Emerald

I nter national Journal of Web Information Systems

Emerald Article: A new approach to web usersclustering and validation: a
diver gence-based scheme

Vassiliki A. Koutsonikola, Sophia G. Petridou, Athenal. Vakali, Georgios
|. Papadimitriou

Articleinformation:

To cite thisdocument: Vassiliki A. Koutsonikola, Sophia G. Petridou, Athenal. VVakali, Georgios |. Papadimitriou, (2009),"A new
approach to web users clustering and validation: a divergence-based scheme”, International Journal of Web Information Systems,
Vol.5Iss: 3 pp. 348 - 371

Permanent link to this document:
http://dx.doi.org/10.1108/17440080910983583

Downloaded on: 18-10-2012
References: This document contains references to 42 other documents

To copy this document: permissions@emeraldinsight.com

Access to this document was granted through an Emerald subscription provided by ARISTOTLE UNIVERSITY OF THESSALONIKI

For Authors:

If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service.
Information about how to choose which publication to write for and submission guidelines are available for all. Please visit
www.emeral dinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
With over forty years experience, Emerald Group Publishing is a leading independent publisher of global research with impact in
business, society, public policy and education. In total, Emerald publishes over 275 journals and more than 130 book series, as
well as an extensive range of online products and services. Emerald is both COUNTER 3 and TRANSFER compliant. The organization is
apartner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCK SSiinitiative for digital archive
preservation.

*Related content and download information correct at time of download.



m The current issue and full text archive of this journal is available at
Y www.emeraldinsight.com/1744-0084.htm

[JWIS
5,3

348

Received 23 September 2008
Revised 21 May 2009
Accepted 22 May 2009

Emerald

International Journal of Web
Information Systems

Vol. 5 No. 3, 2009

pp. 348371

© Emerald Group Publishing Limited
1744-0084

DOI 10.1108/17440080910983583

A new approach to web users
clustering and validation:

a divergence-based scheme

Vassiliki A. Koutsonikola, Sophia G. Petridou,
Athena 1. Vakali and Georgios 1. Papadimitriou
Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, Greece

Abstract

Purpose — Web users’ clustering is an important mining task since it contributes in identifying usage
patterns, a beneficial task for a wide range of applications that rely on the web. The purpose of this
paper is to examine the usage of Kullback-Leibler (KL) divergence, an information theoretic distance,
as an alternative option for measuring distances in web users clustering.
Design/methodology/approach — KL-divergence is compared with other well-known distance
measures and clustering results are evaluated using a criterion function, validity indices, and
graphical representations. Furthermore, the impact of noise (i.e. occasional or mistaken page visits) is
evaluated, since it is imperative to assess whether a clustering process exhibits tolerance in noisy
environments such as the web.

Findings — The proposed KL clustering approach is of similar performance when compared with
other distance measures under both synthetic and real data workloads. Moreover, imposing extra
noise on real data, the approach shows minimum deterioration among most of the other conventional
distance measures.

Practical implications — The experimental results show that a probabilistic measure such as
KL-divergence has proven to be quite efficient in noisy environments and thus constitute a good
alternative, the web users clustering problem.

Originality/value — This work is inspired by the usage of divergence in clustering of biological data
and it is introduced by the authors in the area of web clustering. According to the experimental results
presented in this paper, KL-divergence can be considered as a good alternative for measuring
distances in noisy environments such as the web.

Keywords Internet, User studies, Data mining, Cluster analysis
Paper type Research paper

Introduction
Nowadays the world wide web is a popular and interactive medium for information
publishing and retrieval. However, its huge growth has led to an information overload
that continuously expands causing various problems to web users. Usually, these
problems are related to the detection of relevant information since a remarkable
percentage of the returned search results are characterized by low precision or
irrelevance (Srivastava et al, 2000). In addition, there is often hidden information
behind raw data that must be revealed in order to obtain valuable knowledge that
could be quite useful in upper level applications such as e-commerce and e-learning.
Web usage mining involves the discovery of user access patterns from web usage
data which is usually generated by web servers and collected in server access logs



(Srivastava et al., 2000). As more organizations rely on the web to conduct business,
collecting information about users’ behavior and extracting their usage patterns can be
quite important for dynamic content web sites. Customization and personalization of
these sites are based on the similar access patterns of the users belonging to the
clusters formed by web usage mining techniques. In addition, web usage mining can
result in better structuring and management of a web site making it more effective, it
enhances the operation of the overall network system as well as it improves
information retrieval and content delivery on the web. What is more, it can aid in
caching and prediction of future page references and particularly improve
effectiveness of specific applications such as e-commerce. Finally, for organizations
that deal with advertising on the web, analyzing user access patterns helps in targeting
advertisements to specific groups of users.

Research background review

Clustering, in the web domain, is a technique of extracting knowledge about the
visitors of a web site and exhibits great practical importance. For example, the task of
providing personalized web content can considerably contribute to a site’s popularity.
This task can make use of the results of a clustering process which creates groups of
users according to their access behavior. Furthermore, the implementation of a search
engine can be based on clustering results in order to become more effective. In general,
clustering is defined as the problem of creating groups of items (i.e. clusters) which are
“similar” between them and “dissimilar” to the items belonging to other clusters. Web
clustering can involve either users or pages. The purpose of users’ clustering is to
establish groups of users that present similar browsing patterns while page clustering
discovers groups of pages having related content.

Web clustering is a well-studied problem and numerous clustering algorithms
appear in literature which can be broadly categorized into different categories
depending on the criteria employed. In a general categorization scheme, clustering
algorithms are divided into partitional and hierarchical, according to whether they
produce flat partitions or a hierarchy of clusters (Jain et al., 1999; Xu and Wunsch,
2005). Some of the most commonly used hierarchical algorithms are single, complete,
and average links (Fung, 2001) while a well-known partitional clustering algorithms is
K-means (McQueen, 1967). Moreover, clustering algorithms may differentiate in terms
of the nature of the grouping they perform and which may concern a hard assignment,
Le. data are divided into distinct clusters, where each data element belongs to exactly
one cluster, or a fuzzy one, i.e. data elements are assigned to one or more clusters with
different membership levels (Xu and Wunsch, 2005). Furthermore, a clustering
approach may be based on a distance function to identify the objects that should be
clustered together (similarity based) or to other probabilistic techniques (model-based)
(Vakali et al, 2006). An overview of the most popular web users or web pages
clustering methodologies is presented in Table I, while future trends are discussed in
Vakali et al. (2004).

