
12
A Clustering-Driven LDAP Framework

VASSILIKI KOUTSONIKOLA and ATHENA VAKALI, Aristotle University

LDAP directories have proliferated as the appropriate storage framework for various and heterogeneous
data sources, operating under a wide range of applications and services. Due to the increased amount and
heterogeneity of the LDAP data, there is a requirement for appropriate data organization schemes. The
LPAIR & LMERGE (LP-LM) algorithm, presented in this article, is a hierarchical agglomerative structure-
based clustering algorithm which can be used for the LDAP directory information tree definition. A thorough
study of the algorithm’s performance is provided, which designates its efficiency. Moreover, the Relative
Link as an alternative merging criterion is proposed, since as indicated by the experimentation, it can
result in more balanced clusters. Finally, the LP and LM Query Engine is presented, which considering the
clustering-based LDAP data organization, results in the enhancement of the LDAP server’s performance.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Clustering; information filtering; query formulation; H.2.1 [Database Management]: Logical
Design—Schema and subschema

General Terms: Algorithms, Performance

Additional Key Words and Phrases: LDAP services, DIT organization, clustering, merging criteria, query
and retrieval engine

ACM Reference Format:
Koutsonikola, V. and Vakali, A. 2011. A clustering-driven LDAP framework. ACM Trans. Web 5, 3, Arti-
cle 12 (July 2011), 34 pages.
DOI = 10.1145/1993053.1993054 http://doi.acm.org/10.1145/1993053.1993054

1. INTRODUCTION

The explosive growth of Web has increased the need for more robust and scalable dis-
tributed networks that are characterized by high performance, high capacity, secure,
and reliable services which can be rapidly scaled and managed. The Lightweight Di-
rectory Access Protocol (LDAP) [Whal et al. 1997] is an important technology which
enables data sharing under an extendable framework for the centralized storage and
management of information that needs to be available for today’s distributed systems
and services. As the name suggests, LDAP is the lightweight version of the Directory
Access Protocol and a direct descendent of the heavyweight X.500 [Chadwick 1994],
the most common directory management protocol. It is an open industry standard
that is gaining wide acceptance due to its flexibility in supporting the storage of het-
erogeneous data, providing at the same time optimized response times in read opera-
tions [Koutsonikola and Vakali 2004].

The original idea for this work was presented by the authors in their work “A structure-based clustering on
LDAP directory information” at ISMIS’08.
Authors’ address: V. Koutsonikola (corresponding author) and A. Vakali, Department of Informatics, Aristo-
tle University, 54124 Thessaloniki, Greece; email: vkoutson@csd.auth.gr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1559-1131/2011/07-ART12 $10.00

DOI 10.1145/1993053.1993054 http://doi.acm.org/10.1145/1993053.1993054

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:2 V. Koutsonikola and A. Vakali

LDAP directories have been used to store a wide variety of information for enabling
integration among applications and services on the network. In a typical framework,
LDAP servers have been used to act as address books, providing information that
describes user profiles and can be used by other applications such as mail services,
authentication systems, etc. [Carter 2003; Hou et al. 2006]. Moreover, the usage of
directory services was extended by the Directory-Enabled Networking initiative, a de-
sign philosophy whose goal is to enable applications to use directories in order to store
complex objects describing the network components (such as printers and routers) and
network security policies [Howes and Smith 1997; Maass 1997]. LDAP has also be-
come the predominant protocol in support of PKIs accessing directory services for cer-
tificates and Certificate Revocation Lists (CRLs) [Chadwick 2003; Park et al. 2001],
as well as of the new H.350 standard which uses LDAP to provide a uniform way to
store information related to video and voice over IP (VoIP) in directories [Gemmill et
al. 2003]. In addition, Grid computing has emerged as a very promising infrastructure
for distributed computing, having its foundation and core on the distributed LDAP
directories [Fan et al. 2005; Wu et al. 2006].

There is also a trend recorded lately towards proposing methods that integrate
LDAP technology and semantic Web. These research activities involve the generation
of RDF models from a directory information tree or an LDAP search query by mapping
LDAP schema information into OWL ontologies and LDAP objects into RDF instance
triples [Dietzold 2005]. Moreover, methods that combine LDAP and SPARQL are used
to access RDF knowledge bases [Dietzold and Auer 2007a, 2007b], while an ontology-
based method has been proposed for the creation of a yellow page directory service for
end-users [Laukkannen et al. 2004]. The common characteristics that XML and LDAP
share have motivated many research attempts to integrate these two technologies. To
this context Directory Services Markup Language1 (DSML) is an evolving specification
that has been proposed to bridge the gap between directory services and XML-enabled
applications, by representing directory information in XML. It is actually an XML ver-
sion of the LDAP protocol that satisfies the need of interoperability between different
LDAP directories vendors’ which can be achieved with the XML adoption as the stan-
dard for their data exchange. An overview of existing work and tools in this field is
presented in Koutsonikola and Vakali [2008]. Furthermore, a new direction towards
designing Web services for the LDAP framework as well as using LDAP directories as
Web services repository appears [Rodriquez 2007] which will ensure more flexibility in
the LDAP communication interoperability.

LDAP’s integration with various applications proves that LDAP can be used to store
information from various heterogeneous data sources. Data is stored in LDAP di-
rectories in the form of LDAP entries which are organized in a hierarchical tree-like
structure called the Directory Information Tree or DIT. The structure of DITs may dif-
ferentiate in terms of the depth of hierarchy they present. For example, if we had to
organize the books of a library in a directory service, then we could choose one of the
following organization schemes: (i) book entries are organized in a flat tree as depicted
in Figure 1, (ii) book entries are stored in a more hierarchical structure according to
a basic categorization as presented in Figure 2, (iii) book entries form a three-level
hierarchical tree structure on the basis of a further books categorization, as depicted
in Figure 3. In the three former figures that depict in an abstract view three possible
DIT organization schemes, the leafs of the DIT correspond to the actual book entries,
while the tree structure depicts their organization which is characterized by different
levels of hierarchy.

1DSML: http://xml.coverpages.org/dsml.html.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:3

Fig. 1. Flat organization of book entries.

Fig. 2. Two-level hierarchical organization of book entries.

Finding an appropriate organization scheme has always been a challenge for sys-
tems’ administrators, in their effort to provide better performance and quality of ser-
vices. We may identify various application scenarios in which organizing LDAP data
properly may be beneficial for their performance.

— Academic environment. LDAP directories usually serve as address books which
store information describing academic staff and students. This information can,
moreover, be used by authentication systems, PKI applications, roaming, and pro-
filing services. An appropriate organization scheme of an academic environment’s
LDAP data could be based on the university, department, or title properties that
describe a specific member’s entry.

— Enterprises environment. In an enterprise framework, LDAP directories can be
used to store information about both employees and products. Various applications
such as e-commerce applications, authentication systems, Web, and mail services or
search interfaces can, then, access the stored data. LDAP entries can be organized
in terms of their properties which may refer to the title or company’s department
for the employees, or their type and special features with respect to products. This
information may further be used in enterprises’ services offered to their clients or
other organizations under various application frameworks such as B2B marketing.

— Sharing applications. LDAP directories are used to store the data items that a spe-
cific application framework shares. These items may refer to images, audio or video
files, movies, or books’ entries, etc. The organization in the LDAP directories, em-
ployed by a sharing application, may consider the data nature (e.g., book or movie)
and data content (social movies or thrillers).

— Network devices operating framework. Network components such as routers, hosts,
and printers access directory servers to download information about their config-
uration settings and policies. The stored information, in this case, is organized
according to the devices they describe or the networks that they belong to.

The variety of information employed by the preceding applications constitutes a sig-
nificant challenge in defining appropriate data organization schemes. The purpose of

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:4 V. Koutsonikola and A. Vakali

Fig. 3. Three-level hierarchical organization of book entries.

such tasks is to ensure efficient retrieval mechanisms in terms of both results accu-
racy and response times. Thus, we are looking for an automated LDAP data organi-
zation framework that will operate efficiently regardless of the underlying application
and will facilitate the design of a query mechanism resulting in improved response
times. Clustering analysis is by default a data organization method that is targeted to
identify similarities between data items and propose their grouping according to the
recorded relations [Vakali et al. 2004; Zeng et al. 2002]. Therefore, here, we address
the problem of using clustering analysis to automatically define the LDAP Directory
Information Tree when applied to large size datasets. The proposed LDAP data organi-
zation can result in the enhancement of LDAP server’s performance and the improved
quality of services.

1.1 Related Work

Existing research efforts usually employ application-oriented LDAP schema defini-
tions in order to result in efficient storage frameworks as well as enhanced retrieval
mechanisms. In these cases, the overall data organization follows the LDAP schema
definition which is customized to meet a certain application’s needs. Furthermore,
query models adjusted to the LDAP schema arrangement are proposed to ensure effi-
cient information retrieval. Such approaches have been proposed in different applica-
tion frameworks such as PKI [Lim et al. 2005] and Grid computing [Hu and Du 2006],
which extend the LDAP schema and query models with new definitions to support the
applications’ special features. These approaches facilitate mainly retrieval efficiency
in terms of its accuracy and not the response time effectiveness.

On the other hand, various pure caching and indexing approaches have been pro-
posed which can improve performance and scalability of directory-based services. The
tuning of these two parameters may significantly improve the performance of a system
that implements directory services, in terms of its latency and throughput. However,
if not appropriately defined, it may result in performance deterioration, since, for ex-
ample, the definition of many indices can make insertion and modification operations
slower, while advanced caching policies are needed in case of dynamic environments. A
summarization of approaches that attempt to enhance the quality of services provided
by directory server is given in Table I.

Therefore, there are two main factors which contribute to the efficiency of an LDAP-
based framework. The first one refers to the LDAP data organization which must
be adjusted and meet a specific application’s needs, while the second one is related
to the overall system’s performance. A framework that will propose an automatic,

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:5

Table I. Approaches Enhancing LDAP Applications’ Performance

Application framework Query model Caching Indexing Methodologies
Public Key Infrastructure
[Lim et al. 2005], Grid
Computing [Hu and Du
2006]

�
LDAP schema and query
model extension, addition of
new syntaxes and matching
rules

Network Service Level
Specifications [Wang et al.
2008]

� �
Configuration settings adjust-
ment, indexing and caching
schemes

Directory Enabled Appli-
cations [Kapitskaia et al.
2000], [Kumar and Gupta
2003], [Amer-Yahia and
Srivastava 2004]

� �

Cache design based on query
templates

XML Enabled Applications
[Maron and Lausen 2001] �

Cache design, algorithm for
internal data representation
and query model

well-distributed, and scalable organization of LDAP servers, regardless of the un-
derlying application, enhancing at the same time the system’s performance is thus
necessary.

