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Mani-Web: Large-Scale Web Graph Embedding via
Laplacian Eigenmap Approximation

Konstantinos Stamos, Nikolaos A. Laskaris, and Athena Vakali

Abstract—The Web as a graph can be embedded in a low-
dimensional space where its geometry can be visualized and stud-
ied in order to mine interesting patterns such as web commu-
nities. The existing algorithms operate on small-to-medium-scale
graphs; thus, we propose a close to linear time algorithm called
Mani-Web suitable for large-scale graphs. The result is similar
to the one produced by the manifold-learning technique Lapla-
cian eigenmap that is tested on artificial manifolds and real web-
graphs. Mani-Web can also be used as a general-purpose manifold-
learning/dimensionality-reduction technique as long as the data
can be represented as a graph.

Index Terms—Laplacian eigenmap, large scale, manifold
learning, spectral graph theory, web communities.

I. INTRODUCTION

THEWeb is an enormous information domain with its phys-

ical structure that is best described in the form of a graph.

Distinct pages are represented via nodes and the related hyper-

links are represented via graph edges. The graph is readily

available to be studied via web-link-mining [1], [2], with its

outcomes that are expected to improve the overall experience

for the users, save resources for the website owners, and provide

a better understanding of the Web.

Given a large-scale graph we should be able to mine interest-

ing patterns iff they exist and represent them inway that they can

be exploited. Such patterns include the communities (clusters),

outlier nodes, and in general the intrinsic geometry/layout of the

graph. The problem for small-to-medium graphs (i.e., thousand

of nodes) only is dealt with traditional graph mining algorithms

and manifold learning techniques with high-time complexity.

Motivated by the inability of the existing methods to handle

very large-scale graph data, our contributions are summarized

as follows.

1) We suggest a general purpose manifold-learning tech-

nique, called Mani-Web (http://oswinds.csd.auth.gr/∼
maniweb), a linear-time approximation of the Laplacian

eigenmap [3].

2) We benchmark the scalability and the correctness of the

algorithm experimentally by the usage of artificial man-

ifolds and real web-graphs and we provide preliminary
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TABLE I
COMPARISON OFMANIFOLD LEARNINGMETHODS ON GRAPHS

ACCORDING TO GRAPH SIZE |V |

evidence that Mani-Web could be applied in the context

of a content distribution network for latency and content

management improvement.

II. RELATEDWORK

The manifold-learning approach assumes that the data be-

long to a low-dimensional manifold that is embedded in the

original high-dimensional space. A typical strategy is to con-

struct a graph encoding the interrelations of the data as in Fig. 2.

Then, the task is to properly unfold this graph and embed it in a

low-dimensional space. The advantage of this approach is that

complex overlapping geometries, clusters, and data of nonlin-

ear nature can be effectively represented. Additionally, in cases

where the graph is naturally available as in theWeb the methods

can be applied directly.

A typical list of graph-based manifold learning methods in-

cludes: isomap [4], MVU [5], diffusion maps [6], LLE [7],

Laplacian eigenmap [3], Hessian LLE [8], and LTSA [9]. They

involve eigen-analysis, graph traversal techniques, and other

computationally demanding operations, which are in general

sensitive to the scale of the graph. A comparison in terms of

time complexity with respect to the graph size |V | is available
in Table I. All of them are of polynomial complexity O(|V |2)
orO(|V |3). Although the complexity is reasonable and benefits
from the sparsity of the graphs as we scale up they become in-

computable. Of them particular interest has the Laplacian eigen-

map because it has a natural tendency to enhance the formation

of the communities.

A (Web) community can be considered to be a coherent cluster

of pages that has significantlymore hyper-links that point among

pages that belong to the community itself than the rest of the

graph. This structural attribute emerges from the fact that pages

with common subject often reference one another as related

sources. A user, who enters a Web community, is “trapped”
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in the sense that the probability of visiting a page outside the

community is lower, because of the fewer outgoing hyperlinks.

The community detection, an NP-hard [10] problem, has

drawn a lot of attention [11]–[18] recently. The respective algo-

rithms are characterized by exponential [19] or high polynomial

complexity [11] in terms of number of pages and hyperlinks. A

recent algorithm that has interesting application in the context

of a content distribution network is CiBC [18] that is suitable

for medium size graphs.

