: Dedicated for static content replication. To formally define
the static cache partition, we consider that its size is a percentage r (r ∈ [0..1]) of sM .
Therefore, the replicated objects, in static cache of a surrogate server i, obey the
following constrain:

s

N

k

s
kik

s
i rMUfS ≤= ∑

=1
)((2)

where is a function denoting if an object k exists in the cache of surrogate server i
or not. Specifically, = 1 if the k-th object is placed at the i-th surrogate server and

 =0 otherwise. The content of the static cache is identified by applying a content
replication algorithm. A wide range of content replication algorithms have been
proposed in the literature.

ikf

ikf

ikf

• Dynamic cache partition: Reserved for Web caching using cache replacement
policies. To formally define the dynamic cache partition, we consider that the size
reserved for dynamic caching is a percentage c, (c ∈ [0..1]) of sM . More specifically,
the stored objects respect the following storage capacity constrain:

s
N

k

s
kik

s
i cMUfD ≤= ∑

=1
)((3)

 5

Initially, the dynamic cache is empty since it is filled with content at runtime
according to the selected cache replacement policy. Thus, the surrogate servers would
have in their dynamic cache partition the most Cache Utility Value (CUV) replicas.
The objects with the smallest CUV will be evicted from the cache.

Given the above cache segmentation scheme, the percentages (r, c) must obey the
following:

r + c = 1 (4)

The challenge for such an approach is to determine the surrogate server size which
would be devoted to caching and replication as well. In other words, we should determine the
percentages (r, c).

Variable Description

W Web content server

sW Size of Web content server

N Number of objects

s
kU Size of the k-th object

ikf Function indicating whether the k-th object is placed at the i-th surrogate
server or not

M Number of surrogate servers

s
iM

Storage capacity of i-th surrogate server

sM
Storage capacity of each surrogate server

R Percentage of the sM for replication

C Percentage of the sM for caching

s
iS Static cache partition of i-th surrogate server

s
iD Dynamic cache partition of i-th surrogate server

T Training time period

'
kt Time of the previous user’s request for the specific object k

T
kq Quality value of k-th object for a specific time T

Table 1. Paper’s Notation Overview

 6

RELATED WORK

According to the literature, the resulting problem of finding which objects’ replicas
should be created where, given that any free space will be used for caching, is NP-complete
(Bakiras & Loukopoulos, 2005). Authors in (Stamos et. al., 2006b) investigated the benefits
of integrating caching policies on a CDN’ s infrastructure. Using a simulation testbed, it was
shown that a possible integrated scheme may outperform the pure replication or caching
scheme as separate implementations. Furthermore, they showed that the combination of
caching with replication fortifies CDNs against flash crowd events.

In this context, two heuristic approaches have been proposed (Bakiras &
Loukopoulos, 2005; Stamos et. al., 2006) towards managing the capacity of surrogate servers.
In (Bakiras & Loukopoulos, 2005) was proposed a greedy hybrid algorithm that combines an
LRU cache replacement policy with static content replication on a CDN. More specifically,
initially the storage capacity of each surrogate server is reserved for Web caching and at each
iteration of the algorithm, objects are placed to surrogate servers maximizing a benefit value.
The hybrid gradually fills the surrogate servers caches with static content at each iteration, as
long as it contributes to the optimization of response times. In (Stamos et. al., 2006), the
authors developed a placement similarity approach (the so called SRC) evaluating the level of
integration of Web caching with content replication. According to this approach, a similarity
measure was used to determine the surrogate server size which would be devoted to caching
and replication.

The key issue of Hybrid (Bakiras & Loukopoulos, 2005) and SRC (Stamos et. al.,
2006) is to determine the percentage of storage space of CDN’s surrogate servers that would
be devoted in caching. However, these approaches are offline and, consequently, are unable
to handle efficiently the sudden changes in the interest of the end users. This is a crucial issue
if we consider that the most popular objects remain popular for a short time period (Chen et.
al., 2003). Furthermore, the Hybrid algorithm suffers from “administratively” tunable
parameters which determine the percentage of storage space for caching (Bakiras &
Loukopoulos, 2005).