1.2 Motivation and Contribution

Meeting the challenges for the development of an efficient LDAP organization and
query framework would result in improved performance of a number of applications
such as the ones discussed in Section 1. Our purpose is to employ appropriate data
organization methods that will automatically define the DIT structure and render im-
proved directory services performance, independently of the underlying application or
the specific configuration settings. To this context, clustering can be used for the iden-
tification of related LDAP entries that can guide the data organization in subtrees.
Clustering analysis is a well-known approach that is particularly appropriate for the
exploration of interrelationships among the data points [Crabtree et al. 2005, 2006;
Wang and Kitsuregawa 2001]. According to the authors’ knowledge, LDAP and data
clustering technologies have been barely combined. A clustering approach of LDAP
metadata has been proposed to facilitate discovering of related directory objectclasses
to better enable their reconciliation and reuse [Liang et al. 2006]. However, the devel-
opment of a framework that will propose a well-distributed and scalable organization
of an LDAP server’s data, resulting in different levels of hierarchy, is necessary and
can lead to improved directory services.

In this article we propose the use of clustering as a tool to indicate the LDAP data
organization. Specifically, the LDAP entries’ clusters will constitute the subtrees of
the DIT structure, as depicted in Figure 4.

Moreover, the clustering-based LDAP data organization constitutes the basis on
which a query engine, the LP-LM Query Engine presented in this article, operates and
results in enhanced LDAP server’s performance. This is accomplished by directing
LDAP queries, based on the keywords they contain, to specific DIT subtrees which cor-
respond to clusters extracted by the LP-LM clustering algorithm. The idea behind the
proposed query engine is to take advantage of the organization indicated by clustering
and accurately define a reduced search space for each LDAP query. The defined search
space will include those DIT subtrees that are likely to contain entries related to the
keywords of a specific LDAP query. A graphical representation of the overall idea is
presented in Figure 5.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:6 V. Koutsonikola and A. Vakali

Fig. 4. LDAP entries’ clusters correspond to DIT subtrees.

Fig. 5. Clustering-based LDAP Query Framework.

More specifically, in this article we perform a thorough study of the results obtained
when the LPAIR and LMERGE (LP-LM) agglomerative structure-based clustering al-
gorithm, introduced by the authors in Koutsonikola et al. [2008], is applied. Our main
contributions can be summarized as follows.

— We describe the notions of LD-trees and LD-vectors and we provide the problem
formulation in order to adequately describe the LDAP data structure that will be
used in the clustering process.

— We examine the algorithm’s behavior when combined with various distance mea-
sures in order to determine how their usage affects the algorithm, in terms of the
degree of distinctiveness they offer.

— We propose a query framework implemented by the presented LP and LM Query
Engine, which, considering the data organization proposed by the LP-LM algorithm,
leads to an enhanced LDAP server’s performance.

— We propose the Relative Link as an alternative merging criterion which identifies
the clusters to be merged at each step and which, as indicated by the experimental
results, leads to more balanced clusters.

The rest of the article is organized as follows: Section 2 discusses some basic concepts
of LDAP data representation and the introduced LD-tree and LD-vector structures.
Section 3 describes our problem formulation and the proposed LDAP clustering al-
gorithm. Moreover the discussion about two employed merging criteria is provided.
In Section 4 the organization of DIT according to the clustering results is described
as well as the proposed query engine. Section 5 presents the experimentation while
conclusions and future work insights are given in Section 6.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:7

Fig. 6. LDAP DIT.

Fig. 7. LDAP entries’ LDIF.

2. LDAP DATA REPRESENTATION

2.1 Basic LDAP Concepts

LDAP directories are databases arranged in a hierarchical tree-like structure called
the Directory Information Tree (DIT). Entries are arranged within the DIT based on
their Distinguished Name (DN) which unambiguously identifies a single entry, while
the overall DIT originates from a root (RootDN). Given that in the basic LDAP nota-
tion, “dc” stands for domain component and “ou” for organizational unit, the RootDN
of the DIT that describes the students and workstations data of the Computer Science
Department of AUTH2 would be “dc=csd, dc=auth, dc=gr” while the DNs of the nodes
referring to the students and workstations would be “ou=students, dc=csd, dc=auth,
dc=gr” and “ou=workstations, dc=csd, dc=auth, dc=gr”, respectively. Figure 6 depicts
the DIT of the described entities.

The basic LDAP storage unit is the directory entry, which is where information
about a particular object resides. All information within a directory entry is stored as
attribute-value pairs while the set of attributes that appear in a given entry is deter-
mined by the objectclasses that are used to describe it. For example, in the definition of
the user-defined “student” objectclass, the attribute “studentid” and “surname” could
be considered as mandatory while the “email” attribute could be defined as optional.
Moreover, the user-defined “networkstation” objectclass, used to describe the work-
stations that belong to the computer science department, may consider as mandatory
the “ipaddress”, and “macaddress” attributes and “domainname” as optional, while
the objectclass “pc” defines the “processor” and “serialnumber” attributes as required.
Figures 7(a) and 7(b) present the LDIF3 of a sample student and workstation entry,
respectively.

2Aristotle University of Thessaloniki: http://www.auth.gr.
3LDIF (LDAP Data Interchange Format) is a standard for representing LDAP entries in human-readable
format.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:8 V. Koutsonikola and A. Vakali

Fig. 8. LDAP entries represented by tree structures.

The set of rules that define the objectclasses and the attributes they contain con-
stitutes the LDAP schema. To preserve interoperability between different vendors’
LDAP servers, a well-defined standard schema exists which is expected to be included
in all LDAP servers. However, the LDAP schema is extensible, allowing users to define
their own objectclasses and attributes to meet their applications’ needs. LDAP schema
also supports inheritance, meaning that one objectclass may inherit attributes from
another. The relations between objectclasses and attributes, which describe an LDAP
entry and are defined by the LDAP schema, can be sufficiently captured using a tree
structure. Figure 8 depicts the trees that describe the student and workstation LDAP
entries presented in Figure 7.

2.2 LDAP Data Representation

We consider a particular framework where we have as source a set E = {e1, . . . , e f }
of f LDAP entries. Each of these entries is described using specific objectclasses and
attributes. Let O = {o1, . . . , om} denote the set of m objectclasses and A = {a1, . . . , an}
the set on n attributes used to describe E. Relations exist between specific objectclasses
and attributes but also between objectclasses, as described in Section 2.1, due to the
inheritance that the LDAP schema supports. As also described in Section 2.1, the
internal structure of an LDAP entry can be described using a tree structure which
captures the relations between objectclasses and attributes.

Definition 2.1 (LD-Tree of an Entry). Given an LDAP entry ex ∈ E, the LD-tree of
ex is a tree structure LDT(ex) = (N; D) where N = {O ∪ A} the set of nodes and
D = {(dx, dy) : dx ∈ O, dy ∈ {O ∪ A}, dx �= dy} the set of edges, if and only if ∀(dx, dy) pair,
dy is an objectclass that inherits objectclass dx, or dy is an attribute describing dx in ex.

The definition of an entry’s LD-tree is extended to a set of entries as follows.

Definition 2.2 (LD-Tree of an Entries’ Set). Given a set E∗ � E of f ∗ LDAP entries
where f ∗ ≤ f , the LDT(E∗) is defined as LDT(E∗) = {∪LDT(ei)} ∀ei ∈ E∗.

Figures 9(a) and 9(b) present the LD-trees of two distinct LDAP entries e1 and e2,
respectively, where we can clearly see how some objectclasses are related (inherit) to
other objectclasses and attributes. Figure 9(c) depicts the LD-tree describing both
LDAP entries and containing the objectclasses and attributes of both entries.

In order to define data structures suitable for data processing, we proceed to the
definition of a vector structure called LD-vector, which was first introduced by the
authors in Koutsonikola et al. [2008] and sufficiently captures the structure of an LD-
tree, withtout any loss of information.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:9

Fig. 9. LDAP tree structures.

Fig. 10. LD-vectors of e1 and e2 entries.

Definition 2.3 (LD-Vector). Given the E∗ set of f ∗ LDAP entries and its LDT(E∗)
LD-tree, we use l to denote the number of (dx, dy) pairs where (dx, dy) ∈ LDT(E∗).
Then ∀ei ∈ E∗ we define the binary LD-vector LDV(ei, :) of ei as follows.

LDV(ei, r)
1≤i≤ f ∗,1≤r≤l

=

{
1 if the r-th (dx, dy) pair of LDT(E∗) ∈ LDT(ei)
0 otherwise

Example 1. Let us consider the e1 and e2 entries represented by the LD-trees of
Figures 9(a) and 9(b). In order to create their LD-vectors, we use the set of edges
D = {(o1, o2), (o2, o3), (o3, a8), (o3, a9), (o1, a4), (o4, a5), (o1, o9), (o9, a10)} of the LDT(E∗)
(Figure 9(c)). The presence of a node in the LD-vector of an entry is denoted by 1 and
the absence by 0. Figure 10 presents the LD-vectors LDV(e1, :) and LDV(e2, :) of entries
e1 and e2, respectively.

The preceding definition of the LD-vector concept provides a description of the LDAP
entries structure which will be used by the clustering algorithm in order to iden-
tify similarities between LDAP data. This vector is suitable for clustering due to its
simplicity and data representation adequacy which will not burden the algorithm’s
performance.

3. PAIRWISE CLUSTERING

The organization of data entries under the LDAP hierarchy is usually performed intu-
itively, based on the entities these entries describe (e.g., people, products). However, a
framework that could indicate the data organization, with no a priori knowledge of the
underlying application, and could, moreover, proceed to further data fragmentation in
subtrees, would be more flexible. Our proposed framework employs clustering, which
is a well-studied problem that aims to partition data objects into groups such that
objects in the same group are more similar, while objects in different groups present
more dissimilarities. In a clustering algorithm, the adopted similarity (dissimilarity)
measure is closely associated to the data nature (e.g., numerical, categorical). Accord-
ing to Guha et al. [1999], in case of categorical data clustering approaches (as the one

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:10 V. Koutsonikola and A. Vakali

discussed in this article), a link-based approach adopts a global perspective of the clus-
tering problem, compared to the local one that is obtained when considering only the
characteristics of the data themselves. This is due to the fact that a linked-based ap-
proach suggests that it would be beneficial to group points which share a large number
of common neighbors, as expressed by the link values. Moreover, link-based clustering
has proven quite beneficial in case of clustering XML documents [Lian et al. 2004].