Visualization can be the product of a low-dimensional rep-

resentation of a graph. Toward this direction there are several

algorithms [20]–[23], and [24], [25] for the non-Web-related

content. However, none of them has been focused on visualiz-

ing web-graphs in particular.

III. “WALKING” ON AMANIFOLD

In this section, we give a qualitative definition of a manifold,

its relation to the web-graph, and initial insight into the ideas

developed later. Strict mathematical definitions can be found

in [26].

A. What is a Manifold

A manifold is a topological space that only locally exhibits

flat conventional geometry. On global scale, it demonstrates

profound structural hyperorganization. In the space of a mani-

fold the conventional Euclidean distances are less important as

they do not capture the manifold’s geometry. Consider, as toy

example, Archimedes’ spiral manifold in Fig. 2. The spiral it-

self comprises of a swarm of 1000 points in a two-dimensional
(2-D) space coordinate. Although we can evaluate the Euclidean

distance from point labelled 1 to 2, the result would be contrary
to our intuition. A more appropriate distance evaluation should

incorporate the intrinsic geometry of the manifold by imitating

a “walk” on the manifold, from point 1 to 2.
In order to perform a walk on the manifold, a graph that

connects nearby points in the space is formed. The graph en-

codes local relations, building essentially a graph of the data.

The graph itself limits the ways in which the data points can be

accessed from one another since “communication” is possible

only through the available edges.

B. Web-Graph Representation

Let us consider a populationV ofweb pages (nodes). For each
pair 〈i, j〉, i, j ∈ V an integer valueEi,j ∈ (0, 1) is defined. The
value 1 indicates the existence of a hyperlink (edge) originating
from i and leading directly to j, while 0 indicates no direct
association. A graph G(V,E) (or just G) is constructed, where
E is a set of edges that connects the nodes in G. Thus, the
|V | × |V | adjacencymatrix A is formed that contains all the

pairwiseEi,j values.We consider a connected undirected graph,

without self-loops and multiple edges between any two nodes.

Therefore, A is symmetric with zeroed diagonal.
Despite the fact that the web-graph is not symmetric and

contains self-loops and multiple edges, we can easily meet

the aforementioned requirements. We may safely perform a

TABLE II
VARIABLES REFERENCE

symmetrizing conversion of A since the user can access the

previous pages by the usage of the “Back” button of the web

browser, even if there is no backward association available.

Moreover, self-loops indicate self-association; thus, they do not

contribute much to the structural information. Multiple edges,

on the other hand, can simply be aggregated into a single edge.

IV. MANI-WEB

In this section, the Mani-Web algorithm is introduced with

the help of a toy example. The variables are summarized in the

reference Table II. The algorithm itself consists of three phases

namelymaniReduce(), maniReconstruct(), andmaniMap() (the
appearance of “()” will denote functions). The complete listing
of the code is available in Fig. 1 (by the usage of MATLAB

syntax, ready to copy-paste).

The outline of the algorithm is as follows: Select a few

boundary-nodes, construct a reduced-graph by the usage of the

boundary-nodes, produce a Laplacian eignemap for the reduced-

graph, and finally extrapolate the map for all nodes. The result

is a map of all nodes in a (Euclidean) coordinate space with only

marginal error against the original Laplacian eigenmap. Then,

by the selection of the second, third (and optionally fourth) di-
mensions we produce a low-dimensional image of the original

graph.

A. Starting the algorithm: maniweb()

A is the input adjacency matrix in sparse format, and

Tolerance ∈ (01] is the quality setting for the algorithm. V r
is the set of boundary-nodes, Y r is the Laplacian eigenmap
embedding of the reduced-graph, EigValr is the eigenvalues

associated with the Laplacian eigenmap of Ar, Ar is the adja-
cency matrix of the reduced-graph, Y is the final embedding of

all nodes, GeometricFluctuations is the geometric fluctuation of

the algorithm, FlowIterations is the iterations of each step of the

algorithm, and Cpu is the CPU time wasted.
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Fig. 1. Mani-Web.