K-means is a widely used partitional clustering algorithm since it has proved to be
efficient in applications involving large datasets where the use of hierarchical
approaches is computationally prohibitive (Jain ef al., 1999; Wijaya and Bressan, 2006).
More specifically, it classifies a given set of data points to a certain number of clusters
(e.g. % clusters) based on the notion of their similarity. This similarity based clustering
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Table 1.
An overview of clustering
approaches

Approach Cluster content Clustering algorithm Methodology

Cadez et al. (2002) Web users Partitional hard Model based

Petridou et al. (2008) Web users Partitional hard Similarity based
Shokry et al. (2006) Web pages Partitional fuzzy Similarity based
Mojica et al. (2005) Web pages Hierarchical hard Similarity based
Yang and Padmanabhan (2005) Web users Hierarchical hard Similarity based
Lazzerini et al. (2003) Web users Hierarchical fuzzy Similarity based
Castellano ef al. (2007) Web users Partitional fuzzy Similarity based
Zeng et al. (2002) Web users/pages Hard Model based

Liu et al (2005) Web users/pages Fuzzy Similarity based

algorithm is characterized by the proximity measure that quantifies how “similar” two
data points are. K-means attempts to minimize a criterion function value which
measures the distance of each point from the centre of the cluster to which the point
1s assigned.

Once the clustering process is completed, determining the quality of the clustering
results is a challenging task, since the “similarity” measure is tailored for the
underlying clustering process and no standard unified criterion exists. Therefore,
cluster validation is a very important issue in clustering analysis because only
validated clustering results may be appreciated and exploited in applications. In this
context, various clustering validity indices have been proposed to measure the quality
of clustering results (Halkidi et al., 2002a, b).

But, whatever clustering algorithm or distance measure is chosen, it is imperative to
assess whether the results are susceptible to noise (Kerr and Churchill, 2001). In the
web environment, “noise” refers to visits which are executed by chance or by mistake,
e.g. when paying a visit to an originally “promising” page which tends out to be
irrelevant to our interest or mistakenly pressing a hyperlink. In general, it would be
desirable that a user clustering process should not be misguided or considerably
affected by such random events.

Motwation and contribution

This work is inspired by the usage of divergence in clustering of biological data
(Kasturi et al, 2003). The physical significance of the divergence of a vector is the
rate at which “density” exits a given region of space. The notion of divergence
motivated the development of data mining approaches to discover patterns of gene
expression from array-derived gene expression data. Such a divergence approach for
analyzing biological data led to superior patterns compared to those that a hierarchical
clustering algorithm produced using the Pearson correlation distance measure
(Kasturi et al., 2003).

Although there is a number of common features that characterize both web and
biological data (e.g. huge exploration spaces, dynamic data nature, and data
representation), the divergence has not been explored for web data analysis
applications. Therefore, in this paper, we exploit the Kullback-Leibler (KL) divergence,
an information theoretic distance, as a way to measure distances between web users.
Considering that KL-divergence measures the difference between two probability
distributions and not their distance as this calculated by conventional distance



measures such as Euclidean or Manhattan distances (hence “divergence” rather than
“distance”), it is expected to be robust against noise. In particular, in the case of the
web, which is characterized by large-scale and complex data that dynamically changes
over time, accurate and fast responses are needed, so it is important to assess the
impact of noise in a web mining process.

The idea of KL-divergence has originally been introduced by the authors in Petridou
et al. (2006), but here it is thoroughly investigated since the theoretical background is
setup and the divergence-oriented scheme is experimented in comparison to a variety
of other distance measures. More specifically, we assess the results of the
KL-divergence-oriented web clustering and compare it with the widely used
approaches based on distance measures such as Euclidean, Standardized Euclidean
(S-Euclidean), Manhattan, and Chebychev. Our experimentation involves different
datasets with a varying percentage of noise, namely synthetic data characterized by
the absence of noise, real data which are noisy because of their nature as well as real
data on which we imposed extra noise. The clustering evaluation process indicated
that the divergence-based scheme exhibits appreciable tolerance in the presence of
noise in comparison with the other distance measures.

The remainder of this paper is organized as follows: first, the typical distance
measures used in clustering approaches are discussed and the role of the KL-divergence
is described. Then, our KL-divergence clustering approach is presented and the
description of the evaluation process follows. Next, our implementation and
experimental results are provided along with a discussion about the influence of noise
in the clustering approach under the various distance measures. Finally, our conclusions
and future work are presented.

Distance measures

Notation

We consider a particular web usage framework where we have (as a source) server log
files which capture the users’ navigational behavior. Then, we define the following
basic terms and notation used throughout this paper:

« A user set is denoted as U = {uy,...,u,}, where u;, 1 = 1,...,n, represents the
ith of the #n users.

« A user’s pattern (or user’s vector or user’s observation) X(, ), i=1,...,#,
represents the accessing behavior of the user u,. More specifically, it is a
multivariate vector consisting of 7 measurements:

X@,) = XD, ..., X@m),

where the X(;, j) element, j = 1,...,m, indicates the number of times the user #;
visits the page j. All the X(;, :) vectors are organized in the two dimensional
n X m users’ pattern table X.

Example 1. Consider the vector X(3, ;) = (22, 11, 0, 54, 0), where m = 5. Then, the
user identified as u3 has 22, 11, and 54 visits to pages identified as 1, 2, and 4,
respectively, but no visits to pages 3 and 5:
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Table II.
Basic symbols notation

+ The probability distribution P(, :) of the user #; is a vector of m values produced
by the normalization of its X(, :) pattern, ie. P@,:) = X(,:)/ Zj’»’ilX (,7). Thus:
P@,) = (Pa, 1), ..., Pa,m),
where the P(, j) element, j = 1,...,m, indicates the probability with which the
user u; visits the page j. All the P(;, :) vectors are organized in the two
dimensional 7 X m distribution (or normalized) table.