3.1 Problem Formulation

In a link-based clustering approach applied on LDAP data, the relation between two
LDAP entries is measured in terms of their common neighbors, as expressed by the
link value. Specifically, two entries are considered to be neighbors if their distance D,
which expresses their resemblance in terms of the number of attributes they share, is
less than a user-defined threshold θ . The set LN(ei) contains the LDAP entries that
are neighbors to ei ∈ E and is defined as follows.

LN(ei) = {e j : D(ei, e j) ≤ θ}∀ei, e j ∈ E (1)

As mentioned before, the link between two entries ei and e j expresses the number of
their common neighbors and is given by

link(ei, e j) =| LN(ei) ∩ LN(e j) | ∀ei, e j ∈ E. (2)

Let Ci denote the i−th of the k clusters obtained by the clustering algorithm and ci
its size. Then, given that the user-defined threshold θ identifies neighbors, for θ = 0
an ei entry belonging to Ci cluster is expected to have only itself as a neighbor since
there is no other entry e j such that D(ei, e j) = 0. On the other hand, for θ = 1, all ci
entries are expected to be neighbors of ei since D(ei, e j) ≤ 1 ∀ei, e j ∈ E. For 0 < θ < 1 it
is expected that higher values of θ will result in more neighbors of ei.

Inspired by the ideas of market basket analysis Guha et al. [1999] defined the quan-

tity c
1−θ
1+θ

i to provide the expected number of neighbors of an entry belonging to a cluster
of size ci. In case of Guha et al. [1999], similarities between entries are evaluated
and θ expresses the threshold of similarity above which two entries are considered to
be neighbors. However, in our approach, θ expresses the dissimilarity threshold for
neighbors and thus the expected number of neighbors can be calculated by the expres-

sion c
1− 1−θ

1+θ

i = c
2θ

1+θ

i . Furthermore, this quantity coincides with our expectations on the
number of neighbors for the different values of θ , which was earlier discussed. Besides,
as denoted in Guha et al. [1999], any possible errors in the estimation of the aforesaid
quantity affects all the clusters similarly due to the objective function normalization.

LEMMA 3.1. Given a cluster Ci of ci size and the c
2θ

1+θ

i expected number of neighbors

for each ei ∈ Ci entry, the ei contributes to an expected link value equal to c
4θ

1+θ

i .

PROOF. To compute the link value caused by the entry ei ∈ Ci, we need to compute
the number of (ex, ey) (ei �= ex, ey) pairs that have ei as neighbor [Guha et al. 1999]. For
this computation, we pose the following assumptions: (i) it holds that both the (ex, ey)
as well as the (ey, ex) have ei as neighbor and (ii) each ex ∈ Ci forms the (ex, ex) pair
and has ei as its neighbor. Thus, the total number of expected links EL(ei) caused by
ei entry is equal to

EL(ei) = 2 ·
(

c
2θ

1+θ

i

2

)
+ c

2θ
1+θ

i = 2 · (c
2θ

1+θ

i)!

2! · (c
2θ

1+θ

i − 2)!
+ c

2θ
1+θ

i = c
4θ

1+θ

i .

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:11

Then, the total number of expected links in Ci cluster caused by all ci in number

entries, will be ci ∗ EL(ei) = ci ∗ c
4θ

1+θ

i which results in c
1+ 4θ

1+θ

i .
The goal of a link-based clustering approach is to maximize the sum of common

neighbors (link) between each pair of entries belonging to a single cluster. However,
aiming at the maximization of the

∑
ex,ey∈Ci

link(ex, ey) could result in the assignment of
all entries to a single cluster. It is therefore important to define an objective function
that will create clusters where the sum of links between members of the same cluster
will be maximized and the sum of links between members of different clusters will
be minimized. Moreover, the objective function defined must favor balanced clusters.
Inspired by Guha et al. [1999], we define a criterion function Jwhere the total number
of links between the entries belonging to a cluster Ci is divided by the expected link
value for this cluster, weighted by the size of cluster ci. Dividing by the expected
number of links in J(E) prevents points with very few links between them from being
put in the same cluster, since assigning them to the same cluster would cause the
expected number of links for the cluster to increase more than the actual number of
links and the result would be a smaller value for the criterion function. Thus, the
objective function J(E) is defined as

J(E) =
k∑

i=1

ci ∗
∑

ex,ey∈Ci

link(ex, ey)

c
1+ 4θ

1+θ

i

. (3)

Our goal is to maximize the link value of entries contained in a cluster. The LDAP
clustering problem can now be defined as follows.

Problem 1 (LDAP Clustering). Given a set E of f LDAP entries, a user-defined in-
teger value k, and the criterion function J(E), find a CL clustering of E into k clusters
such that the J(E) is maximized.

The value of k which defines the number of clusters is set by users according to the
degree they want entries to be distinguished in terms of their structure. Thus, users
may decide upon k’s value considering dataset’s heterogeneity and desirable depth of
DIT hierarchy.

3.2 Capturing Similarity Between LDAP Entries

The selection of the similarity or distance measure is important for every cluster-
ing process. In our framework, the representation of LDAP entries as binary vec-
tors makes dissimilarity coefficients an appropriate choice for measuring distance be-
tween them. Given two binary vectors LDV(ex, :) and LDV(ey, :) of length l where
ex, ey ∈ E, x �= y, there are three fundamental quantities [Hohn 2005] that can be used
to define the similarity between them.

— a = |t| : {LDV(ex, t) = V(ey, t) = 1}
— b = |t| : {LDV(ex, t) = 1 ∧ V(ey, t) = 0}
— c = |t| : {LDV(ex, t) = 0 ∧ V(ey, t) = 1},
where 1 ≤ t ≤ l.

The a, b , and c values are used to designate the common and different elements of
two binary vectors. Given their values, Table II describes five popular dissimilarity
coefficients that are employed in case of binary vectors [Li 2005].

All of the previous coefficients range between 0 and 1. Higher values of the coeffi-
cients indicate higher dissimilarity between the involved entries. The definition of the
five coefficients shows that their difference lies mainly on the way they consider the

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:12 V. Koutsonikola and A. Vakali

Table II. Dissimilarity Coefficients for Binary Data

Dissimilarity Coefficient Formula
Jaccard coefficient b+c

a+b+c

Czekanowski or Dice coefficient b+c
2a+b+c

Rogers and Tanimoto coefficient b+c
1
2 ·a+b+c

Simpson 1 − a
min(a+b ,a+c) = 1 − a

min(|ex|,|ey|)
Braun 1 − a

max(a+b ,a+c) = 1 − a
max(|ex|,|ey|)

common and different attributes of two entries. More specifically, the definition of Jac-
card, Dice, and Rogers coefficients differentiate on the gravity they give on the common
elements of two LD-vectors, while according to their definitions, Simpson and Braun
coefficients additionally take into account the size of the involved LD-vectors. These
two coefficients favor LD-vectors with a smaller number of edges since they result in
lower values of dissimilarity.

The suitability of the preceding dissimilarity coefficients is mainly determined by
the underlying application and the involved data. The Braun and Simpson coefficients
take into account more information about the compared entries, since they consider
not only their common elements but also the total number of elements that their sim-
ilarity is recorded (i.e., the entries’ size). Incorporating the knowledge of the entries’
sizes is more meaningful in case that a high number of LD-vectors is used to describe
the LDAP entries. In that case, it is crucial to consider more information, since only
the common and different elements may result in a less efficient distinction and unbal-
anced clusters. The higher the number of objectclasses and attributes used to describe
LDAP entries, the more possible to result in more LD-vectors. Thus, in case of more
heterogeneous datasets, the Braun and Simpson coefficients are recommended. With
respect to the application scenarios described in Section 1, the Braun and Simpson
dissimilarity coefficients would be more appropriate for the organization of sharing
applications and network operation frameworks LDAP data, since in these cases, the
diversity between entries is expected to be higher.

On the other hand, in case of datasets such as those describing users entries in
an academic or enterprise environment, the used attributes are more standard and
usually result in a lower number of LD-vectors. In these cases, considering the common
and different elements between entries would sufficiently capture their dissimilarities.
Therefore, for datasets characterized by higher homogeneity, the Jaccard, Dice, and
Rogers coefficient can effectively be used.

The aforesaid coefficients have been employed to capture distances in various
clustering approaches [Haranczyk and Holliday 2008; Murguia and Villasenor 2003;
Ponaramenko et al. 2002].

Example 2. Let us consider the set E∗ = {e1, e2, e3} of l = 3 LDAP entries and its
corresponding LD-tree LDT(E∗) which contains the D = { (student, name), (student,
surname), (student, email), (student, address) } set of edges. Moreover, let the LD-
vectors of the former three LDAP entries be defined as LDV(e1) = [1, 1, 0, 0], LDV(e2) =
[1, 1, 1, 0] and LDV(e3) = [0, 1, 1, 1].

Table III presents the values of a, b, and c and the calculated distances for all pairs
of entries, in terms of each of the defined dissimilarity coefficients. As it is clearly
depicted in the Table III, in cases that the common edges are many (a is higher), as
it happens for (e1, e2) and (e2, e3) where a = 2, the calculated dissimilarities are lower
compared to those found for a smaller number of common edges (lower values of a) as
in case of (e1, e3) where a = 1. Moreover, in the cases that the same number of common
edges appears, the calculated dissimilarities are higher when the number of different

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:13

Table III. Dissimilarities between LDAP Entries

Jaccard Dice Rogers Simpson Braun
e1, e2 (a = 2, b = 0, c = 1) 0.33 0.25 0.5 0 0.33
e1, e3 (a = 1, b = 1, c = 2) 0.75 0.6 0.85 0.5 0.66
e2, e3 (a = 2, b = 1, c = 1) 0.5 0.33 0.66 0.33 0.33

Fig. 11. The LP-LM clustering process.

edges between two entries is higher, and this happens for the (e2, e3) pair where the
number of different edges is 2. For the (e1, e2) pair the respective number is 1.

3.3 The LPAIR and LMERGE (LP-LM) Clustering Algorithm

The proposed LPAIR and LMERGE (LP-LM) algorithm is a hierarchical structure-
based algorithm which aims to find a solution to Problem 1. It is a two-step process
which results in k clusters of LDAP entries characterized by high similarity. The sim-
ilarity between LDAP entries is expressed by the their link value.

3.3.1 Clustering Phases. The two steps of the LP-LM algorithm are depicted in
Figure 11.

At the beginning, the preprocessing takes place, where given a set of LDAP entries
as described by their corresponding LD-trees, the set of LD-vectors is defined. Next,
using one of the dissimilarity coefficients discussed in Section 3.2, dissimilarities be-
tween LD-vectors are calculated. Based on the dissimilarities, the set of neighbors
LN(ei) of each ei entry is found (Eq. (1)) and then, the link value between each pair
(ei, e j) of LDAP entries is computed (Eq. (2)).