B. Phase: maniReduce()

The aim of this phase is to scale down the graph. The idea

is to detect representative nodes, the so-called boundary-nodes,

that wrap the global geometry of the manifold.

Fig. 2. Archimedes spiral.

At this point we have to deal with the following questions.

1) What “distance” means?

2) How to select the boundary-nodes?

3) How many boundary-nodes should we select?

What “distance” means?: In Section III the notion of walking

on a graph was discussed which can be used to measure distance

between a set of source-nodes and a set of target-nodes. Such

a walk can be emulated by the usage of the iterative version of

the PageRank-like algorithm presented in [27], [28] and imple-

mented in flow(). Given the normalized version of the graph
Anorm [produced by anorm()], the source-nodes Sources (the
target-nodes are the rest), and Tolerance, an InitialFlow value

that originates from the Sources is diffused throughout the graph

until convergence. Usually a few iterations are enough in a

small-world graph (like Web) to achieve high-quality results.

The function returns Flow which is a column that contains the

flow of each node from the perspective of the Sources. This

can be considered to be an 1 − D ranking/ordering/closeness of

the nodes. The node that does not belong to Sources and has

the lowest flow is the most distant to Sources. Another return

value is the Iterations, the number of iterations performed until

convergence.

For example, consider the Archimedes’ spiral in Fig. 2. The

coloration of the nodes represents the smooth distribution of the

flow in the graph. Therefore, the most distant node from the

perspective of node 1 is the node 2, and from the perspective of
nodes 1, 2 is node 3.
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How to select the boundary-nodes?: Assuming that we know

the number of necessary boundary-nodes beforehand then we

have to examine all the possible combinations of nodes in or-

der to find the combination that maximizes the overall mutual

distance among the boundary-nodes (in other words, minimizes

their mutual flow). Of course, this approach is of factorial com-

plexity and infeasible for large graphs.

The suggested approach is to perform a progressive selection

of the boundary-nodes. Starting from an initial arbitrary node

say node 1 we select the most distant one say node 2, then the
most distant one from nodes 1, 2 say node 3 and so on. This
approach is illustrated in Fig. 2 where the boundary-nodes are

progressively selected by by the maximization of their mutual

distance (in other words, by the maximization of the flow).

How many boundary-nodes should we select?: By increas-

ing the number of Sources (as the number of boundary-nodes

increases) the overall flow distributed to the graph increases

as well. This gradual increment of the overall flow produces a

convergent sequence of values. The sequence contains the flow

fluctuation of each boundary-node against the previous one at

the time of its selection. Therefore, it is reasonable to use the

Tolerance as convergence criterion of the sequence. Letting the

overall geometry of the manifold and distribution of the flow to

decide.

Fig. 2 illustrates the concept of geometric convergence by

depicting the fluctuations between two consecutive boundary-

nodes as the sampling progresses. Effectively we may capture

the geometric convergence either by setting the Tolerance at

a reasonable value (e.g., 0.01 or 0.001) or by observing the
convergence on-line.

The result of the reduction: In maniReduce() we have A
which is the adjacency matrix and Tolerance for input. The

V r is the set of the boundary-nodes, Flows is a |V | × |V r|
matrix that contains the flow of each node that originates from

the rolling set of boundary-nodes. More specifically, the first

column of Flows contains the flows that originate from the first

boundary-node, the second column from the first two boundary-

nodes, the third column from the first three, and so on. The

GeometricFluctuations is the sequence of geometric fluctuations

that produced during the sampling.

C. Phase: maniReconstruct()

To construct Ar, we need to encode the pairwise flows
among the V r nodes by taking into account the in-between
structure in the original graph. By dividing each column of

Flows with the previous one, by the application of normaliza-

tion [normalize01()], and by the selection of the V r rows we
produce theAr. A final postprocessing step is to make sure that
no NaN/Inf values exist (due to arithmetic representation), the

matrix is symmetrical and of zero diagonal.