Example 2. Considering5 the above u3 user, its probability distribution vector results
from P(3,:) = X(3,:)/ ijlX (3,7) and thus P(3, :) = (0.25, 0.13, 0, 0.62, 0). Therefore,
the user u5 visits pages identified as 1, 2, and 4 with probabilities 0.25, 0.13, and 0.62,
respectively, whereas the probability to visit pages 3 and 5 is 0:

+ A distance measure d is a metric (or quasi metric) used to quantify the similarity
of users’ patterns (or their probability distributions). Since some clustering
algorithms work on a table of distance values instead of the pattern table, 1.e. X
or distribution table, i.e. P, it is useful to precompute all the # (n — 1)/2 pairwise
distance values for the » users’ probability distributions and store them in an
7n X n (symmetric) distance table. The normalized value of d will be denoted by
d™ and will be stored in an 7 X 7 (symmetric) normalized distance table which is
denoted as D.

Notation summary is given in Table IL

Distance measures and the role of divergence

Since similarity is fundamental to the definition of a cluster, a measure of the similarity
between two user patterns is essential to most clustering approaches. In practice, it is
most common to calculate the dissimilarity between two patterns using a distance
measure. However, because of the variety of distance measures, their choice must be
done carefully.

Different measures are appropriate to capture dissimilarities between patterns
according to their representation (Jain et al, 1999). For example, patterns can be
represented using string or tree structures. Several measures of similarity between
strings are described in Baeza-Yates and Frakes (1992) while a good summary of
similarity measures between trees is given in Zhang (1995). However, patterns are
typically represented as vectors whose values can be either quantitative (continuous
values, e.g. weight; discrete values, e.g. the number of visits of a web user; or interval
values, e.g. the duration of an event) or qualitative (nominal, e.g. “red” or ordinal, e.g.
“cool”). Among the most popular distance measures used for calculating the

Symbol Description

n Number of users
m Number of pages

U Users’ set U= {uy,...,u,}
X n X m users’ pattern table
P n X m distribution table

d Distance measure

D n X n distance table




dissimilarity between vectors of either continuous or discrete values are the Euclidean,
S-Euclidean, Manhattan, and Chebychev distances (Sturn, 2001). Thus, since our users’
patterns are represented as vectors with discrete values and the probability
distributions of these discrete values are also represented as vectors, we will focus on
these well-known distance measures.

Let us suppose that P(x, :), P(y, :), and Pz, :), where x, y, z=1,...,n are the
probability distributions of the web users u,, «,, and «,. The distance measure between
two of them d/(u,, u,) gives a numerical value to the amount of their dissimilarity and is
required to satisfy the first three of the following five properties of a metric:

(1) Non-negativity d(u,, u,) = 0.

(2) Symmetry d(uy, uy) = d(uy, uy).

(3) Identification mark d(u,, u,) = 0.

(4) Definiteness d(u,, u,) = 0 iff P(x, 1) = P(», ).

(6) Triangle inequality d(uy, u,) = d(uy, u;) + du,, u,).

Euclidean, S-Euclidean, Manhattan, and Chebychev distances satisfy all five properties
of a metric and their formulas are given in Table IIIL.

In the formula of S-Euclidean distance between the probability distributions P(x, :)
and P(y, 2), the o ? is the variance of the column j, where j = 1, ...,m, and it is defined
as of = Y1 (P(,j) — wj)’, where p; = a /n)Z?ZlP(z', 7). The Chebychev distance
between the vectors P(x, ;) and P(y, :) is the maximum difference among their
corresponding elements.

Example 3. Let us consider the following distribution table P:

03 05 0.2
01 04 05
02 0.7 0.1
06 02 0.2

P:

From the above table P, it holds that the probability distributions of #; and u5 are
P, :) =03, 0.5, 0.2), P@3,:) = (0.2, 0.7, 0.1), respectively. The variances of the three
columns are o2 = (0.047, 0.043, 0.030) while their mean values are = (0.3,0.45,0.25).
Thus, the Euclidean distance of #; and wus is dp(u;, u3) = 0.24, their S-Euclidean
distance is dsg(uy, #3) = 1.21, their Manhattan distance 18 dypan(#1,%3) = 0.4 while their
Chebychev distance is dcp(uq, #3) = 0.2.

Beyond the typical distance measures (Table III), here we use the relative entropy or
KL-divergence which originates from information theory and is of probabilistic nature.

Distance Formula

Euclidean (e, ) = \/SIL PG ) = Py, I
S-Euclidean dsg (it uy) = \/ S & (P, ) = P(y, )
Manhattan Antan(it, 1) = Y7 1P, ) — P(y, )

Chebychev den(uy, uy) = max ., |P(x, ) — P(p, )
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Given the probability distributions P(x, :) and P(y, :), where x, vy = 1, ..., n, of the users
Uy, Uy, the KL-divergence is a quantity which measures the difference between P(x, :)
and P(y, :) and is defined as follows (Dhillon et al.,, 2002):

P(x,))
P(y.p)’

dxi (i, uy) = Y P(x, )log eh)
j=1

Based on the above definition, it is obvious that the KL-divergence is a measure of the
“distance” between two probability distributions without being a typical distance
measure. This is due to the fact that it is not symmetric and does not obey the triangle
inequality[1] (Cover and Thomas, 1991). However, it should be noted that Kullback and
Leibler themselves actually defined the KL-divergence between u, and «, as:

dKL(“x» uy) = dKL(um uy) + dKL(uy7 Uy), (2

which is symmetric. The property of symmetry is fundamental in order that the
comparison between the KL-divergence and the other distance measures is meaningful.
In our framework, we use the KL-divergence as defined by equation (2).