The link values “carry” the information about the similarity between entries and are
used by the second algorithm’s step, which constitutes the main clustering process.
In this step, an iterative process takes place which terminates when k clusters are
obtained. The proposed clustering algorithm is agglomerative in nature, and thus, at
each step of the execution, the algorithm decides, based on a merging criterion, which
is the best (Cx, Cy) pair of clusters to merge so as the values of the objective function
J(E) (Eq. (3)) will be maximized. In the definition of the merging criterion, the link

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:14 V. Koutsonikola and A. Vakali

value between pairs of clusters is considered, as will be later discussed. The merging
of the Cx and Cy clusters results in the C∗ cluster. The link values with respect to the
new C∗ are computed, while the link values that referred to the Cx and Cy clusters are
updated in terms of the C∗ cluster. The whole process is repeated until only k clusters
are remaining.

The LP-LM algorithm actually applies the ideas of ROCK [Guha et al. 1999] al-
gorithm on a set of LDAP entries which are modeled as categorical data at the end
of the preprocessing step. The proposed algorithm is also of the same logic with the
S-GRACE [Lian et al. 2004] algorithm which applies ROCK on the s-graph represen-
tation of XML documents. Both LP-LM and S-GRACE algorithms adopt ROCK’s ideas
because ROCK handles the case that, even though some data points may not be close
enough in distance but they share a large number of common neighbors, it would be
beneficial to consider them belonging to the same cluster. However, appropriate ad-
justments are required in order to incorporate the LDAP and XML specifications and
result in suitable data structure representations. For example, an xml document may
be schema independent and thus result in arbitrary (graph) structure representation
which cannot occur in case of LDAP entries that always obey the LDAP schema. More-
over, XML has proliferated as the standard for data representation while LDAP stan-
dard and directory services in general provide a whole framework for data storage and
management.

3.3.2 The LP-LM Algorithm. The LP-LM algorithm takes as input a set E of f LDAP
entries, the number k of clusters to be created, and a decimal θ , 0 ≤ θ ≤ 1, which
defines the upper limit of distance between two LDAP entries that makes them neigh-
bors. The algorithm’s output is the assignment of LDAP entries to the k clusters.

At the beginning, the preprocessing takes place, where given the initial set E of
f LDAP entries and the value of θ , the computation of basic structures for the clus-
tering process follows. The algorithm initially constructs the entries’ LD-trees (line 2)
and then the respective LD-vectors (line 3). Using an appropriate dissimilarity coeffi-
cient, as those discussed in Section 3.2, the table D that records the distances between
LDAP entries is computed (line 4) and then, based on D and θ , the algorithm calcu-
lates each entry’s neighbors and stores them in table LN (line 5). The LN table is
used by the algorithm to find the number of common neighbors between each pair of
entries (link), and keeps them in the link table (line 6). Initially, each entry constitutes
a separate cluster. For each cluster Ci (initially equal to ei), the candidates for merg-
ing, that is, entries e j for which link(ei, e j) > 0, are organized in the CA(ei) list (lines
7–9). Then, for each (ei, e j) candidate for merging pair of LDAP entries, the values of
the merging criterion mc are calculated and stored in the triangle MCA table (lines
10–12).

After the preprocessing step, an iterative process follows which constitutes the main
clustering process. This new step lasts until k clusters will be obtained (line 14). At
each iteration of this step, the clusters Cx and Cy that constitute the best pair of clus-
ters for merging, is the one with the highest merging criterion value, recorded in the
MCA table (line 15). The merging of the former two clusters results in the new C∗
cluster (line 16). The link values between the rest of the candidates for merging C
clusters and the Cx and Cy are computed with respect to the new C∗ cluster (line 18).
The update of the CA table signifies the removal of the CA(Cx) and CA(Cy) lists and
the addition of the reference to the C∗ (line 19). Moreover, the update of the MCA table
refers to the calculation of the merging criterion values that involve the new C∗ cluster
(line 20). This process iterates until the number of clusters is equal to k which consists
the assignment of the f LDAP entries to k clusters.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:15

ALGORITHM 1 The LPAIR and LMERGE algorithm.
Input: A set E = {e1 . . . e f } of f LDAP entries, a threshold θ and the number of

clusters k.
Ouput: Criterion function J and assignment of the LDAP entries in the k clusters,

such that the criterion function value J is minimized.
1: /*Preprocessing*/
2: LDT(E) = CreateLDT(E)
3: LDV(E) = CreateLDV(LDT(E))
4: D = ComputeDistance(LDV(E))
5: LN = ComputeNeighbors(D, θ)
6: link = ComputeLink(LN)
7: for i := 1 to f do
8: CA(ei) = FindCandidates(ei, link)
9: end for

10: for all ei, e j ∈ CA(ei), ei �= e j do
11: MCA(ei, e j) = FindMCValue(ei, e j, mc)
12: end for
13: /*Clustering process*/
14: while NumClusters > k do
15: (Cx, Cy) = FindBestCandidates(MCA,mc)
16: C∗ = merge(Cx, Cy)
17: for all C ∈ CA(Cx) ∪ CA(Cy) do
18: link(C, C∗) = link(C, Cx) + link(C, Cy)
19: update(CA)
20: update(MCA)
21: end for
22: delete(CA(Cx)); delete(CA(Cy))
23: end while

3.4 Merging Criteria

In the proposed clustering framework, the merging criterion plays a major role, since
it determines the pair of clusters that will be merged at each step of the agglomerative
algorithm. The merging criterion must conform with the algorithm’s objective which
is the maximization of the objective function J(E) defined in Eq. (3). In this section,
two merging criteria are presented which are employed by the LP-LM algorithm. The
first criterion is the Expected Link which is based on an estimation of the cross-link
value between two candidates for merging clusters. The Relative Link, is proposed as
an alternative merging criterion which is based on quantities computed during the al-
gorithm’s execution and is expected to guide the clustering process with more accuracy.

3.4.1 The Expected Link. At each step of the execution, the algorithm must decide
upon the pair of clusters that will be merged so as the values of the objective function
J(E) (Eq. (3)) will be maximized. According to Eq. (3), the maximization of J(E) signi-
fies maximization of each cluster’s link value. Thus, in each iteration, the best pair of
(Ci,C j) clusters candidate for merging is the one with the highest link value between
them, defined as

link(Ci, C j) =
∑

ex∈Ci,ey∈C j

link(ex, ey).

Considering only the cross links between two clusters does not ensure that, in case
of unbalanced clusters, a large cluster will not “overwhelm” the whole process. Thus, it

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:16 V. Koutsonikola and A. Vakali

is necessary to define a merging criterion that will favor the creation of more balanced
clusters. Similarly to the definition of J(E), in order to prevent the continuous merging
of large size clusters, we divide the cross-links link(Ci, C j) between two candidates
for merging Ci and Cj clusters, with the expected cross-link value between them. To
compute the expected cross-link value between the two clusters we need to calculate
the total link value if we considered them as one (i.e., (ci+c j)1+ 4θ

1+θ) and subtract the link

value of Ci (i.e., c
1+ 4θ

1+θ

i) and C j (i.e., c
1+ 4θ

1+θ

j). Therefore, we can now define the Expected
Link merging criterion EL(Ci, C j) of clusters Ci and Cj as

EL(Ci, C j) =
link(Ci, C j)

(ci + c j)1+ 4θ
1+θ − c

1+ 4θ
1+θ

i − c
1+ 4θ

1+θ

j

. (4)

The pair of clusters that maximize EL will be merged at each step of the algorithm’s
iteration.

3.4.2 Relative Link - An Alternative Merging Criterion. The Expected Link EL merging cri-
terion defined in Eq. (4) (Section 3.3) is based on an estimation of the expected number
of cross links between two candidates for merging clusters. Here, we propose the usage
of a new merging criterion, the Relative Link (RL), which is based on quantities calcu-
lated during the algorithm’s execution. The definition of this criterion was inspired by
the relative closeness defined in CHAMELEON [Karypis et al. 1999], and expresses
the absolute link value of two clusters normalized with respect to the internal link of
the two clusters.

RL(Ci, C j) =
link(Ci, C j)

ci
ci+c j

∗ InternalLink(Ci) + c j

ci+c j
∗ InternalLink(C j)

(5)

For the calculation of InternalLink values, we initially consider that the internal
link for each ex entry is equal to the number of its neighbors, that is,

InternalLink(ex) = |LN(ex)|∀ex ∈ E.

As the algorithm proceeds, when two clusters Ci and Cj are merged, the internal
link of the new cluster C∗ is calculated as

InternalLink(C∗) = InternalLink(Ci) + InternalLink(C j) + Link(Ci, C j).

With the definition of the Relative Link merging criterion, the decision about the
clusters that will be merged at each step is based on values computed during the al-
gorithm’s execution, and not estimated ones. Moreover, this criterion favors smaller
clusters to be chosen for the merging.

4. CLUSTERING-BASED LDAP DATA ORGANIZATION

Defining appropriate LDAP data organization schemes constitutes a significant issue
for LDAP administrators. In this article we deal not only with the development of
an LDAP data clustering algorithm (as discussed in Section 3), we also employ the
proposed clustering algorithm as a mechanism that will indicate LDAP organization,
altering an initial flat DIT to a hierarchical one. Specifically, the application of the
LP-LM clustering algorithm results in the creation of k clusters which contain simi-
lar LDAP entries in terms of their structure. These clusters will be the basis of the
new LDAP data organization, that is, considering the clustering results we create one
subtree for each of the obtained clusters.

For example, let us consider the set of LDAP entries that was described in Sec-
tion 2.1, which contains the entries of the students and workstations of the computer

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:17

Fig. 12. Flat DIT ldap entries organization.

Fig. 13. Clustering-based DIT organization.

science department. The “dn” of the LDAP DIT will be “dc=csd, dc=auth, dc=gr” while
the “dn” of each entry describing either a student or a workstation in a flat DIT will be
“id=idnumber, dc=csd, dc=auth, dc=gr”. Moreover, the flat organization of the LDAP
entries in the DIT are depicted in Figure 12.

We assume that we apply the LP-LM clustering algorithm seeking for k clusters.
Then, the dn for each subtree which corresponds to one cluster will be of the form
“dc=clusterx, dc=csd, dc=auth, dc=gr”. Thus, the new LDAP organization is not re-
stricted by any semantic that may rule LDAP data. To become more clear, if we applied
LP-LM algorithm for k = 4 clusters, we could obtain 2 clusters containing students’ en-
tries and 2 clusters containing workstations’ entries, or 3 clusters with students’ and
1 with workstations’ entries, etc. Figure 13 depicts how the initial flat DIT becomes
hierarchical and the LDAP data are organized according to the clustering results.

