
ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e l sev i er . com/ loca te /cose

c o m p u t e r s & s e c u r i t y 2 6 ( 2 0 0 7 ) 1 2 0 – 1 2 9
Clustering subjects in a credential-based access control
framework

K. Stoupa*, A. Vakali

Aristotle University of Thessaloniki, Thessaloniki, Greece

a r t i c l e i n f o

Article history:

Received 5 November 2005

Revised 5 July 2006

Accepted 3 August 2006

Keywords:

Access control

Clustering users

Credentials

XML-based access control

Access request evaluation time

a b s t r a c t

Currently, access control of distributed Internet resources (such as files, documents and

web services) has become extremely demanding. Several new access control models

have been introduced. Most of the proposed approaches increase the complexity of the ac-

cess control procedure and at the same time expressing these models is becoming compli-

cated. Improving the execution time of the access control procedures is a challenging task

due to the increased number of resources (available over the Internet) and the size of the

audience involved. In this paper, we introduce an approach for speeding up the access con-

trol procedure under an environment accessed by known subjects (i.e. subjects whose

identity and attributes are known apriori through a subscription phase). This approach is

based on some update functions (employed at the background during idle times) over files

which are associated with subjects. The core task of the proposed update is its dynamic

nature and its clustering of subjects according to their interests and credentials. Moreover,

this work associates subjects with security policies that are most likely to be triggered

according to (the subjects) interests. Credential-based access control is considered to prop-

erly protect frameworks distributing resources to known subjects and here emphasis is

given to the complexity involved in order to decrease the access request evaluation time

under a credential-based access control framework.

ª 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Web-based environments offer a wide range of resources to

a heterogeneous audience and the access control procedures

involved should cope with a large number of policies express-

ing which clients (i.e. subjects) can access which protected

resources (i.e. objects). In an effort to reduce the number of pol-

icies that need to be specified, modern access control models

have been proposed (see Castano and Ferrari, 2003; Pallis et al.,

2004; Stoupa and Vakali, in press for a discussion of the most

widely-used access control models). Furthermore, centralized

access control mechanisms cannot cope with distributed net-

worked computing environments since they should cope with
* Corresponding author.
E-mail addresses: kstoupa@acn.gr (K. Stoupa), avakali@csd.auth.

0167-4048/$ – see front matter ª 2006 Elsevier Ltd. All rights reserve
doi:10.1016/j.cose.2006.08.006
new security issues (such as separation of duties, and consis-

tent control throughout the network; Ward and Smith, 2002).

Moreover, the increased number of subjects leads to an expo-

nential increase of the number of the needed security policies.

Therefore, expression of policies for groups of subjects

seemed mandatory. Credential-based access control model

(Winslett et al., 1997) seems to be a solution for such frame-

works, since each subject is associated with some attributes

(forming its credentials) and authorizations are assigned to

credentials (or credential expressions) and not subject

identities.

Although, the goal of modern access control models was to

reduce the number of policies that need to be specified, by
gr (A. Vakali).
d.

mailto:avakali@csd.auth.gr
mailto:avakali@csd.auth.gr
http://www.elsevier.com/locate/cose


c o m p u t e r s & s e c u r i t y 2 6 ( 2 0 0 7 ) 1 2 0 – 1 2 9 121
grouping subjects and/or objects according to their character-

istics or by organizing them into hierarchies where each set of

user is assigned a security clearance (Yang and Li, 2004), the

number of subjects and objects has been increased so much

that the number of needed policies still remains huge. Addi-

tionally, a fine granularity level for access control is often a -

requirement, in that web resources often contain information

at different sensitivity levels. As a result, time delays required

for evaluating the associated policies and granting or denying

access may cause subject’s inconvenience. Although many

access control models have been proposed for the Web (Chak-

rabarti, 2003), few research efforts have addressed such a

‘‘delay’’ problem. For example, in an effort to propose effective

access control services, Murata et al. (2003) have introduced

the use of static analysis in improving access queries and

thus decreasing time delays. Carminati and Ferrari (2005)

propose the use of Access Control XML (AC-XML) documents

containing for each object (either XML document or DTD)

the associated policies. In this context, we focus on speeding

up the access control procedure involved in a credential-based

environment.