Divergence-oriented clustering

Problem formulation

In the proposed clustering it is important to identify the type of problem to be solved.
We consider that under the proposed KL-divergence-oriented clustering process,
k denotes the number of clusters while U is the set of users U = (u;,...,u,) to be
clustered. Then, C;,..., C, denote each of the % clusters consisting of |Cil,...,|Cl
members, respectively. Under this notation, the underlying clustering process CL is
defined as the assignment of # users to % users’ groups (i.e. clusters):

CL: {1, ....nt— {1, ...k},

such that the users assigned to each cluster are more similar to each other than to the
users assigned to different clusters, based on their page preferences as these were
logged in the server files. The membership of a user #;, where i = 1,...,#, to a cluster
C;, where j = 1,...,k, is defined by the function f as follows:

1 if u; € C]'
i, Gj) = 0, otherwise

Let us consider an arbitrary cluster C;, where j = 1,..., %, of the users’ set U. When a
clustering process CL is applied to U, the cluster C; is represented by a single point. We
call this point cluster’s centre and we denote it as ¢;. In practice, ¢; is one of the users u;
belonging to the cluster C; and more specifically the user that minimizes the sum of
distances between all users belonging to C;. We denote PC(j, :) to be the probability
distribution vector of ¢;. Then, given that both P(, :), where i = 1,...,n, and PC(j, 1),
where j=1,...,k are vectors, their dissimilarity can be measured by their
KL-divergence, i.e. dki(#;c;). Considering all clusters, we define the criterion function
Jx.(U) to be the sum of the divergences over pages between each user and the centre of
the cluster that the user is assigned to:



k
]KL(U):Z Z dxr(u;, ¢;). 3)
=

f(ul1cj):1

Based on the above, we define the KL-divergence clustering problem as follows.

Problem 1. (KL-divergence clustering). Given a set U of # users organized in an
n X m table, an integer value &, and the criterion function i1 (U), find a CL clustering of
U into k clusters such that the /i1 (U) is minimized.

The KL-dwergence clustering approach
Our clustering problem, as most of the clustering problems, is NP-hard (Garey and
Johnson, 1979) and, therefore, any polynomial algorithm would provide an
approximate solution. Moreover, this approximation solution is not bounded-error
since the KL-divergence does not satisfy the triangle inequality (Charikar ef al, 1999).
Thus, the KL-divergence clustering approach adopts local search heuristics since
it employs the well-lknown K-means algorithm to find the clustering solution
(McQueen, 1967).

K-means is an unsupervised, hard partitional clustering algorithm which classifies
a given dataset to a certain number of & clusters, fixed a priori, and although it does not
guarantee convergence to a global optimum, it has proved very effective in practice.
Specifically, its time complexity is O(nkr), where n is the number of users in the
dataset, & the number of clusters to be created, and » the number of iterations that takes
the algorithm to converge. However, both & and » are relatively small compared to the
number of users 7, and thus they do not contribute to the algorithm’s complexity (Jain
et al, 1999). So, the clustering is computed in time linear on the number of users: O@).

Clustering phases

The KL-divergence clustering algorithm is an unsupervised, hard partitional method
used to optimize the criterion function Ji (U), defined by equation (3). It is a two-step
process, depicted in Figure 1, where the data is first preprocessed and normalized in
order that we compute the pairwise distances, and then is classified by using the
K-means algorithm in conjunction with the KL-divergence as the dissimilarity
measure. Once the CL clustering process is completed, clustering evaluation takes
place to assess the quality of our resulted clusters.

Data preprocessing and normalization. In accordance with our data source notation
given in a previous subsection, we preprocessed users logs in order to exclude
non-important information (e.g. requests from search engines’ agents, viruses
generated hits or log entries about images, css, swf files, etc.). In the obtained n X m
pattern table X, each row represents a user’s pattern X(, :), where 1 =1,...,n, and
each column corresponds to each of the 7 pages which are recorded as visited by the »
users in a web server’s log file (multiple users access a single site). Therefore, each cell
of this table indicates the number of times each user visits each page.

The n X m pattern table is then normalized in order that we form the 7z X m
distribution (normalized) table, where each row is the probability distribution P(, :),
where ¢ =1,...,n, of the user pattern X(, :). Therefore, its elements express
the probability with which each user visits each page. The normalized expression
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Figure 1.

The KL-divergence
clustering process
overview

Preprocessing
Pattern table (n x m)

Normalization

/

Normalized table (n x m)

Web usage data

Distance computation

/

Distance table (n x m)

KL-clustering

!
AR A

Knowledge

values for each user fall in the interval [0, 1] and each row sum is 1 (unit total
probability mass).

Each row of this # X m normalized table is suitable for the calculation of the
n(n — 1)/2 pairwise distance values between the n users’ probability distribution
vectors using the KL-divergence. After this calculation, we receive the # X 7 distance
table D which is symmetric, since the divergence between P(x, :) and P(y, :), where x,
y=1,...,n, is defined as KL(u,, u,) + KL(%,, u,) which is symmetric (Dhillon et al,
2002). The n X n distance table D as well as the number of % clusters to be created will
be the input to the clustering algorithm.

KL-clustering. For the clustering process, we adopted the K-means algorithm to
produce the % clusters. K-means begins by initializing a set of % centres ¢;, where
7=1,...,k one for each cluster C; randomly selected from users’ set U. We devise an
initial clustering assignment, by including each of the left # — % points to the closest
cluster, i.e. to the one with the minimum distance value d between the cluster centre
and the examined point (where d is the chosen distance measure). Then based on this
initial assignment, we re-compute k new centres and we proceed to an iterative
procedure where points are assigned to clusters and % centres are re-computed, until no
changes in the location of objects exists. The & new centres in each iteration are points
from the users’ set U. In particular, the algorithm selects ¢; among the points that are
assigned to cluster C; to be the point that minimizes the sum of distances within cluster
G; (i.e. distance between the cluster centre ¢; and its members). In our KL-clustering the
K-means algorithm performs iterations based on the table of distance values which is
described in data preprocessing and normalization step.