The number of clusters k is a user-defined parameter which may be set according
to the users’ intuition derived from the problems setting or the distinctness they want
between the obtained clusters. The higher the number of requested clusters, the more
the clusters presenting greater heterogeneity will be split.

In this context, the LP-LM algorithm can be also applied to one of the obtained
subtrees (clusters) resulting in further grouping of its entries and thus in greater depth
of the DIT and more extensive separation of a specific subtree’s entries. For example, if
the algorithm was applied on the second subtree of the DIT for k = 3, then data would
be organized according to Figure 14. This second perspective is useful in cases that we
observe that clustering the whole set of entries results in some large size clusters. In
such cases, we can perform clustering to the subtrees corresponding to those clusters
in order to obtain a more balanced and hierarchical DIT.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:18 V. Koutsonikola and A. Vakali

Fig. 14. Applying clustering on a subtree.

4.1 Implementing a Clustering-Based Query Engine

Clustering LDAP data aims to propose an appropriate LDAP data organization that
can be beneficial for the overall LDAP server’s performance. In this section we present
a query engine that operates based on the LP-LM results. The purpose of the proposed
LP and LM Query Engine is to take advantage of the clustering-based data organi-
zation and direct the user queries to the cluster or clusters that the requested data
exists, reducing, thus, the search space. This is feasible through the underlying query
mechanism provided by the LDAP protocol, since in the LDAP query model, a search
request is composed by the following main parts.

— BaseDn determines the distinguished name of the node in directory information tree
hierarchy that the search will begin.

— Scope defines the level in depth that the search operation will take place.
— Filter specifies the criteria an entry must match to be returned from a search. The

search filter is a boolean combination of attribute value assertions. LDAP supports
exact and approximate matching.

— Attributes. A list of the attributes to be returned from each entry, which matches
the search filter.

Thus, if we manage to specifically define the subtree or subtrees that contain the an-
swer to a particular LDAP query, we can direct appropriately the query, as depicted in
Figure 5, and significantly reduce its response time.

The idea behind the query engine is the following: after the clustering process ter-
minates, the LDAP data is organized according to the clustering results. The proposed
LP and LM Query Engine operates on top of the LDAP query model and its purpose is
to limit the scope of the LDAP queries by excluding subtrees (i.e., clusters) that do not
contain entries related to the LDAP queries. Specifically, the operation of the LP and
LM Query Engine is based on the functionality of the following software components.

— The cluster-keywords extraction component accesses the LDAP database and ex-
tracts the keywords that characterize each of the k obtained clusters. These key-
words are the distinct objectclasses and attributes that exist in the entries of a

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:19

ALGORITHM 2 The CLUSTER-KEYWORDS EXTRACTION COMPONENT.
Input: the set of k clusters
Ouput: the sets of objectclasses’ O(Ci) and attributes’ A(Ci), i = 1 . . . k, keywords de-

scribing the clusters.
for i := 1 to k do

for all ldif(ex) : ex ∈ Ci do
A(Ci) = extractAttributes(ex);
O(Ci) = extractObjectclasses(ex);

end for
end for

ALGORITHM 3 The QUERY-KEYWORD EXTRACTION COMPONENT.
Input: an LDAP query
Ouput: the set of keywords (objectclasses and attributes) the LDAP query contains.

queryFilter = ExtractFilter(LDAPQuery);
queryKeywords = extractKeywords(queryFilter);

cluster. The operation of the cluster-keywords extraction component is described in
the form of pseudocode by Algorithm 2.

Example 3. If we assume that the cluster-keywords extraction component was ap-
plied on a cluster Cy with LDAP entries described by the LDIF of Figure 7(a) then
the set of attributes and objectclasses would be A(Cy) = {studentid, surname, email}
and O(Cy) = {student}, respectively.

— The query-keyword extraction component extracts the query’s keywords, that is, it
identifies the objectclasses and attributes contained in the query. The component’s
function is based on the identification and processing of the query’s filter and it is
described by Algorithm 3.

Example 4. An LDAP query looking for all students LDAP entries whose sur-
name begins with “V” is the following:
ldapsearch -b “dc=csd,dc=auth, dc=gr” -s sub“(&(objectclass=student)(surname=V*))”
The -b parameter declares the baseDN of the query (the root node in this case),
the -s parameter declares the scope of the query (sub indicates all levels including
the baseDN) and the last part of the query constitutes the query filter. The query-
keyword extraction component processes the query filter and extracts its keywords
(objectclasses and attributes), that is, student and surname.

— The mapping component performs a dual functionality: (i) it accepts as input the
sets of objectclasses’ and attributes’ keywords describing the clusters that were ex-
tracted by the cluster-keywords extraction component and creates a single file (map-
ping file) recording the correlation between clusters and keywords and (ii) given the
query keywords of an LDAP query and the mapping file, it extracts the clusters
that contain answers to the LDAP query and redefines it in order to limit its scope.
The mapping component’s function is described by Algorithm 4 while the clusters’
extraction process is described by Algorithm 5.

Example 5. If we assume that the clustering algorithm has resulted in two clus-
ters, one containing students’ entries and the other one containing workstations’

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:20 V. Koutsonikola and A. Vakali

ALGORITHM 4 The MAPPING COMPONENT: Clusters and keywords correlations.
Input: the sets of objectclasses’ O(Ci) and attributes’ A(Ci), i = 1 . . . k, keywords de-

scribing the clusters.
Ouput: the mappingFile

for i = 1 to k do
keywords(Ci)=A(Ci) ∪ O(Ci)
print(”cluster%d: %s”, i, keywords(Ci)) >> mappingFile;

end for

ALGORITHM 5 The MAPPING COMPONENT: Redefining the LDAP query.
Input: the LDAP query keywords, the mapping file
Ouput: the redefined LDAP query

for all keyword ∈ queryKeywords do
Cquery = ExtractCluster(mappingFile, keyword);
for all c ∈ Cquery do

C∗
query = redefine(LDAPQuery, c);

end for
end for

entries, then the mapping file that would be created by the mapping component
would contain lines of the following form:
cluster1: student, studentid, surname, name, email, telephone
cluster2: workstation, networkstation, pc, ipaddress, macaddress, domainName,
processor, serialNumer
Next, considering that the LDAP query ldapsearch -b “dc=csd, dc=auth, dc=gr” -s
sub “(&(objectclass=student)(surname=V*))” is executed, the mapping component
identifies that the “student” and “surname” keywords exist in the cluster1 and thus
redefines the LDAP query by adjusting the baseDN as follows:
ldapsearch -b “dc=cluster1, dc=csd, dc=auth, dc=gr” -s sub “(&(objectclass=student)
(surname=V*))”
If the mapping component located the query’s keywords in more than one clusters,
for example, three clusters, then the LDAP query would be replaced by three LDAP
queries that refer to specific baseDNs. This way, a reduction of the initial query’s
search space would be achieved with no loss in terms of the requested data accuracy.

It should be noted that the functionality of the cluster-keywords extraction com-
ponent and mapping component with reference to the definition of relations between
clusters and keywords is applied only once the LP-LM clustering algorithm performs
the assignment of LDAP entries to clusters. On the other hand, the redefinition of an
LDAP query by the mapping component and the extraction of query keywords by the
query-keyword extraction component take place each time an LDAP query is executed.

The functionality of the proposed LP and LM Query Engine in a more abstract view
is the following: after the clustering process terminates, the LDAP data is organized
according to the clustering results. The cluster-keywords extraction component ac-
cesses the LDAP database and extracts the keywords that characterize each of the k
obtained clusters. These keywords are the distinct objectclasses and attributes that
exist in the entries of a cluster. The clusters’ keywords are then passed to the mapping
component, which records the correlation between clusters and keywords. When an
LDAP query is sent by an LDAP-enabled application, it is first processed by the query-
keyword extraction component that extracts the query’s keywords, that is, it identifies

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:21

Fig. 15. The LP and LM Query Engine.

the objectclasses and attributes contained in the query. The extracted keywords are
passed to the mapping component which, based on the recorded correlations, relates
the query with the clusters that contain at least one of the keywords. The LDAP query
is then directed by the LP and LM Query Engine, to the subtrees defined by the for-
mer clusters. Thus, the query’s search space does not contain all the LDAP entries
as it would in case of an unclustered (flat) DIT organization. The proposed LP and
LM Query Engine limits the LDAP query’s search space to the clusters that contain
entries related to the query. In the worst case, the query’s keywords will be located
in all clusters and then the query will have to start by the RootDN. In this case, the
response time would be equal to that of the unclustered scheme. In any other case,
the search space would be reduced and thus better response times are expected. The
overall architecture of the LP and LM Query Engine is depicted in Figure 15.

Example 6. Let us consider an LDAP framework which provides information about
a departments’s students and workstations. Then, applying the LP-LM clustering al-
gorithm for k = 2, the two underlying clusters (one cluster referring to the students
and the other to workstations) are extracted. The mapping component assigns the
keywords “student”, “surname”, “email”, and “studentid” to cluster clusterx (students’
cluster) and the keywords “ipaddress”, “macaddress”, “processor”, and “price” to cluster
clustery (workstations’ cluster), depicted in Figure 15. When a user or an application
performs an ldap query, the query keyword extraction component identifies the key-
words and locates the clusters in which these are contained. For instance, if the query
requests the ipaddresses of all workstations, then the extracted keywords are “ipad-
dress” and “workstation” which, according to the mapping component, are included in
clustery. Thus, the query is directed by the LP and LM Query Engine to the LDAP sub-
tree that refers to clustery, achieving a smaller search space and improved response
time, since in case of an unclustered scheme, the search should always start by the
RootDN and all entries should be searched.

5. EXPERIMENTATION

In this section we use the LP-LM algorithm to cluster a set of LDAP entries and or-
ganize the LDAP Directory Information Tree according to the obtained clusters. Both
the algorithm’s efficiency and the LDAP server’s performance, which operates under
the proposed LP and LM Query Engine’s framework, are evaluated. Specifically, we
perform a study on the clustering results obtained by employing the different distance
coefficients, discussed in Section 3.2, in conjunction with different values of θ , in order

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:22 V. Koutsonikola and A. Vakali

to see how they affect the algorithm’s performance. Moreover, we present some ex-
perimental results that indicate the algorithm’s performance when the Expected Link
EL and the Relative Link RL (Eq. (5)) are used as the merging criterion. Finally, an
experimentation section is provided, where the performance of the LDAP server that
adjusts its data organization to the clustering results is examined. The LDAP server
integrates with the proposed LP and LM Query Engine for the queries execution.