In this context, a new policy should be devised that should meet the following
challenges:

• Handle the sudden changes of Web users’ request streams;

• Refrain from using (locally estimated or server-supplied) tuneable parameters which
don’t adapt well to changing access distributions;

• Achieve a delicate balance between replication and caching towards improving the
CDN’s performance.

In the following paragraphs, we develop a novel algorithm, which integrates
efficiently caching policies in a CDN infrastructure. Actually, it partitions the surrogate
servers’ cache into two parts. We name this algorithm Reward-Penalty, in short R-P.

 7

THE R-P METHOD

We consider a CDN framework, where the surrogate servers act both as dynamic
content replicators (proxy caches) and static ones under a cooperative environment. During a
training time period the Web objects of each surrogate server are classified into two
categories by using a nonlinear model: volatile and static. The volatile objects are replicated
to the dynamic part of cache, whereas, the static ones are replicated to the static part of cache.

In the proposed framework, the available storage capacity of each surrogate server i,
which is denoted by , is partitioned into two parts: The first one is used for replicating
content statically and the second one () is used for replicating content dynamically
(running a cache replacement policy):

s
iM s

iS
s
iD

 (5) s

i
s

i
s

i MSD =+

From the above equation it holds that if the cooperative push-based scheme is

applied where, the surrogate servers cooperate upon cache misses and the content of the
caches remains unchanged. On the other hand, if the surrogate servers turn into
cooperative proxy caches (dynamic caching only).

0=s
iD

0=s
iS

Our proposed method assigns a quality value “q” for each object which has been
replicated in surrogate servers. In particular, the quality value of replicas is expressed by the
users’ interest (increasing its value by using equation 6) or the lack of users’ interest
(decreasing its value by using equation 7) for the underlying replica. The intuition behind is
that each time t an object is requested, it is rewarded by the function R(t). At the same time,
all the other replicas receive a penalty by the function P(t), since they have not been
requested. Specifically, the following functions have been defined:

)(11)('
ktt

T
tR −−= (6)

)(1)('
ktt

T
tP −−= (7)

The expresses the time of the previous user’s request for the specific object k and T
denotes the training time period. Regarding the relation between t and , it holds .
Therefore, it is obviously occurred that R(t)

'
kt

'
kt Ttt k ≤− '

]1,0[∈ and P(t)]0,1[−∈ . The quality value of each
object k for a specific time T’ is calculated by the sum of the total reward and penalty values
as follows:

))()((
'

0

' ∑
=

+=
T

t

T
k tRtPq (8)

Taking into account the quality value of each object (equation 8), we classify them

into two categories by using a classification model. Considering that linear models do not
classify efficiently the Web objects due to their inefficiency to find correlations among Web
objects’ features (Koskela et. al., 2003), we make use of the logistic sigmoid function.
Specifically, the logistic sigmoid function has been widely used by neural networks (Bishop,
1995) to introduce nonlinearity in the model. Thus, it has been proven useful in case of two-

 8

class classification (Koskela et. al., 2003). Here, the following model splits the objects’
population into two groups (dynamic and static) with respect to the equation 8:

T
kq

T
k

e
qN

−−
=

1
1)((9)

Eventually, the above nonlinear model (equation 9) will classify each object i into one

of the two desired categories: volatile (or static (. A similar model
has also been used in (Koskela et. al., 2003) in order to predict the cache utility value of each
cached object by using features from Web users’ traces.