The proposed approach is incremental in nature, since it assigns a user to a cluster
only when it is determined that such an assignment will lead to an improvement in the



value of the criterion function. As mentioned earlier, since each assignment optimizes
the criterion function the algorithm may converge to a local minimum depending on
the particular cluster centres selected. Here, to eliminate this sensitivity, the clustering
phase is repeated a number of times, i.e. we compute NUM (in our experimentation
NUM = 100) different clustering solutions and the one that shows the best value for
the criterion function is kept. For the rest of this paper, when we refer to the clustering
solution we will mean the solution shown to be the best out of these NUM potential
different solutions:

Algorithm. The KL-divergence clustering algorithm.

(1) Input. A set U of n users organized in an n# X m pattern table X and the number
of clusters k.

(2) Output. criterion function Jii(U) and assignment of the » users into the %
clusters that minimizes the Jki.(U).

(3) Randomly select % points from the users’ set U as the initial clusters’ centres:
Cly. ooy Cp.

(4) Calculate the KL-divergence dxp(u;, ¢j) between the probability distribution
PG 2), i=1,...,n, of each user #; and the probability distribution PC(J, :),
J7=1,...,k, of each cluster centre ¢; and store them in » X » distance table D.

(5) Assign all points to the cluster that has the closest centre.

(6) Re-compute the centre of each cluster.

(7) Repeat steps 2 and 3 until the centres do not change or when the criterion
function improvement between two consecutive iterations is less than a
minimum amount of improvement specified.

Distances’ scaling

Our KL-divergence clustering algorithm aims to minimize the /i (U) criterion function,
defined in equation (3). Most of the earlier approaches that use Euclidean, S-Euclidean,
Manhattan, and Chebychev distances along with the K-means algorithm, define a
similar J(U) criterion function to be minimized:

J=>"" 3" dw,c). (4)

=1 f;,C)H=1

Bl

However, in equation (4) instead of di;, we have d to be the chosen distance (Euclidean,
S-Euclidean, Manhattan, or Chebychev), as defined in Table IV, between the
probability distribution P(, :) of user #; which belongs to cluster C; and the probability
distribution PC(j, :) of the cluster’s centre ¢;.

However, comparing criterion functions based on different distance measures could
be considered meaningless since each distance measure changes in different scale
(i.e. the Euclidean distance becomes zero if two user patterns is identical and +/2 if there
is nothing in common between them while the corresponding values for the Manhattan
distance is 0 and 2). One way to overcome this difficulty is to normalize the distance
values. In this case, the criterion function J(U) is defined as:
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Table IV.
Clustering and criterion
function notation

k
JO)=Y"" > d*w,q), ®)
j=1

fu;,Cp=1

where d* is the normalized value of d.

Let us suppose that d(u,,u,) is the distance between the probability distributions
P(x, ) and P(y, 1) of users u, and «,, where x, y = 1,..., 7, and max d is the maximum
distance for all possible P(x, :), P(y, ;) probability distribution vectors. This assumption
as well as the following equations are similar for every distance chosen, i.e. considering
that d = dy;. then the max d is the maximum KL-divergence between all possible P(x, :)
and P(y, ;) whereas if d = dg then the max d is the maximum Euclidean distance, etc.
Then:

0 = d(uy,uy) = maxd. (6)
Defining the normalized distance d”(u,, u,) to be:
d(uy, uy)
3 — 7y
a* (uy, uy) maxd )
then, from equations (6) and (7) we conclude that:
0= d*(uy,uy) = 1. 8

After this normalization, the z X n distance table D is both symmetric and normalized
since its values are in a range of 0-1. This table will form the input to the K-means
algorithm with the % clusters to be created.

From the definition of the criterion function Jk1 (U) (equation (3)) and /(U ) (equation
(4)) we also conclude that:

0=Jx(U),J(U) =n. )

Clustering validation

Clustering results evaluation is necessary due to the fact that there is a wide range of
clustering algorithms which end up to different clusters, so it is not feasible to compare
them in absolute terms. A widely used cluster evaluation approach is based on the
visualization of the dataset which can be quite revealing in verifying clustering results.
However, graphical analysis is not easily applicable in case of large multidimensional
datasets. Moreover, entropy is a popular method for evaluating clustering results

Symbols Description

CL Clustering process

k Number of clusters

G Cluster,j=1,...,k

G Cluster centre,j =1,...,k

CP(, 2 Probability distribution vector of ¢;, j =1,...,%
S, G) Function membership of user #; to cluster G

Jx(U) Criterion function




(Zhao and Karypis, 2005), but it is restricted to supervised clustering approaches.
An alternative way to evaluate and assess the results of a clustering process of
multidimensional data is the cluster validation (Halkidi ef al, 2002a, b). Cluster
validation aims at the quantitative evaluation of clustering results and is based on
certain validity indices characterized as (Halkidi et al., 2002a, b; Stein et al., 2003):

« Internal validity indices: their goal is to evaluate the results of a clustering
algorithm using only quantities that involve the data themselves. Such internal
measures base their calculations solely on the clustering that has to be evaluated
and thus they are mostly used in unsupervised clustering.

«  External validity indices: they perform clustering validation with reference to
external knowledge, such as a pre-specified structure which reflects an intuition
about the clustering structure of a dataset. It should be noted that external
measures are not applicable in real world situations where unsupervised
clustering approaches are applied, since reference classifications are usually not
available. Overall, the main drawback of the external validity indices as compared
to internal ones is their computational cost, considering that they measure the
degree to which the data clusters conform to an a priori specified scheme.

* Relative validity indices: they aim at revealing the best clustering scheme that a
clustering algorithm can define under certain assumptions and parameters.
Namely, the basis of the relative validity indices is the evaluation of a clustering
structure by comparing it to other clustering schemes, resulting from the same
algorithm but with different parameter values. When applied appropriately,
internal indices can serve as relative (Jain ef al., 1999), e.g. looking for the optimal
number of clusters, we evaluate the clustering results of the same algorithm that
takes the number of clusters as a parameter.

In the case of our synthetic datasets experimentation, the underlying structure of the
data is known prior to clustering and thus the application of external indices in clusters’
validation is feasible. However, our real data workload experimentation implies no
external knowledge of a pre-specified classification, so we will have to perform
clustering validation based solely on quantities that involve the data themselves. Based
on the above remarks, internal validity indices are the most typical choice in this case.