For the experiments we have used the OpenLDAP4 directory server with Berkeley
DB backend. The cache size was set to zero, in order to obtain unbiased results, and
the entries “ids” were indexed. The algorithm was executed on an x86 architecture
CPU running at 2.66 GHz clock frequency with 1GB RAM.

5.1 Data Workload

In our experimentation we have used two different datasets. The first dataset de-
scribes publications’ entries of the DBLP database5 while the second one contains en-
tries from a movies database6 which describes films, actors, and remakes. These two
datasets are characterized by a different degree of homogeneity, since the number of
objectclasses and attributes used to describe publications is more limited compared to
the one used in case of the movies, actors, and remakes. Moreover, the second dataset
is of larger size and is used in order to examine the algorithm’s scalability. In both
cases data were retrieved in XML format and were converted to LDAP entries. We will
refer to these two datasets as DBLP and movies dataset, respectively.

The DBLP dataset consists of about 10000 entries that correspond to 5 groups of
around 2000 entries for each of the following categories: articles, inproceedings, mas-
terthesis, phdthesis, and www. The LDAP schema has been configured in a way that
each entry is described by an objectclass (e.g., article) and a set of attributes (e.g.,
author, title, pages). According to the definition of objectclasses, there are some at-
tributes which are used in case of more than one objectclasses while there are others
that are defined only for a specific objectclass. For example, the attribute “author” can
be used to describe both an “article” and an “inprocceding” entry while the attribute
“month” is used only in case of articles. The main characteristic of this dataset is that
the involved entries share many common attributes. On the other hand, the movies
dataset contains about 20000 entries which correspond to a set of 7000 actor, 12000
film, and 1300 remake entries. These entries are described using more different ob-
jectclasses and attributes. For example, for the description of actors entries we use
the objectclasses “actor” and “award” with included attributes such as “stagename”,
“familyname”, “awardtype”, and “studio”. The movies dataset is thus characterized by
more heterogeneity compared to the DBLP dataset.

5.2 Clustering Results Using Different Dissimilarity Coefficients

In this first section of our experimentation we use the LP-LM algorithm with the dif-
ferent dissimilarity coefficients, discussed in Section 3.2, in order to evaluate how each
of them affects the clustering in terms of the distinctiveness it offers, while measuring
the dissimilarity between entries. This is achieved by varying the values of θ which
defines how “tight” we want the clustering to be. The higher the values of θ (near 1)
the easier it will be for the clustering to identify neighbors but this, however, could
lead the algorithm to mistakenly consider two dissimilar entries as neighbors. On the
other hand, lower values of θ (near 0) require that entries will be quite close (similar)
in order to be characterized as neighbors.

4OpenLDAP: http://www.openldap.org.
5DBLP data: http://www.sigmod.org/dblp/db/index.html.
6Movies database: http://infolab.stanford.edu/pub/movies/doc.html.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:23

Table IV. Datasets Details

Dataset Size Classes
Number of
LD-vectors LD-vectors distribution

DBLP

2000 articles 38 articles
2000 inproceedings 13 inproceedings

10000 2000 www 71 10 www
2000 masterthesis 7 masterthesis
2000 phdthesis 3 phdthesis

movies dataset
7000 actors 124 actors

20300 12000 movies 146 19 movies
1300 remakes 3 remakes

The LP-LM is a structure-based algorithm which considers the LDAP entries struc-
ture as this is depicted in the extracted LD-vectors. The fact that LP-LM is applied on
the set of derived LD-vectors and not the whole dataset reveals the way it addresses
scalability issues. Therefore, we will mostly focus on the way the LD-vectors are as-
signed to clusters and then extend our discussion to the involved entries. After the
preprocessing step, two sets of 71 and 146 distinct LD-vectors were created for the
DBLP and movies datasets, respectively. More specifically, 38 of the 71 LD-vectors of
the DBLP dataset corresponded to articles, 7 to masterthesis, 13 to inproceedings, 3
to phdthesis, and 10 to www. Thus, entries referring to articles differ more in their
structure resulting in more LD-vectors, while phdthesis entries are represented by
only 3 LD-vectors which means that there is not such a variance in their structure.
Apparently, the number of the obtained LD-vectors is not indicative about the dis-
similarity recorded between them. For example, most of the 38 articles’ LD-vectors
could differ only in one element, while the 3 LD-vectors of phdthesis could share only
a few common attributes. In case of the movies dataset, the preprocessing resulted in
124 LD-vectors representing actors, 19 films, and 3 remakes. The number of actors
LD-vectors is apparently overwhelming revealing the variety of elements that appear
in the their entries. The details of both datasets and the extracted LD-vectors are
summarized in Table IV.

Figure 16 depicts the percentages of the LD-vectors which are successfully assigned
to clusters for the different θ values as well as dissimilarity coefficients. Our purpose
is to examine which of the employed dissimilarity coefficients manages to successfully
cluster the LD-vectors for the lower θ values which designates the required “tightness”
in the clustering process. In Figure 16(a) we can see the assignments for the movies
dataset. When the Simpson dissimilarity coefficient is used, the algorithm assigns
successfully all the LD-vectors for the lower values of θ which is 0.26. Then, the Dice
coefficient is the next dissimilarity coefficient that results in the appropriate cluster-
ing of the LD-vectors for θ = 0.3. For θ = 0.35, the Braun dissimilarity succeeds in the
LD-vectors clustering while in case of Jaccard coefficient this happens for θ = 0.45. The
Rogers dissimilarity coefficient needs the higher θ value to give the correct clustering
assignment and this happens for θ = 0.6. Thus, the Simpson dissimilarity coefficient,
when employed in the LP-LM algorithm, leads to the appropriate clustering assign-
ment for the lower values of θ while the Rogers dissimilarity coefficient needs the
highest θ values in order to achieve this goal.

The same conclusions were derived from the experimentation performed on the
DBLP dataset. The results are depicted in Figure 16(b) where as we can see, the lower
value of θ that results in all LD-vectors being correctly assigned is 0.4 and this hap-
pens in case of the Simpson coefficient. The next dissimilarity coefficient that needs

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:24 V. Koutsonikola and A. Vakali

Fig. 16. LD-vectors successfully assigned to clusters.

low θ values is Dice (θ = 0.5) and then follows Braun (θ = 0.55) and Jaccard (θ = 0.65).
Rogers requires the highest θ value which is 0.8.

Considering the preceding results we observe that they are in accordance with the
discussion on distance metrics performance that was presented in Section 3.2, where
as it was noted, the various dissimilarity coefficients resulted in higher distance values
in the order of Simpson, Dice, Braun, Jaccard, Rogers. Thus, our intuition outlined in
Section 3.2 came true.

The performance of the LP-LM algorithm is apparently affected by the employed
dissimilarity coefficient because the nature of each one of them may result in lower
or higher dissimilarity values. For example, the Dice coefficient gives more gravity
to the common attributes of two LDAP vectors compared to Jaccard and Rogers and
that causes lower dissimilarity values. Moreover, both Simpson and Braun coefficients
consider not only the common attributes that two LD-vectors share but also their size,
that is, the number of attributes of the LD-Pairs. We have indicatively proceeded
to the visualization of the clusters of DBLP dataset, in terms of their similarities and
dissimilarities, in an attempt to represent graphically the way each of the dissimilarity
coefficients “captures” relations between LD-vectors.

Figure 17 presents the similarities and dissimilarities between the LD-vectors for
the different dissimilarity coefficients. Specifically, each plot depicts the distance ta-
ble D of the 71 LD-vectors, whose rows and columns have been rearranged so that
LD-vectors of the same cluster are put in consecutive rows (columns). Moreover, the
darker the coloring of a cell (i,j), where 1 ≤ i, j ≤ 71, the more similar the correspond-
ing LD-vectors. Thus, given that clusters contain the most similar LD-vectors, the
darker rectangles appear on the subplots diagonal and reveal the clusters of the DBLP
dataset.

The discussion on the results of Figure 16(b) is in accordance with the similarities
revealed by each coefficient visualized in Figure 17. The darker rectangles appear in
case of the Simpson dissimilarity coefficient, indicating that when this coefficient is
employed, a higher degree of similarity is identified among LD-vectors, and thus the
algorithm succeeds for lower θ values. Regarding the rest of the coefficients, the rec-
tangles that refer to the Dice coefficient are the darker ones and then comes those
depicting similarities for the Braun and Jaccard coefficients. The lightest-colored rec-
tangles appear in case of the Rogers dissimilarity coefficient, proving that in this case,
higher θ values are required to obtain the correct clustering assignment. Moreover, the
fact that the correct clustering is achieved to higher values of θ in case of the DBLP
dataset, for each of the employed dissimilarity coefficients, shows that even though

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:25

Fig. 17. The clustering outline of the DBLP dataset for k = 5.

the number of the attributes that describe publication entries is smaller, the obtained
LD-vectors are more different.

From the previous discussion it becomes evident that a dissimilarity coefficient
guides the clustering process with the distinctiveness it provides and can contribute
in good performance, which is signified by the successful assignment of LDAP entries
to clusters. This can be achieved even when a “tight” clustering is required as de-
fined by the θ value. According to the experimentation carried out on both datasets,
the Simpson dissimilarity coefficient enables the algorithm to identify the underlying
LD-vectors’ relations and successfully cluster them, for the lowest θ value. Thus, the
Simpson dissimilarity coefficient makes the algorithm more effective because setting
lower θ values may, on the one hand, render the notion of neighbor “tighter” but on the
other hand it provides more safety that the algorithm will manage to identify dissim-
ilarities between LDAP entries. Higher values of θ create the risk that the algorithm
may mistakenly consider two entries as neighbors. Consider the borderline case that
θ is set to 1. Then, all entries are each other’s neighbor. In general, the higher the val-
ues of θ the less importance we give to the entries’ structural differences while lower θ
values contribute to a more stern and accurate evaluation of entries’ nearness.