This paper proposes an access control technique that can

be employed for protecting any web data source (whose struc-

ture will be given through XML files and XML Schemas), where

known subjects can have access and the policies are specified

according to the credential-based paradigm. The proposed

technique aims at decreasing the access request evaluation

time and we assume that the data, the credentials, and the

policies are encoded in XML. Our paradigm can work with

any XML-based security language but we have adopted X-Sec

(Bertino et al., 2001) (an XML-based security language) to ex-

press the credentials and the policies. To simplify the process

of evaluating subject credentials against access control

policies, all the credentials a subject possesses are placed

into an XML document, called subject profile. Subject profiles

are maintained by the protected organization. More

specifically, the main contribution of the proposed work is

summarized in:

� using the so called ‘‘dynamic update’’ method on associating

subjects with policies for speeding up the access request eval-

uation phase. Each subject, apart from other attributes, will

be associated with policies which are more possible to be

triggered in a future access. The list of the associated poli-

cies is modified dynamically as the subject accesses objects,

and it is stored in a separate file associated with the subject.

This method can be considered mostly in subscription-

based systems, in that it requires the server to store the

subject credentials.

� grouping of subjects according to their interests (Middleton

et al., 2004; Wang et al., 2004; Xie and Phoha, 2001) and their

credentials. This grouping is inspired from the ideas pro-

posed in earlier research efforts related to Web clustering

(Baldi et al., 2003; Chakrabarti, 2003; Jain et al., 1999; Jeng

et al., 2002). Subjects are initially grouped into the (so called)

interest clusters according to their interests such that sub-

jects with common interests are organized into the same

cluster. The interest clusters are refined by, also considering

the credentials of the members, a filtering which may be

applied by using two distinct practices:
1. Content-based filtering: each subject is associated with

a vector of objects he/she has accessed in the past and

how many times. By using content-based filtering we

can extract the interests of the subject, i.e. the object cat-

egories which he/she is most likely to request in the

future.

2. Collaborative filtering: identifying subjects who own similar

interest profiles and measure the similarity between such

profiles. It is assumed that subjects with similar interests

and credentials are likely to trigger common access

control policies. Therefore, we build a list of such policies.

� presenting a complexity analysis for the proposed access re-

quest evaluation procedure in order to prove improvement

in the involved time. The complexity analysis estimates

the complexity of the algorithms describing the access re-

quest evaluation procedure under the proposed approach

(dynamic update approach) and the typical access request

evaluation procedure. The results of the analysis are given

in a separate table.

The rest of the paper is organized as follows. Section 2 gives

a scenario that will be followed throughout the paper. Section

3 discusses the dynamic update approach. Section 4 gives the

complexity analysis of the access request evaluation in the

dynamic update approach and in a typical access control envi-

ronment. Finally, Section 5 concludes the paper and discusses

future work directions.

2. An access control scenario

Consider a network belonging to the organization

‘‘X-Company’’ which can be accessed by both internal users

and external ones who request access through the Internet.

In both cases requesting subjects should be known to the or-

ganization, thus they should subscribe first in order to be asso-

ciated with some credentials. Some of the defined credential

types in ‘‘X-Company’’ are: general manager, financial man-

ager, accountant, and secretary. Moreover, we assume that

this company stores its data under the XML standard so the

protected (XML-oriented) documents are organized into cate-

gories according to their purpose (e.g. invoice, report) and they

are stored in a separate database. Here, we use a particular

XML document as a running example which refers to payroll

information about employees of the ‘‘X-Company’’. As shown

in Table 1, the DTD1 specifies the payroll information about

employees of a specific department.

A user requesting access to the ‘‘X-Company’’ should first

subscribe in order to be associated with some credentials (sub-

scription phase), i.e. each user is associated with both a subject

profile (summarizing his/her credentials) and as many creden-

tial files as his credential types. In order to present the access

request evaluation, we introduce a policy base, which has

four distinct policies. According to X-Sec, we represent a policy

p as a tuple:

p ¼ ðcred� expr; target; path; priv; type;propÞ;

1 In this paper we use DTDs for brevity reasons. In the imple-
mentation XML Schemas are adopted.



c o m p u t e r s & s e c u r i t y 2 6 ( 2 0 0 7 ) 1 2 0 – 1 2 9122
to declare that subjects denoted by cred-expr (which is a spe-

cific credential name or a credential expression) are allowed

or not allowed according to the type to exercise privilege priv

on the portion path of the protection object target. The prop

defines the propagation mode of the policy. Three options

are provided for the propagation: cascade, meaning that the

policy propagates to all the direct and indirect sub-elements

of the elements on which the policy is specified; first level,

meaning that the propagation is limited to the direct children;

and no-prop, denoting no propagation option. Some examples

of access control policies are presented in Table 2 which de-

fines that all managers can read the salary and the hire date

of every employee (policies 1, 2). Moreover, the general man-

ager can modify every XML file following the payroll.dtd

(policy 3) and the human resources manager can modify the

hire date element of every file following the payroll.dtd

(policy 4).