According to the Table V validity indices notation, Table VI presents the Davies-
Bouldin (DB) index (Davies and Bouldin, 1979) and Dunn’s index (Dunn, 1974), which are
two of the most commonly used internal validity indices. Given their definitions, DB
index tries to minimize the within-cluster scatter maximizing at the same time the
between-cluster separation while Dunn’s index measures the ratio between the smallest
cluster distance and the largest intra-cluster distance in a partitioning. Moreover, DB
index considers the average distance of all elements in a cluster to their cluster centre
(cluster’s diameter) and the distance between cluster centres and thus it is supposed to be
more robust than Dunn’s index (Boutin and Hascoer, 2004). On the other hand, Dunn’s
index is very instable when in presence of outliers since it considers only two distances,
namely the minimum of the distances between the two closest points belonging to
different clusters and the maximum of the distances between the two most remote points
in each cluster (Gunter and Bunke, 2003).

By the definition of DB index in Table VI, for each cluster C;, a cluster C; is chosen
such that the specified quotient is maximized, meaning that dist(C;, C)), as defined in

Web users
clustering and
validation

359




[JWIS
5,3

360

Table V.
Notation of validity
indices

Table V, must be the minimum. Thus, the DB index measures the average of similarity
between each cluster and its most similar one. Obviously, it is desirable for the clusters
to have the minimum possible similarity to each other, therefore we seek clusterings
that minimize DB index values (Gunter and Bunke, 2003). According to the definition
of Dunn’s index (Table VI), if a dataset contains well-separated clusters, the distances
among the clusters, expressed by dp;,, are usually large and the distances inside the
clusters, expressed by dp.yx, are expected to be small. As a consequence, a large value
of Dunn’s index means better cluster configuration (Gunter and Bunke, 2003).

Experimentation

To evaluate our KL clustering approach we carried out experimentation that involves
both synthetic and real datasets. We performed experimentation on synthetic data, in
order to check whether our proposed method actually “understands” and captures the
underlying users’ behavior model, which was originally used to generate the synthetic
data. In case of real datasets, users’ navigational behavior is recorded in web servers’
log files. The size of a log file can grow very large, containing at the same time many
useless for the clustering approach information. Thus, as it has already been discussed,
data preprocessing preceded in order to obtain meaningful, for the clustering, data.
Next, we corrupted our noisy data with some extra noise to study our approach’s
tolerance in noise increase, through the evaluation process that followed clustering.
The overall procedure is depicted in Figure 2.

Regarding the clustering evaluation under the synthetic datasets experimentation,
we initially assessed the criterion functions values defined in equations (3) and (4)
using large-scale multidimensional datasets. In the case of our real datasets, we
employed the criterion functions values as well as the DB index defined in Table VI.
Moreover, we proceeded to graphical representations in order to study the quality of
the underlying distance measures as well as the quality of the obtained clusters before
and after the addition of extra noise.

Symbol Description

Amin The minimum of the distances between the two closest points belonging to different
clusters

Amax The maximum of the distances between the two most remote points in each cluster

diam(C) The diameter of cluster C;, i = 1,.. .,k is the average distance of all cluster’s
members to the cluster’s centre

dist(C;, C) Distance between the centres of clusters G, G, i, 7 =1,...,k

Table VI.

Formulas of Dunn’s and
Davies-Bouldin validity
indices

Symbol Description

Dunn’s index Dunn = (dpin)/(dmax)
Davies-Bouldin index DB = 1Y% | max;[(diam(C;) + diam(C)))/dist(C;, C)]




/

Synthetic Clustering process w
data

Meaningful
web data

Data preprocessing >

- Noisy

Raw data from
web server log files

Clustering over synthetic datasets

We generated data based on a specific model and then checked whether the suggested
method succeeded in discovering this model. More specifically, our synthetic datasets
were generated as follows: we produced an 7 X m pattern table X, whose data was
divided in advance into % clusters (predefined clusters). For this z X m pattern table X
we fixed the dimensionality s of the data. Then, for each cluster we selected random
number of members while for each jth dimension (; =1,...,m) we selected a mean
value w;;, which was uniformly distributed in [0. ..99]. Points were then generated by
adding a value sampled from the normal distribution M(;;, o). For our experiments
we fixed the values of users’ to be around # = 800 and m = 200 pages. We created
different datasets using £ = 4, 5, ..., 10 clusters and standard deviation o = 0.5, 0.75,
1, 1.25, 1.5.

The results for the synthetically generated data are shown in Figure 3(a) and (b),
where we present criterion functions’ values using KL-divergence, Euclidean,
S-Euclidean, Manhattan, and Chebychev distances in comparison with the criterion
functions’ values of the original model that has been used for the synthetic data
generation (“Ground-truth” bar). The calculation of the ground-truth criterion function
is also based on the chosen distance and as a result we have a ground-truth bar for each
distance. For all cases of synthetic data, both our proposed method and the other
widely used distances, coincide with their corresponding ground-truth criterion
function, ie. all approaches discover the underlying model. Thus, our proposed
scheme could be used in conjunction with distance-based clustering as effectively as
the other approaches.

As shown in Figure 3(a) the values of criterion functions are decreasing, in
accordance with the underlying number of clusters increase. This is natural since, as
the number of clusters increases, data points (i.e. users) tend to be more close to their
cluster centres. The criterion functions values in standard deviation terms is shown in
Figure 3(b), where, as expected, the criterion functions values are shown to
be increasing as the standard deviation increases (i.e. points “deviate” from their
clusters’ centres).
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Figure 3.
Synthetic datasets
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Experimentation under real datasets

Data workload

Our real data experimentation was based on two distinct sources of log files that
recorded users’ navigational behavior on an academic oriented host and on a general
public, more popular server, in order that we experiment with both a medium-sized
and a large-scale data source. More specifically, the first source dataset logs users’
navigation during their visits to the web pages hosted by the AUTH Computer
Science Department (CSD) web server[2], while the second dataset logs file from a
busy National Aeronautics and Space Administration (NASA) web server[3].