If effect, Ar is a graph that should wrap the original graph
in terms of Laplacian eigenmap embedding as its nodes reside

at the boundary of the manifold’s geometry. Finally, we have

Ar and FlowsSingle that represents a 1 − D ordering from the

perspective of each boundary-node.

D. Phase: maniMap()

This final phase produces the actual embedding/map of all the

nodes V of the original graphG into a |V r|-dimensional space.
More precisely in maniMap() the input is the Ar, FlowsSingle.
The output is Y r the Laplacian eigenmap embedding of Ar,
EigValr the set of eigenvalues of the Laplacian eigenmap of

Ar, and Y is the |V r|-dimensional embedding of all nodes
that approximates the Laplacian eigenmap as if it was applied

directly to the original map.

The key idea is to produce the Laplacian eigenmap of the

boundary-nodes by the usage ofAr and use it as a fence bound-
ing the global geometry of the manifold. Then the Cartesian

positions of all nodes and for all dimensions are extrapolated.

For all dimensions and nodes.

1) Get the respective row in FlowsSingle for a node.

2) For each dimension calculate the weighted average of Y r
with the respective rowof FlowsSingle. That is the position

of the node at this dimension. This position is derived from

the various levels of influence of every boundary-node in

terms of flow. In other words, the Cartesian positions of all

the boundary-nodes are being diffused through the graph

via the precalculated flow.

In order to visualize the result, or keep only themost important

portion of geometric information we select the columns 2, 3,
and optionally 4 of Y to produce a 2 − D or 3 − D image.

Applying Mani-Web in the toy example [see Fig. 2] is a faithful

approximation of the original Laplacian eigenmap is produced

for Tolerance = 0.001. The boundary-nodes are highlighted in
black and they, in fact, bound the geometry of the spiral. The

rest nodes are uniquely colored for comparison. We should note

that the small discrepancy in the image is caused by the fact that

we have very long paths in the graph (1000 hops on the average)
causing the propagation of flow to stop before full convergence.

However, this is not the case in the Web as the number of hops

between any two nodes is a few tens due to the “small world”

phenomenon.

V. UNDERLYING THEORY

A. Flow as 1 − D Ranking

The flow propagation results in a nonlinear smooth ranking

in one dimension which is biased toward the sources with a

marginal tolerance Tolerance. The column Flow holds the up-

dated flow of all nodes in Flow(), while the Tolerance acts as
a balancing factor that causes the final ordering of nodes to be

biased towards the Sources. We would like to let the network

[(1/(1 + Tolerance)) ∗ Anorm ∗ Flow] to be more important
in terms of ranking, thus, capturing the structure of the graph

in terms of flow. The other part [(1 − (1/(1 + Tolerance))) ∗
InitialFlow] is important to cause the bias, but we would like
this to be as small as possible in order not to interfere much

during the discovery of the structure of the graph.

Expression (1) is the minimization problem solved by the

flow(). The problem is to smoothly assign Flow values to all
nodes. For the proof see [28] and [27]. This expression has

a natural geometric explanation for the graph. For nodes, i.e.,
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i, j ∈ V the term, i.e.,
∑|V |

i,j Ai,j · ‖ 1√
D i i

· Flowi − 1√
D j j

·
Flowj‖2 expresses the error of ranking. If ‖ 1√

D i i
· Flowi −

1√
D j j

· Flowj ‖ has a high value, meaning that i, j have a very
different flow, then by being multiplied with Ai,j we get a high

penalty if indeed Ai,j 6= 0.

argmin
Flow

(

1

2
·
( |V |

∑

i,j

Ai,j ·
∥

∥

∥

∥

1√
Dii

· Flowi −
1

√

Djj

· Flowj

∥

∥

∥

∥

2

+ Tolerance ·
|V |
∑

i=1

‖Flowi − InitialFlowi‖2

))

(1)

The term Tolerance
∑|V |

i=1 ‖ Flowi − InitialFlowi ‖2 has also a

geometric meaning. If there is a lot of divergence between the

initial and the final flowwe get a penalty according to Tolerance.