)0)(≅T
kqN)1)(≅T

kqN

In this paragraph, a description of the R-P method is given. Initially, we consider that
a warm-up phase for the surrogate servers’ caches has been preceded where the replicas of
each surrogate server have been classified into volatile and static with respect to the equation
9. Furthermore, it is critical to consider a time period T for resetting the quality values of
replicas. The functionality of the R-P method is depicted by the flowchart in Figure 2. When
a surrogate server receives a request for an object, the quality values of replicas are updated
with respect to equation 8. Then, a check to the static cache is performed. If it is a hit, the
request is served; else another check to the dynamic cache is performed. In case the requested
object is in the cache, it is served and the cache’s content is updated with respect to the
quality values of objects. In case of a cache miss, the requested object is pulled from another
server (selected based on proximity measures) and stored into the dynamic cache. Then, the
end-user receives the cached object. The objects of the dynamic part of cache will be
available in surrogate server’s cache for future requests as long as they are allowed by the
cache replacement policy. According to this policy, if there is no space to store this object, it
is removed from the dynamic part of cache the object which has the lowest quality value. The
quality value of each object is calculated by the equation 8. The above procedure is repeated
until the time threshold (T) is exceeded. In such a case, all the objects, which are stored in
surrogate server, are re-classified according to the equation 9 and their quality values are
reset. Thus, for small values of T, R-P captures more efficiently the sudden changes of Web
users’ request streams.

SIMULATION TESTBED

CDNs host real time applications and they are not used for research purposes.

Therefore, for the experimentation needs it is crucial to implement a simulation testbed.
In this work, we use the CDNsim – a tool that simulates a main CDN infrastructure. A

demo of our tool can be found at http://oswinds.csd.auth.gr/ ~cdnsim/. It is based on the
ΟΜΝeΤ++ library which provides a public-source, component-based, modular and open-
architecture simulation environment with strong GUI support and an embeddable simulation
kernel. All CDN networking issues, like surrogate server selection, propagation, queueing,
bottlenecks and processing delays are computed dynamically via CDNsim, which provides a
detailed implementation of the TCP/IP protocol, implementing packet switching, packet re-
transmission upon misses, objects’ freshness etc. Here, the CDNsim simulates a CDN with 20
homogeneous surrogate servers which have been located all over the world. The size of each
surrogate server has been defined as the percentage of the total bytes of the Web server
content. Finally, the outsourced content has been replicated to surrogate servers using the il2p
algorithm (Pallis et. al., 2006). According to the il2p, the outsourced objects are placed to the
surrogate servers with respect to the total network’s latency and the objects’ load. This policy
is preferred since it achieved the highest performance.

 9

Users’
Request

Cache
hit?

Yes

No Retrieve the requested replica
from cooperative surrogate

servers/origin server

Update the quality
values of replicas

(equation 8)

Sufficient
dynamic cache

space?

Dynamic cache
replacement

Exceeded
T?

No

Yes

Assign the requested
replica to the dynamic

space of requested
surrogate server

Yes

No

Classify the replicas
(equation 9)

Reset the quality
values of replicas

Figure 2. An Outline of R-P Approach

Considering that the role of CDNs is primarily focused on improving the QoS of the

“resource-hungry” applications in Web sites, such as Digital Television, Interactive TV,
Video On Demand (VOD), etc., streaming media services are of interest in CDNs. In this
context, we used the MediSyn workload generator described in (Tang et. al., 2007), which
generates realistic streaming media server workloads. Specifically, this generator reflects the
dynamics and evolution of content at media sites and the change of access rate to this content
over time. Furthermore, the MediSyn changes the popularity of objects over a daily time
scale within a certain period of time.

In this work, we have generated a data set, which represents the HP Corporate Media
Solutions Server (HPC) Web site. Table 2 presents the characteristics of the examined data
sets. Finally, concerning the network topology, we used an AS-level Internet topology with a
total of 3037 nodes. This topology captures a realistic Internet topology by using BGP
routing data collected from a set of 7 geographically-dispersed BGP peers.

 10

EXPERIMENTATION

Examined Policies
The proposed approach (R-P) integrates both caching and replication in CDNs. Thus,

we evaluate the R-P’s performance with respect to the above stand-alone approaches.
Furthermore, we compare R-P with SRC. Previous results (Stamos et. al., 2006) have shown
that SRC is the leading algorithm in the literature for integrating caching and replication over
CDNs. Specifically, the following approaches are examined:
• SRC: A placement similarity measure is used in order to evaluate the level of integration

of Web caching with content replication.
• Caching: All the storage capacity of the surrogate servers is allocated to caching. The

selected cache replacement policy is LRU since it is used by the most proxy cache servers
(e.g., Squid).