In our approach, the prior to clustering data preprocessing removed any log entry
that was not needed for the mining process, i.e. image files, css, swf, agent, or spider
requests. In addition, log entries with status other than 200 which indicates success
and 304 which indicates redirection, were removed. Furthermore, data cleaning
involves removing log entries that are negligible to influence the results of the
clustering process. In our case, these entries refer to users having less than 5 visits,
because even though they pay only a few visits, they are too many in number and
could mislead the clustering process. After data preprocessing on both datasets, the
number of meaningful records for the web mining process has significantly been
reduced, so as to work with useful for the clustering information. The details of our
datasets are summarized in Table VIL

Considering the two log files that resulted from the preprocessing, we created two
n X m pattern tables, one for each log file, where each row of them corresponds to a
user and each column to a page that appears in the respective log file. Consequently,
regarding the CSD and NASA datasets, the size of the produced tables is 445 X 175
and 456 X 70, respectively. Those two tables were normalized before the clustering
process takes place.

Clustering evaluation
Regarding hard partitional clustering methods, as the K-means employed in our
approach, a common evaluation process relies on a cost function which is attempted
to be optimized. In our case this cost function refers to the criterion function /i (U)
(equation (3)) when the KL-divergence is used, and to the criterion function J(U)
(equation (4)), when the Euclidean, S-Euclidean, Manhattan, or Chebychev distance is
chosen. The optimal value of both Jxr(U) and J(U) is defined as the minimum one,
since they both express the sum of distances between the items belonging to a cluster
and the cluster’s centre. Criterion functions values were the first measure used to
evaluate the results of the clustering process. A good clustering approach aims to
retain low values of the criterion function as this is indicative of an appropriate
clustering scheme.

Figure 4 presents the criterion functions’ values for both real datasets (CSD,
NASA) as a function of the number of clusters, when the clustering process uses the

Dataset Time period Users Pages Before preprocessing (MB) — After preprocessing (MB)

CSD May-June 2004 445 175 100 5
NASA  Jul 1995 456 70 200 40
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Figure 4.

Criterion function values
as a function of the
number of clusters
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five distance measures. More specifically, when KL-divergence is used, the criterion
function Ji1(U) (equation 3) is computed, while in the case of the other distances
we calculate the criterion function J(U) (equation (4)), considering the respective
distance measure d. Figure 4(a) and (c) show the values obtained by the original data
whereas Figure 4(b) and (d) depict the corresponding values with the addition of
extra noise to real data. As it was mentioned in the Introduction, in case of web data,
noise refers to users’ visits that happen accidentally or by mistake. So, we added
noise to our datasets by slightly altering the probability with which a user visits a
page, using a random function. The number of clusters used in all cases fluctuates in
the interval [4...10].

We can observe that in all subfigures the criterion functions values decrease for
both datasets as the number of clusters increases, and this is expected considering that
the increase of the number of clusters results in more cohesive clusters. Furthermore,
the values for all curves are in the interval [0. . .445] for CSD and [0. . .456] for NASA as
expected by equation (9). In case of Figure 4(b) and (d), the addition of noise results in
increased criterion functions values for all distances and number of clusters with the
exception of Chebychev distance whose values remain at the same levels. This is
expected since the Chebychev distance between two vectors is the maximum difference



among their corresponding elements and thus it is not significantly changed by the
addition of noise.

Despite the fact that curves in Figure 4 fall in the interval [0...z], a direct
comparison of them would be meaningless since we use different distance measures.
Thus, we proceed to a second evaluation method which is based on the DB validity
index. The DB index values for all distances as a function of the number of clusters in
both CSD and NASA datasets are depicted in Figure 5(a) and (c), respectively. When
extra noise 1s added to the datasets, the obtained DB index values are shown in
Figure 5(b) and (d). Here, we can see that the performance of KL-divergence approach
is comparable to the approaches using the other four deterministic distance measures.
This holds for both datasets where we can observe that the KL-divergence curve is
among the others. Such a comparison is not meaningless, as in the case of criterion
functions curves, since the DB values come from the division of distances and, in
spite of the chosen distance, they are “pure” numbers. More specifically, as DB index
takes into consideration the average distance of all items belonging to a cluster to
their cluster centre and the distance between the cluster centres, it can be
considerably affected by the chosen clusters’ centres. Thus, even though the distance
between items and their cluster centre decreases as the number of clusters increases
(which was clear in criterion functions curves), DB index does not exhibit steadily

| —e— KL divergence —e— Euclidean == S-Euclidean —#— Manhattan —— Chebychev
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Table VIII.
DB index fluctuation
intervals — CSD dataset

decreasing curves as it considers the inter-cluster distances (distances between
clusters’ centres) too. This is clearly depicted in all subfigures of Figure 5.

With the addition of noise (Figure 5(b) and (d)) we can observe that values of DB
index increase, in both datasets and for all distance measures used. This is explained
by the fact that the addition of noise clearly affects clustering, no matter which
distance metric is used. DB index values for S-Euclidean, Manhattan, and Chebychev
distances, seem to be non-beneficial for the clustering process, since intervals that DB
Index fluctuates with and without the addition of noise diverge less in the case of
KL-divergence and Euclidean distances. Observing the values of DB index in
Figure 5(a) and (b), we can see that there is a similar increase rate when using
KL-divergence and Euclidean distance. This is quite interesting since a pure
similarity distance such as Euclidean and a probabilistic one such as KL-divergence
react in a similar way to the addition of noise. Moreover, the high values of DB index
in the case of Chebychev distance prove that low values of its criterion function were
not indicative for the clustering quality. For the CSD dataset, Table VIII presents the
intervals that DB index fluctuates (for the different number of clusters %) before and
after the addition of noise for all distance measures.

Under the NASA dataset (Figure 5(c) and (d)), we can also see that noise addition
in the case of KL-divergence, Euclidean, and Chebychev distances causes similar
deterioration considering the DB index fluctuation intervals, while the usage of
S-Euclidean and Manhattan distances is non-beneficial for the clustering process.
Table IX shows the DB index fluctuation intervals before and after the addition of
noise for all distance measures.