B. Heuristic 1 − D Relation of Flow With the Laplacian

Eigenmap

The Laplacian eigenmap has a natural geometric meaning

for the reduced-graph (see [3] for proof). It minimizes (2) by

finding the appropriate Y r vectors for each boundary-node. The
geometric interpretation is evident in (3), and the left-hand part

of the equation occurs by trivial matrix operations on the right-

hand. The matrix Lr is the Laplacian matrix, the analogous
of Laplace–Beltrami operator but for discrete structures, with

Lr = Dr − Ar andDr being a diagonal matrix with the degree
of each node V r or just the sum of each column ofAr. Equation
(3) has the same geometric interpretation as the first term of the

flow (1).

argmin
Y rT ·Dr ·Y r=I

tr(Y rT · Lr · Y r) (2)

|V r |
∑

i,j

Ari,j · ‖Y ri − Y rj‖2 = tr(Y rT · Lr · Y r) (3)

By the solution of the generalized eigenvalue problem in (4)

we solve essentially the minimization problem in (2). We get

an ordered set of ascending eigenvalues and their respective

eigenvectors, with the first eigenvalue being the trivial case that

always has the value 0 for a graph with a single component. The
meaning of eigenvalues is evident in (5) where the magnitude

of each eigenvalue expresses a penalty of mapping error. Thus,

ignoring the first eigenvalue/eigenvector and using the second,

third, and possibly fourth eigenvectors a low-dimensional map-

ping is produced.

Lr · Y r = EigValr · Dr · Y r (4)

|V r |
∑

i,j

Ari,j · ‖Y ri − Y rj‖2 =

|V r |
∑

i

EigValri (5)

We observe that, for a single dimension, the left-hand term of (3)

is closely related to (1) if Tolerance→ 0. Thus, by normalizing

the flows of all nodes we can deduce an approximate mapping

of all nodes in the |V r|-dimensional space of the Laplacian
eigenmap by diffusing and averaging the embedding Y r of the
boundary-nodes by the usage of the flow originating from each

boundary-node V r. Of course, the mapping will not be perfect
but it will be correct within Tolerance.

C. Time and Space Complexity

The time complexity of Mani-Web in Big-O nota-

tion can be defined as O(maniweb) = O(maniReduce) +
O(maniReconstruct) + O(maniMap). For each part:
1) O(maniReduce) = |V r| · O(flow). Because |V r| is

small, O(maniReduce) = O(flow) = O(Iterations · |V |).
Although Iterations is unknown we are aware that for

the Web due to “small world phenomenon” it should be

small. Thus, O(flow) = O(|V |). For graphs that exhibit
structures with very long paths like the spiral Iterations

can be significantly large requiring, also, small values of

Tolerance.

2) O(maniReconstruct) = O(|V r| · |V |) as the algorithms
just parses the FlowsSingle matrix.

3) O(maniMap) = O(laplacianEigenmap) + O(|V r| · |V |)
and as the laplacianEigenmap operates on a very

small matrix we can safely ignore it and say that

O(maniMap) = O(|V r| · |V |).
From the aforementioned the time complexity is

O(maniweb) = O(|V r| · |V |).
In an analogous manner the space complexity in Big-O

notation can be defined as O(maniweb) = O(maniReduce) +
O(maniReconstruct) + O(maniMap). The entire algorithm de-
mands storage of the full graph in sparse format that is O(|E|)
and for each particular function we have the following.

1) O(maniReduce) = O(|V r| · |V |) as the biggest matrix
produced is the Flows.

2) O(maniReconstruct) = O(|V r| · |V |) as the biggest ma-
trix is the FlowsSingle.

3) O(maniMap) = O(|V r| · |V |) as the biggest matrices are
the FlowsSingle and Y .

Thus, O(maniweb) = O(|E| + |V r| · |V |) then the space
complexity is O(maniweb) = O(|E|).

D. Input Graph Restrictions

In Section III we defined the graph G to be symmetric, non-

loop, connected, and positively weighted. These requirements

are related to the graph normalization anorm(). Of course we
may only require the graph to be connected and positively

weighted by altering anorm() to produce the traditional tran-
sition matrix of PageRank where each column sums to 1. The
results are similar to the default normalization method. Another

reason for which we chose this normalization method and to

force the full graph to be symmetric is to prevent sinks where

a few nodes absorb all the flow since random jumps are not

included in our approach as we meant to approximate Laplacian

eigenmap. The ability to replace the normalized matrix with

another that does not need to obey the symmetricity and no-self
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connections requirement is an advantage of Mani-Web against

the original Laplacian eigenmap.