Moreover, we have evaluated the algorithm’s running time for the various distances
employed and the different number of clusters, while we have artificially extended our
dataset in order to examine the scalability of the proposed approach. Specifically, from
the original movies dataset with 20300 entries, we created two new datasets. The first
one contains 50300 entries, that is, we added 30000 entries which are represented
by 15 new and distinct LD-vectors. The second dataset contains 80300 entries, that
is, the original dataset is extended with 60000 entries which correspond to 34 new
LD-vectors. We consider as the algorithm’s running time the interval between the
formulation of LD-vectors and final clusters extraction, excluding, thus, the time it
takes the algorithm to read LDAP entries. The obtained results for the movies dataset
are depicted in Figures 18(a), 18(b), and 18(c) for the movies datatsets of 20300, 50300,
and 80300 entries, respectively. As we can see, reducing the number of clusters causes
more time for the algorithm to complete. This is expected since the LP-LM algorithm
follows a hierarchical agglomerative process and needs more steps to result in smaller
number of clusters. Furthermore, we see that when Jaccard, Dice, and Rogers distance

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:26 V. Koutsonikola and A. Vakali

Fig. 18. LP-LM running time.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:27

Fig. 19. Average running time increase.

coefficients are employed, the algorithm needs less time to complete while in case of
Braun and Simpson coefficients the execution time increases. This is due to the fact
that the last two coefficients calculate distances between LD-vectors considering not
only their common and different elements but also their length. Thus, in this case,
some more computations need to take place resulting in some time expense.

Furthermore, we calculated the percentages of average deterioration in the algo-
rithm’s running time in case of the extended datasets and for the various distances.
The results are depicted in Figure 19. As we can see, the depicted increases of the
algorithm’s running time varies depending on the dataset and the employed distance
and correspond to a few seconds only (as we can see from Figure 18). This is due to the
fact that after the LD-vectors’ formation, the algorithm is based on them for the rest of
the computations. Thus, the complexity is getting significantly lower. Considering, for
example, the case of the dataset containing 80000 entries, the algorithm does not work
with the 80300 entries but with the 180 LD-vectors that represent them. Moreover,
the variation of the percentages of deterioration depend on the type of the new LD-
vectors which are brought by the new entries, since LD-vectors with a higher number
of attributes and objectclasses may result in more time-consuming calculations.

5.3 The Merging Steps Using the Expected and Relative Links

In this section of our experimentation we study the LP-LM algorithm’s behavior when
the two merging criteria, namely the Expected Link and the Relative Link are em-
ployed. As already discussed in Section 3.4.2, the Relative Link, contrary to the Ex-
pected Link, is based on quantities calculated during the execution of the algorithm
and thus it is expected to have a better perspective on which clusters should be merged
at each step. In order to compare these two merging criteria, we have indicatively pro-
ceeded to the graphical visualization of the successive mergings.

Figures 20 and 21 present the progress of the LP-LM agglomerative algorithm for
both datasets when the Simpson dissimilarity coefficient was employed. Specifically,
Figure 20 refers to the DBLP dataset where the 5 underlying clusters (articles, phdthe-
sis, masterthesis, inproceedings, and www) are denoted using different colors. The
dendrograms have been plotted in such a way that each point of the y-axis corresponds
to a successive merging. According to Figure 20(a) which represents the merging steps
in case the Relative Link is used, the algorithm usually chooses different pairs of clus-
ters to merge at each step, resulting in smaller clusters which will at a later step be
merged. On the contrary, using the Expected Link (Figure 20(b)) criterion the algo-
rithm’s behavior is different since, at each step, the cluster that was created from the

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:28 V. Koutsonikola and A. Vakali

Fig. 20. Clustering of the DBLP dataset.

Fig. 21. Clustering of the movies dataset.

previous step is used for the next merging. This results to the creation of more unbal-
anced clusters.

Moreover, as depicted from the two former discussed subfigures, in case of the Ex-
pected Link criterion, the algorithm performs consecutive mergings of clusters that
refer to the same data category. For example, it starts merging phdthesis (denoted
by the magenta color), when the majority of the articles clusters (denoted by the blue
color) have been merged. On the other hand, the usage of the Relative Link allows the
algorithm to merge, at each step, pairs of clusters that belong to different categories.

The preceding observations also hold in case of the movies dataset. The pro-
gression of the algorithm in this case is depicted in Figure 21 where the Simpson
dissimilarity coefficient has been used to capture dissimilarities between LDAP
entries. Figure 21(a) shows the merging steps when the Relative Link was used while
Figure 21(b) the respective progress for the Expected Link merging criterion. In both
figures the 3 underlying clusters (actors, movies, remakes) are denoted by the different
colors where the great number of LD-vectors corresponding to articles is verified.

As in case of the DBLP dataset, the LP-LM presents similar behavior when the two
merging criteria are used. Here, it is even more obvious the fact that the usage of
the Expected Link criterion makes the algorithm consider, as the basis for the next
merging, the cluster that was obtained in the previous step. In case of the Relative
Link, the algorithm still manages to create more balanced clusters at each step, as
it does not always involve the cluster created at the previous phase. Moreover, the
usage of the Relative Link makes the algorithm more flexible, in terms of merging
clusters of different categories, whereas when the Expected Link is used, the algorithm
proceeds to the clusters of another category when the majority of mergings that refer
to the currently processed category finishes. In conclusion, the Relative Link has the

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:29

advantage over Expected Link, since, in cases the true number of clusters is not known,
it results in a better quality and more balanced clustering scheme for the same value
of k. This is important as usually the value of k is not known and thus, the Relative
Link can conduce to improved clustering results.

5.4 LDAP Server Performance under the Proposed Query Framework

Apart from the algorithm’s efficiency it is important to study the impact of the
clustered-based LDAP data organization on the system’s performance. Here, we com-
pare the response times of the LDAP server to a set of queries in case LDAP data was
organized in flat DIT (unclustered scheme), and in case of a clustered DIT organization
which is in accordance with the LP-LM algorithm’s results. When the clustered LDAP
scheme is employed, the queries are executed using the LP and LM Query Engine,
described in Section 4.1, which determines the responses’ pathways in the LDAP DIT,
given the keywords extracted from the query. The queries that were executed can be
categorized in the following categories.

— Subset queries. In this category, the queries retrieve subsets of entries providing
no query filter. For example, a query of this category would ask for all articles or
phdthesis.

— Boolean queries. Queries of this category contain boolean expressions without in-
volving specific attributes values. For example, a boolean query would retrieve all
entries that have a booktitle value but not an ISBN value or all phdthesis and mas-
terthesis that have a volume value.

— Boolean queries of exact matching. These queries contain boolean expression and
filters specifying an exact matching. For instance, a query of this category would
request all inproceedings’ entries of 2002.

— Boolean queries of approximate matching. This type of queries is similar to the
Boolean queries of exact matching with the only difference that their query filter
is approximate. For example, a query of this category would retrieve articles or
phdthesis which contain the term “database”.

— Boolean queries of inequalities. These queries contain boolean expressions and their
filter is an inequality condition. A query that would ask for all authors that were
born after 1970 would belong to this category.

— Queries of attribute presence. This category contains all queries that search for en-
tries having as criterion the presence or absence of a specific attribute. For example,
a query of this category would retrieve all entries that are described by a year value
(e.g., year of publication, year of birth).

We have formed a set of queries which involved 20 queries per query category. The
queries were defined in a way that they include every possible keyword (objectclass or
attribute) and their combinations in order to result in more objective results. Moreover,
in case of categories that involved a search filter the value of the filter was randomly
selected from a set of values (e.g., a word contained in the title of a publication). For
example, we have executed queries searching for movies whose author is Hitchcock, or
actors who were born before 1980 and their origin is from USA, etc.

We have run the same set of queries for each of the aforementioned categories in
the unclustered organization and in the clustered one, independently of the number
of clusters that were obtained from the LP-LM algorithm (using the Dice dissimilarity
coefficient). From the obtained response times we calculated the improvements, since
for all query categories the response times were better in the clustering-based data or-
ganization. The obtained improvements were averaged and are depicted in Figure 22.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:30 V. Koutsonikola and A. Vakali

Fig. 22. Improvements in the LDAP server’s performance.

Figure 22(a) shows the improvements for the movies dataset, when the LDAP en-
tries were organized according to the LP-LM algorithm’s results for k = 3, 5, 7, 9, while
Figure 22(b) presents the respective improvements fot the DBLP dataset and the same
values of k. We have executed boolean inequality matching queries only on the movies
dataset because it uses more attributes for which this type of query is meaningful (e.g.,
actor’s date of birth, a film’s cost or profit). On the other hand, we used queries of at-
tributes presence only in case of the DBLP dataset, because its entries share many
common attributes and the existence or absence of an attribute in the entries of the
DBLP dataset is more important.

Furthermore, we evaluated the LDAP server’s performance in case that we applied
clustering in two levels of hierarchy, as discussed in Section 4. We indicatively present
results for the movies dataset. LDAP entries were initially clustered into k = 3 clus-
ters, and then, the LP-LM clustering algorithm was applied on each cluster to obtain
k = 3 clusters. LDAP entries were organized in the DIT depicted in Figure 23(a). The
same set of queries was executed and the obtained average improvements per cate-
gory are presented in Figure 23(b). The improvements recorded in Figures 22 and 23
may differentiate for the same query because the obtained clusters are not the same.
For example, for the results of Figure 22(a), LDAP data was organized in 9 clusters
which are distributed to 4 clusters of actors, 2 clusters of movies, and 3 clusters of
remakes. On the other hand, for the DIT organization of Figure 23(a) the 9 clusters
correspond to 3 clusters of each of the former categories. Thus, a question addresses
a cluster that exists in one of the above organization schemes, then it will result in
greater improvements.

As it is clearly depicted in all of the mentioned subfigures, when a clustering-based
LDAP organization is used, there is improvement in all types of queries. The recorded
improvement depends on the search space defined by the query keywords which is in
turn based on the keywords’ distinctiveness. For example, a query asking for a com-
mon attribute such as the author of a publication or a film’s actors results in lower im-
provements than a query asking for a publications’s series or an actor’s origin, which
normally exists in a smaller subset of entries. If the clustering algorithm manages
to identify an attribute’s uniqueness and create a cluster containing the entries that
contain it, then the search space will be significantly reduced and will result in consid-
erably greater improvements. Moreover, the fact that the entries of the DBLP dataset
share more common attributes is depicted on the average improvements which are
higher for the movies dataset. An homogeneous dataset, which is described by a lower
number of attributes, is more possible to result in less search space reduction and
thus in lower response times improvements. To examine the effect in the response

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:31

Fig. 23. LDAP server’s performance under a more hierarchical DIT.

time improvements of the search space as defined by the number of clusters, we have
executed a set of queries whose responses exist in different number of clusters. The
results are depicted in Figure 24 and refer to the clustering-based LDAP organization
for k = 9 (Dice coefficient was employed for the DBLP dataset and Simpson for the
movies dataset). More specifically, we have executed the same set of queries in case
LDAP data were organized in a flat DIT and in case the DIT was adjusted to the clus-
tering results. The improvements depicted in Figure 24(a) and Figure 24(b) refer to
those queries (each bar is for one query) whose answer lies on 1−4 or 1−7 clusters, re-
spectively. Thus, from the whole set of executed queries we chose those whose answers
lie in different number of clusters in order to construct the different bars.