The observed deteriorations differentiate concerning the two datasets for the
respective distances, and this is due to the nature of the dataset. For example, if we
consider the average deterioration when KL-divergence is used over all numbers of
clusters in terms of DB index, we will find a percentage of 16 percent for the CSD
dataset and 63 percent for the NASA dataset, while using Euclidean distance these
percentages become 19 and 70 percent, respectively, for the two datasets.

Next, it is important to proceed to a graphical analysis in order to obtain evidence
about the quality of the employed distance measures as well as of the clustering
results. Thus, for the obtained clusters’ visualization we have chosen to depict distance
tables for all the employed distance measures.

The conclusions about the quality of the distance measures we use are confirmed by
the visualization of the obtained clusters. In Figure 6, we indicatively present the
clustering outline of the NASA dataset for £ = 10 clusters. More specifically, the

KL-divergence Euclidean S-Euclidean ~ Manhattan ~ Chebychev

Before noise addition [1.1...21] [08...16] [12...23] [08...16] [05...09]
After noise addition [19...22] 12...17] [22...25] [17...22] [0.7...21]

Table IX.

DB index fluctuation
intervals — NASA
dataset

KL-divergence  Euclidean  S-Euclidean = Manhattan  Chebychev

Before noise addition [06...11] [04...09] [08...13] [04...09] [04...08]
After noise addition [12...15] [11...13] [19...25] [14...17] [05...11]
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of the NASA dataset
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subplots of Figure 6 present the similarities and dissimilarities between user patterns in
terms of the underlying distance measure before and after the addition of extra noise.
Particularly, each plot depicts the # X 7 distance table D (in accordance with the chosen
distance measure) whose rows and columns have been rearranged so that users
clustered together are put in consecutive rows (columns). Therefore, each user does not
necessarily correspond to the same axes’ point in the different subplots. Moreover, the
darker the shade of a cell (7,7), where I < ,7 = », the more similar the users at positions 7
andj are. Thus, given that clusters contain the most similar users, the darker rectangles
appear on the subplots diagonal and reveal the clusters of our dataset.

It is apparent that all approaches group users in NASA dataset in a similar way in
terms of clusters’ membership. For example, the larger cluster which corresponds to
the larger rectangular of each diagonal contains 106, 100, 167, 103, 102 users in case of
KL-divergence (Figure 6(a)), Euclidean (Figure 6(c)), Manhattan (Figure 6(e)), and
Chebychev (Figure 6(g)) distance, respectively. As we observe, with the addition of
extra noise (Figure 6(b), (d), (f), and (h)) clusters’ cardinality remains to a similar level,
e.g. 107, 102, 186, 107, 97 for the largest cluster in each approach. We omit figures for
S-Euclidean, since S-Euclidean is shown to have the worst outcome as presented in
Figure 5(c) and (d) and Table VIII and thus the visualization has no clear clustering
distinction. Furthermore, all approaches succeed in finding coherent clusters (i.e. black
rectangles of the diagonal) but they also provide less compact clusters (i.e. gray
rectangles of the diagonal). Thus, before the addition of extra noise we notice that the
KL-divergence is comparable to the other approaches as shown in the depicted
rectangles corresponding to the £ = 10 clusters.

As discussed earlier, the addition of noise deteriorates the quality of the clustering
results. This deterioration is clearly depicted in Figure 6(b), (d), (f), and (h) where the
rectangles of the diagonal are less dark compared to those of Figure 6(a), (c), (€), and (g),
respectively, indicating that the corresponding clusters are less coherent. The degree to
which the shade of the rectangles fades reveals the amount of deterioration. Figure 6(b)
proves the tolerance of KL-divergence, since its diagonal retains the dark shade and
clearly depicts the compactness of clusters with the exception of cluster 5 which
contains 37 users. The corresponding cluster in case of the Euclidean distance is also
less coherent but it consists of 89 users and this is represented by the larger
rectangular of Figure 6(d). In terms of Manhattan distance (Figure 6(f)), the rectangles
of the diagonal are less dark compared to those of Figure 6(b) and (d) indicating that
clusters are more affected by noise. What is more, the last clusters containing 42, 23,
and 9 users, respectively, seem to be the most affected. The diagonal of Figure 6(h) also
denotes the deterioration that noise causes to the clustering results since three clusters
with 11, 19, and 70 users, respectively, are vaguely depicted. The visualization of the
obtained clusters is in accordance with the ascertainments based on DB index
(Table IX).

In conclusion, all evaluation methods, i.e. criterion function, DB index and clusters’
visualization prove that KL-divergence can be considered as a good alternative for
measuring distances in noisy environments such as the web.

Conclusions and future work
In this paper, we compare the results of a divergence-oriented clustering approach with
those of other clustering that use typical distance measures. The experimentation



carried out involved both synthetic and real datasets. In the synthetic datasets’
experimentation, clustering evaluation was carried out by using the values of the
criterion functions Jxg, and J(U). The results of our evaluation showed that
KL-divergence along with the other four distances successfully reveal the underlying
structure of synthetic data, thus KL-divergence can be successfully used as an
alternative option for measuring distances in web users clustering. In the real datasets’
experimentation, we used two datasets and the evaluation of the clustering results was
performed using the above criterion functions, DB as an internal validity index and a
graphical representation of the obtained clusters. In this case, we also experimented by
imposing noise on real data in order to estimate the tolerance of our proposed distance
in comparison with the other distance measures. The results indicated that a clustering
approach using KL-divergence exhibits significant tolerance to the addition of noise
compared to the other typical distance measures and this is very important especially
in case of the web, which is a noisy by nature environment.

Our next step is to use the idea of KL-divergence in conjunction with other
partitional (e.g. K-medoids) and hierarchical (e.g. single linkage algorithms) algorithms
as well as to employ other validity indices for cluster validation.

Notes
1. For three distinct data points x, v, z the triangle inequality is satisfied if it holds that d(u,,
uy) = dluy, 1) + dlu, uy).
2. AUTH Department of Informatics, available at: www.csd.auth.gr/
3. NASA server log file, available at: http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
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