VI. MANI-WEB BENCHMARK

As the Mani-Web is an approximation of the original Lapla-

cian eigenmap it is reasonable to assess the performance and

quality representation by comparison.

A. Representation quality

We quantify quality by estimating the errors between the em-

bedding produced fromMani-Web against the Laplacian eigen-

map on artificial manifolds. We evaluate the k = 1 : |V | nearest
neighbor set for all nodes and we average all the relative dis-

agreements. That way we examine both local and global preser-

vation of the embedding where values close to zero indicate

good representation.

Fig. 3 illustrates each artificial manifold in the first column,

the Laplacian eigenmap result in the second, and the Mani-Web

result in the third (Tolerance = 0.001). The presentedmanifolds
starting from the top row are: 3-D clusters, corner planes, Gaus-

sian, occluded disks, punctured sphere, swiss roll, swiss hole,

toroidal helix, and twin peaks. Fig. 4 records the nearest neigh-

bor error for varying levels of Tolerance. As it can be seen in

both figures the results are both visually acceptable and typically

below 10%. These artificial manifolds challenge Mani-Web as
they do not demonstrate “small world” phenomena thus the

flow() converges slowly. The datasets include 800 points and
the respective graphs are constructed by connecting the eight

nearest neighbors that uses the MANIfold Learning MATLAB

Demo available at http://www.math.ucla.edu/∼wittman/mani.
Fig. 5 shows the linear increment of the boundary nodes as

Tolerance is reduced.

B. Scale up

For experimentation purposes we have constructed low den-

sity random graphs with |V | = 2(2:22) . Fig. 6 demonstrates the

true strength of Mani-Web (Tolerance = 0.01), close to linear
complexity, even for very large graphs (4million nodes). As can
be seen, the original Laplacian eigenmap, managed to run only

for at most |V | = 32 768 both because of the time and space
complexity (Matlab eigs implementation [29], [30]).

VII. MANI-WEB ONWEB GRAPHS

We have crawled two websites, the National Geographic with

|V | = 58 347 and theWikipedia onDVDwith |V | = 19 488 and
run Mani-Web for Tolerance = 0.01.

A. Locating Web-Communities

The result of Mani-Web for the National Geographic is de-

picted in Fig. 8. This image is not the entire map, but only a

zoomed area. The entire graph is full of Web communities of

varying sizes appearing as high-density areas. Fig. 9 is a plot

of the eigenvalues that indicates that only two dimensions are

enough to represent the geometry.

Fig. 3. Manifold Laplacian eigenmap. Mani-Web.

The embedding of the Wikipedia on DVD site is illustrated

in Fig. 7, zoomed at a specific area. The absence of Web com-

munities is apparent as there are no crisp densities. This can be

explained by the fact that each article may link to many oth-

ers unrelated thematically just because they share a common

keyword for which an article exists. Finally, Fig. 9, displays the
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Fig. 4. Effect of Tolerance in representation quality.

Fig. 5. Effect of Tolerance on |V r|.

Fig. 6. Scalability of Mani-web.

Fig. 7. Wikipedia on DVD Web site: Mani-web.

Fig. 8. National Geographic Web site: Mani-web.

eigenvalues, which indicate that only two dimensions suffice for

the mapping.

B. Web-Communities as Client Attractors

Given a set of cooperating surrogate servers, a set of clients,

and a website, the problem is to identify web-communities and

to place them inside the limited capacity caches of the surrogate

servers. By distributing the web-communities in the surrogate

servers we proactively predict the clients’ requests as a random

surfer will most likely visit pages of the same community. A

good community is the one that predicts many requests and is

as small as possible.