• Replication: All the objects are replicated statically in each surrogate server using all the
available storage capacity.

Characteristic HPC
Log duration 91 days
Number of requests 1000000
Number of Web objects 1434
Size of Web site 3.8Gbytes
Table 2. Parameters for Generated Data Set

T
Figure 3. Mean Response Time vs. T

 11

Figure 4. Mean Response Time vs. Cache Size

Evaluation Measures
The measures used in the experiments are considered to be the most indicative ones

for performance evaluation. Specifically, the following measures are used:
• Mean Response Time (MRT): the expected time for a request to be satisfied. It is the

summation of all requests’ times divided by their quantity. This measure expresses the
users’ waiting time in order to serve their requests and it should be as small as possible.

• Byte Hit Ratio (BHR): it is defined as the fraction of the total number of bytes that were
requested and existed in the cache of the closest to the clients surrogate server to the
number of bytes that were requested. A high byte hit ratio improves the network
performance (i.e., bandwidth savings, low congestion).

• Hit Ratio (HR): it is defined as the fraction of cache hits to the total number of requests.
A high hit ratio indicates an effective cache replacement policy and defines an increased
user servicing, reducing the average latency.

Evaluation
Firstly, we investigate the proposed approach R-P with respect to the mean response

time, with varying T. The results are reported in Figure 3. The x-axis represents the T which
is expressed in days (24 hours reflect to 1 day), whereas, the y-axis represents time units
according to CDNsim’s internal clock and not some physical time quantity, like seconds,
minutes. So the results should be interpreted by comparing the relative performance of the
algorithms. This means that if one technique gets a response time 0.5 and some other gets 1.0,
then in the real world the second one would be twice as slow as the first technique.

In general, we observe that as the time period (T) for taking place a reclassification of
replicas increases, the performance of R-P is deteriorated. In other words, this means that the
performance of the R-P captures better the sudden changes of Web users’ request streams
when the replicas are reclassified in small time periods. For instance, the lowest mean
response time has been observed when the classification takes place every two days. This
observation is common independent of the surrogate servers’ cache sizes. Regarding the

 12

cache size of surrogate servers the R-P presents lower mean response times for small-scale
cache sizes. The cache sizes of surrogate servers are expressed in terms of the percentage of
the total size of the examined Web site.

Secondly, we test the performance of the examined integrated approaches (SRC and
R-P) with respect to the cache size. The results are depicted in Figure 4. In the experiments,
we have considered that the time period T takes the value of two days. The x-axis represents
the cache size of each surrogate server, where the values of x-axis are referred to the
percentage of the Web site’s size. We observe that the R-P outperforms the SRC approach
achieving a delicate balance between caching and replication. Furthermore, we observe that
as the cache size of surrogate servers grows, the mean response time of the examined policies
increases in a linear way.

Figure 5 presents the BHR of the examined policies. The x-axis represents the cache
size, whereas, the y-axis represents the BHR. The R-P is the leading algorithm, achieving the
highest BHR. As we expected, the BHR of the examined algorithms increases with respect to
the surrogate server’s cache size. In particular, the larger the cache size is, the higher the
BHR is. As far as the caching approach is concerned, it presents higher BHR than the
replication one. The close performance of SRC and caching is explained by the fact that a
large percentage of storage space in the SRC is allocated to Web caching (about 85%). On
the other hand, the pure replication yields poor performance and it seems that it is not
affected by the cache size. This behavior was expected since the pure replication does not
manage in an efficient way the storage space. Quite similar results are also obtained when we
evaluate the HR of the examined algorithms. The results are reported in Figure 6. As previous,
the R-P is the leading algorithm, indicating the highest HR comparing with the examined
approaches.