Figure 24(a) presents the improvements for the movies dataset while Figure 24(b)
the respective improvements for the DBLP dataset. The homogeneity of the DBLP
dataset is also proved by the fact that there are attributes that exist the maximum
in 7 of the 9 requested clusters while in case of the movies dataset this happens for
the maximum 4 of the 9 clusters. As we can see for both subfigures, the obtained
improvements tend towards decreasing as the number of clusters that contain the
requested keywords increases. This, however, may not hold in cases where an attribute
exists in less clusters, but these clusters contain many entries. Such a case applies in
the DBLP dataset for k = 5 and k = 6. The entries that contain the “ee” attribute
are located in k = 5 clusters while the “volume” attribute exists in entries of k = 6
clusters. However, the calculated improvements are higher for the volume “attributes”

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:32 V. Koutsonikola and A. Vakali

Fig. 24. Response time improvements as a function of the search space (clusters).

because the total number of entries containing it is higher than the respective number
of entries containing the “ee” attribute.

The experimentation results of this section show that a query framework that takes
advantage of the clustering-based LDAP data organization results in the enhancement
of the LDAP server’s performance in search operations. The response time improve-
ments are noticeable even in case of common attributes but they are remarkable when
attributes appearing in restricted publication types are involved.

6. CONCLUSIONS-FUTURE WORK

In this article we perform a thorough study of the LPAIR-LMERGE hierarchical
structure-based clustering algorithm which is proposed as a method for the appro-
priate LDAP Directory Information Tree definition. The LP-LM algorithm is used in
conjunction with various distance metrics in order to examine the distinctiveness they
offer in cases that a “tight” clustering is requested. Moreover, the LDAP server that ad-
justs its data organization to the clustering results presents improved response times,
under a specific query framework implemented by the proposed LP and LM Query
Engine. The recorded improvements are especially high in case of queries containing
keywords that correspond to distinctive clusters. This is mostly observed in cases of
heterogeneous datasets where there is a significant variance on the attributes used
to describe LDAP entries. Finally, we propose the usage of the Relative Link as an
alternative merging criterion which is based on quantities calculated during the exe-
cution process. The experimental results prove that using the Relative Link merging
criterion, the algorithm results in more balanced clusters.

Our next step is to incorporate the knowledge about the content of the entries, that
the LD-vectors describe, in the clustering process. Our purpose is to result in a more
information enriched process and a deeper organization hierarchy which can result in
further improvements of the LDAP server performance.

REFERENCES
AMER-YAHIA, S. AND SRIVASTAVA, D. 2004. Distributed evaluation of network directory queries. IEEE

Trans. Knowl. Data Engin. 16, 4, 474–486.

CARTER, G. 2003. LDAP System Administration. OŔeilly.
CHADWICK, D. 1994. Understanding X. 500: The Directory. Chapman & Hall.
CHADWICK, D. 2003. Deficiencies in ldap when used to support pki. Comm. ACM. 46, 3, 99–104.
CRABTREE, D., GAO, X., AND ANDREAE, P. 2005. Improving Web clustering by cluster selection. Proceed-

ings on the IEEE/WIC/ACM International Conference on Web Intelligence. 172–178.
CRABTREE, D., ANDREAE, P., AND GAO X. 2006. Query directed Web page clustering. In Proceedings of the

IEEE/WIC/ACM International Conference on Web Intelligence. 202–210.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

A Clustering-Driven LDAP Framework 12:33

DIETZOLD, S. 2005. Generating rdf Models from ldap Directories. In Proceedings of the SFSW’05 Workshop
on Scripting for the Semantic Web.

DIETZOLD, S. AND AUER, S. 2007a. Accessing rdf knowledge bases via ldap clients. In Proceedings of 7th
International Conference on Knowledge Management (I-KNOW’07).

DIETZOLD, S. AND AUER, S. 2007b. Integrating sparql endpoints into directory services. In Proceedings of
the ESWC’07 Workshop on Scripting for the Semantic Web.

FAN, Q., WU, Q., HE, Y., AND HUANG, J. 2005. Optimized strategies of grid information services. In Pro-
ceedings of the 1st International Conference on Semantics, Knowledge, and Grid. ACM, 90.

GEMMILL, J., CHATTERJEE, S., MILLER, T., AND VERHAREN, E. 2003. ViDe.net middleware for scalable
video services for research and higher education, vide.net middleware for scalable video services for
research and higher education. In Proceedings of the ACM Southeastern Conference. ACM.

GUHA, S., RASTOGI, R., AND SHIM, K. 1999. Rock: A robust clustering algorithm for categorical attributes.
In Proceedings of the 15th International Conference on Data Engineering. IEEE Computer Society. 512–
521.

HARANCZYK, M. AND HOLLIDAY, J. 2008. Comparison of similarity coefficients for clustering and compound
selection. J. Chem. Inf. Model. 48, 3, 498–508.

HOHN, M. 2005. Binary coefficients: A theoretical and empirical study. Math. Geol. 8, 2, 137–150.
HOU, H., WANG, X., AND WU, M. 2006. Hierarchical byzantine fault tolerant secure ldap. IEEE Interna-

tional Conference on Systems, Man and Cybernetics. IEEE Computer Society, 3844–3849.
HOWES, T. AND SMITH, M. 1997. LDAP: Programming Directory-Enabled Applications with Lightweight

Directory Access Protocol. Macmillan Technical Publishing.
HU, H. AND DU, X. 2006. An ontology learning model in grid information services. In Proceedings of the 1st

International Conference on Innovative Computing, Information and Control. IEEE Computer Society,
398–401.

KAPITSKAIA, O., NG, R., AND SRIVASTAVA, D. 2000. Evolution and revolutions in ldap directory caches.
In Proceedings of the 7th International Conference on Extending Database Technology: Advances in
Database Technology. Springer, 202–216.

KARYPIS, G., HAN, E., AND KUMAR, V. 1999. Chameleon: Hierarchical clustering using dynamic modeling.
IEEE Comput. 32, 8, 68–75.

KOUTSONIKOLA, V. AND VAKALI, A. 2004. Ldap: Framework, practices, and trends. IEEE Internet Comput.
8, 5, 66–72.

KOUTSONIKOLA, V. AND VAKALI, A. 2008. XML and LDAP Integration: Issues and Trends. Vol. Open and
Novel Issues in XML Database Applications: Future Directions and Advanced Technologies. IGI Global,
Chapter II.

KOUTSONIKOLA, V., VAKALI, A., MPALASAS, A., AND VALAVANIS, M. 2008. A structure-based clustering
on ldap directory information. In Proceedings of the 17th International Symposium on Methodologies for
Intelligent Systems. Springer.

KUMAR, A. AND GUPTA, R. 2003. Edge caching for directory based Web applications: Algorithms and per-
formance. In Proceedings of the 8th International Workshop Web Content Caching and Distribution.
Kluwer, 39–56.

LAUKKANEN, M., VILJANEN, K., APIOLA, M., LINDGREN, P., MAKELA, E., SAARELA, S., AND HYVONEN,
E. 2004. Towards semantic Web-based yellow page directory services. In Proceedings of the 3rd Interna-
tional Semantic Web Conference. Springer.

LI, T. 2005. A general model for clustering binary data. In Proceeding of the 11th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery in Data Mining. ACM, 188–197.

LIAN, W., CHEUNG, D., MAMOULIS, N., AND YIU, S.-M. 2004. An efficient and scalable algorithm for
clustering xml documents by structure. IEEE Trans. Knowl. Data Engin. 16, 1, 82–96.

LIANG, J., VAISHNAVI, V., AND VANDENBERG, A. 2006. Clustering of ldap directory schemas to facilitate
information resources interoperability across organizations. IEEE Trans. Syst. Man Cybernet. 36, 4,
631–642.

LIM, S., CHOI, J., AND ZEILENGA, K. 2005. Design and implementation of ldap component matching for
flexible and secure certificate access in PKI. In Proceedings of the 4th Annual PKI R&D Workshop. NIST
Technical Publication.

MAASS, H. 1997. Location-Aware mobile applications based on directory services. In Proceedings of the 3rd
Annual ACM/IEEE International Conference on Mobile Computing and Networking. ACM, 23–33.

MARON, P. AND LAUSEN, G. 2001. HLCaches: An LDAP-Based Distributed Cache Technology for XML.
Albert-Ludwigs University at Freiburg.

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

12:34 V. Koutsonikola and A. Vakali

MURGUIA, M. AND VILLASENOR, J. L. 2003. Estimating the effect of the similarity coefficient and the
cluster algorithm on biogeographic classifications. Ann. Bot. Fennici 40, 6, 415–421.

PARK, J., SANDHU, R., AND AHN, G.-J. 2001. Role-Based access control on the Web. ACM Trans. Inf. Syst.
Secur. 4, 1, 37–71.

PONARAMENKO, J., BOURNE, P., AND SHINDYALOV, I. 2002. Building an automated classification of dna-
binding protein domains. Bioinf. 18, 2, S192–S201.

RODRIQUEZ, C. 2007. siledap: Easing Interactions with Directories. Proceedings of TERENA Networking
Conference.

VAKALI, A., POKORNY, J., AND DALAMAGAS, T. 2004. An overview of Web data clustering practices. In
Proceedings of the 9th International Conference on Extending Database Technology (EDBT’04). Springer,
597–606.

WANG, X., SCHULZRINNE, H., KANDLUR, D., AND VERMA, D. 2008. Measurement and analysis of ldap
performance. IEEE/ACM Trans. Netw. 16, 1, 232–243.

WANG, Y. AND KITSUREGAWA, M. 2001. Use link-based clustering to improve Web search results. In Pro-
ceedings of the 2nd International Conference on Web Information Systems Engineering. IEEE Computer
Society, 115–124.

WHAL, M., HOWES, T., AND KILLE, S. 1997. Lightweight directory access protocol (v3). IETF RFC 2251.
WU, J., LEANGSUKSUN, C., AND RAMPURE, V. 2006. Policy-Based access control framework for grid com-

puting. In Proceedings of the 6th IEEE International Symposium on Cluster Computing and the Grid.
IEEE Computer Society, 391–394.

ZENG, H.-J., CHEN, Z., AND MA, W.-Y. 2002. A unified framework for clustering heterogeneous Web objects.
In Proceedings of the 3rd International Conference on Web Information Systems Engineering. IEEE
Computer Society, 161–170.

Received May 2008; revised July 2010; accepted September 2010

ACM Transactions on the Web, Vol. 5, No. 3, Article 12, Publication date: July 2011.