One of the state-of-the-art algorithms in this area is the CiBC

[18]. According to CiBC the nodes of the graph are selected by

preferring the ones with the smallest betweenness centrality [31]

at the bounds of the graph. Then, the nodes are being merged

into possibly overlapping communities and the process iterates

until no further merging can lead to a better community. Due to

its polynomial complexity CiBC is suitable for medium-scale
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Fig. 9. Increment of error by using extra dimensions. |V r| is the maximum
number of dimensions.

graphs on the context of an entire website only. As is focused

on optimizing the content delivery of a CDN, CiBC detects

communities that most likely capturemany requests of a random

surfer.

At this point we give a possible practical application of Mani-

Web in the context of CDNs by comparison with the CiBC al-

gorithm. By the usage of the National Geographic graph we

applied the CiBC algorithm resulting into 98 communities. By

the usage of the same number of communities we performed k-

means clustering on the Mani-Web 2-Dresult and the resulting

clusters are the considered communities for Mani-Web. Using

the same tool that CiBC was originally tested on we have gen-

erated 150 000 client transactions. A transaction is a sequence
of web pages that a random surfer could visit if she followed

the web-graph linkage probabilistically.

The cost of any transaction is defined as the sum of the nodes

that belongs to every community that are necessary to satisfy

the transaction. If for many transactions only a small portion

of the website is required to be present in the cache then we

consider it to be a good clustering. Fig. 10 records the quality of

Mani-Web and CiBC as a cumulative distribution function plot.

The x-axis represents the portion of the website that is required
for a transaction to be successful. The y-axis represents the cu-
mulative probability for a transaction to be satisfied if a specific

portion of the website is available. For a clustering to be good

the curve must have a steep curve early on and to cover with

high probability many transactions given a very small website

portion. As can be seen Mani-Web demonstrates this character-

istic outperforming CiBC. CiBC has detected a few very large

clusters, that absorb many transactions that lead to unoptimized

cache usage. On the other hand, Mani-Web managed to out-

line well-sized coherent clusters as is clearly visible from the

curve. Although the results that encourage further investigation

is necessary.

Fig. 10. CDN cache performance.

VIII. MANI-WEB IN PRACTICE

Mani-Web could be exploited by almost every topic relevant

to dimensionality reduction, graph embedding, data mining, and

visualization. This is true since whenever Laplacian eigenmap is

suitable, Mani-Web can be applied too with appropriate tuning.

On the Web scene, we identify two major target groups that

could benefit from Mani-Web: 1) the Web site owners and 2)

the users who access the website, in the following areas.

1) Website administration: For instance, a website that con-

tains thematic categories and embeds community organi-

zation could be more easily navigated by users, since once

a user reaches a page of interest, relevant pages could be

easily accessed (due to the communities increased linkage

density). In a community-absent website, inferior user ex-

perience can be easily handled by the administrators who

could use the Mani-Web maps to tune usage mining.

2) Caching and prefetching: Once a 2-D display is produced,

the administrator, by the usage of a “lasso” tool, the re-

vealed communities can be selected and become available

as outsourcing units for the CDN. The selected communi-

ties are also suitable for caching and prefetching since they

can predict users navigation, due to their dense linkage and

the fact that they deal with coherent topics. Therefore, the

communities may reduce the latency significantly, if they

are placed in a CDN or in a traditional Proxy server.

3) Information retrieval: The reduced-graph, produced by

Mani-Web can be exploited as an index structure of the

original full data representation graph. In the context of

search engines, an algorithm could use the Mani-Web

reduced-graph to speed up the initial filtering stage of

a query and at the refinement stage would have to par-

tially retrievemore nodes according to the distributed flow.

Another use of Mani-Web could be in interactive recom-

mendation engines since given an initial user choice, the

system can quickly examine the position of this choice

in the Mani-Web map and then provide a set of relevant

choices ranked by the flow.
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IX. CONCLUSION

Bringing together, and in the context of Web, manifold-

learning theory, graph-embedding, and data-reduction, Mani-

Web as an efficient algorithm for embedding large-scale graphs

within a low-dimensional coordinate space has been proposed.

Mani-Web produces a map faithful to the Laplacian eigenmap

but of close to linear time complexity with acceptable error. Fu-

ture research directions may include time varying networks and

content/label-loaded graphs.
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