To summarize the experiments, we can conclude that the integration of replication
with caching leads to improved performance in terms of perceived network latency, byte hit
ratio and hit ratio. The results reinforce the initial intuition that replicating replicas statically
for content availability along with caching policies improves the Web performance. The
proposed method outperforms the existing integrating approach, achieving a delicate balance
between replication and caching. Furthermore, the performance of R-P seems to handle
efficiently the sudden changes of Web users’ request streams.

Figure 5. BHR vs. Cache Size

 13

Figure 6. HR vs. Cache Size

CONCLUSION

In this paper, we dealt with the potential performance benefits that can be reaped by

combining both caching and replication in CDNs. The challenge for such an approach is to
determine which objects would be devoted in caching so as the CDN’s server may be used
both as a replicator and as a proxy server. In this paper, we propose a nonlinear non-
parametric model which classifies the CDN’s server cache into two parts. Inspired by the
neural networks, we make use of the logistic sigmoid function in order to split the outsourced
objects into two groups (volatile and static). The experimentations’ results show that the
proposed approach achieves a delicate balance between replication and caching towards
improving the CDN’s performance. Furthermore, the R-P approach captures in an efficient
way the sudden changes of Web users’ request streams, which usually occur in streaming
media Web sites.

 14

REFERENCES

Bakiras, S., & Loukopoulos, T. (2005) Combining replica placement and caching techniques

in content distribution networks. Computer Communications, 28(9): 1062-1073.

Bent, L., Rabinovich, M., Voelker, G. M., Xiao, Z. (2006) Characterization of a large web

site population with implications for content delivery. World Wide Web Journal
(Springer), 9(4):505–536.

Bishop, C.M. (1995) Neural Networks for Pattern Recognition. Oxford University Press,

1995.

Chen, Y., Qiu, L., Chen, W., Nguyen, L., & Katz, R. H. (2003) Efficient and adaptive Web

replication using content clustering. IEEE Journal on Selected Areas in
Communications, 21(6): 979-994.

Koskela, T., Heikkonen, J., & Kaski, K. (2003) Web cache optimization with nonlinear

model using object features. Computer Networks, 43(6): 805-817.

Pallis, G., Stamos, K., Vakali, A., Sidiropoulos, A., Katsaros, D., & Manolopoulos, Y.

(2006) Replication based on objects load under a content distribution network.
Proceedings of the 2nd WIRI (In conjunction with ICDE'06), Atlanta, Georgia, USA,
Apr. 2006, (pp. 53-61).

Sidiropoulos, A., Pallis, G., Katsaros, D., Stamos, K., Vakali, A., Manolopoulos. Y. (2008)

Prefetching in Content Distribution Networks via Web Communities Identification
and Outsourcing, World Wide Web Journal (Sprigner), 11(1): 39–70.

Stamos, K., Pallis, G., Thomos, C., & Vakali, A. (2006) A similarity based approach for

integrated Web caching and content replication in CDNs. Proceedings of the 10th
IDEAS, New Delhi, India, Sep. 2006, (pp. 239 – 242).

Stamos, K., Pallis, G., Vakali, A. (2006b): Integrating Caching Techniques on a Content

Distribution Network. Proceedings of 10th East-European Conference on Advances
in Databases and Information Systems (ADBIS 2006), Springer-Verlag, Thessaloniki,
Greece, Sep. 2006, (pp. 200-215).

Tang, W., Fu, Yu., Cherkasova, L., & Vahdat, A. (2007) Modeling and generating realistic

streaming media server workloads. Computer Networks, 51(1): 336-356.

 15

http://www.sigmod.org/dblp/db/indices/a-tree/l/Loukopoulos:Thanasis.html

	
	
	
	
	Integrating Caching Techniques in CDNs using a Classification Approach
	Abstract
	Integrating Caching Techniques in CDNs using a Classification Approach
	
	INTRODUCTION
	PROBLEM FORMULATION
	RELATED WORK
	
	THE R-P METHOD
	SIMULATION TESTBED
	
	
	EXPERIMENTATION
	Examined Policies
	Evaluation Measures
	Evaluation

	CONCLUSION
	REFERENCES