3. The dynamic update approach

The proposed dynamic update approach is tailored for a sub-

scription-based environment (such as a confined network

of an organization), where subjects should first subscribe in

order to request access. Such environments operate as the

‘‘X-Company’’ network which may be accessed over the

web. Each subject is associated with some credentials during

an initial so called subscription phase (e.g. such credentials

can be manager, financial manager, accountant, and

secretary).

Fig. 1 illustrates the modules underlying the dynamic up-

date approach and the phases involved which are described

as follows:

1. Subscription phase: the subject interacts with the subscrip-

tion module by sending his/her credentials and his/her

interests (optionally). Upon the receipt of such information

the module creates a number of credential files associated

Table 1 – An example of a resource DTD: the payroll.dtd

<!DOCTYPE payroll [

<!ELEMENT payroll (employee*)>

<!ELEMENT employee (name, hireDate, salary)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT hireDate (#PCDATA)>

<!ELEMENT salary (#PCDATA)>

<!ATTLIST payroll Dept CDATA #REQUIRED>

]>
with the subject and a subject profile, summarizing the cre-

dential types of the newly subscribed subject. Moreover, it

creates an interest profile, containing the explicitly defined

interests of the subject.

2. Access control phase: this phase is divided into two sub-

phases:

a. Dynamic Update: in order to understand the functionality

of this task some extra files are required, which are

encoded in XML, created and dynamically updated in

the background during idle times. Those are (a) the

access log file, containing the objects that have been

accessed by the subject and the frequency of accesses

(for how many times there have been accessed objects

of this category), and (b) the subject policy file, containing

the list of policies that are more likely to be triggered by

the associated subject, and (c) the object category file asso-

ciating each XML Schema with a category. The category

of each .xml file is defined by the category of the XML

Schema it follows. Fig. 1 depicts the process of generating

and updating these files, which is summarized in the

following:

i. The update access log file module periodically scans the

systems’ log file and updates the subjects’ access log

files. Initially, this file is empty and it is updated after

the associated subject has been granted at least one

access.

Fig. 1 – Dynamic update approach.
Table 2 – An example of access control policies

SN Cred-expr Target Path Type Priv Prop

1 /manager payroll.dtd /payroll//salary þ Read No-prop

2 /manager payroll.dtd /payroll//hireDate þ Read No-prop

3 /manager[@type¼ ‘‘general’’] payroll.dtd – þ Write –

4 /manager[@type¼ ‘‘humanResources’’] payroll.dtd /payroll//hireDate þ Write No-prop



c o m p u t e r s & s e c u r i t y 2 6 ( 2 0 0 7 ) 1 2 0 – 1 2 9 123
ii. The update interest profile module takes as input the ac-

cess log file and according to the access frequencies of

each object type updates implicitly defined interest

part of the interest profile of the associated subject.

iii. The clustering subjects module takes as input the inter-

est profiles and the subject profiles of all subjects and

clusters them according to their interests and creden-

tials using collaborative filtering techniques (a more de-

tailed description is given in Section 3.2).

iv. Finally, the update subject policy file module updates the

policy files of all the subjects belonging in the same

cluster with the policies that have been triggered by

the other members of the cluster.

The proposed dynamic update functions are designed for

being executed in the background and on idle times (e.g.

late at night) such that the system idle times are exploited

towards improving the access request evaluation process.

b. Access Request Evaluation: after the dynamic update func-

tions have taken place, the access control module re-

sponses more quickly to the access request of the

subjects. Indeed, upon a new access request arrives the

module scans the policy file of the requesting subject

and if it finds a matching policy it triggers it otherwise,

it scans the policy base to find a policy granting the ac-

cess. If a policy is found a reply is sent to the subject

and the systems log file is updated.

3.1. Structure of the files involved

The proposed dynamic update function is based on some

more files such as the access log file (its DTD is given in

Fig. 2(a)) which is used to organize the accesses of the associ-

ated subject (i.e. such a file contains a list of entries organized

according to object categories). Each entry associates an object

category with the number of accesses to it, the type of access

mode and the policy used. In order to generate or update this

file (update access log file module), the system’s log file should

be scanned. Every time the system finds an entry referring

to a subject, it activates the associated access log file. The sys-

tem finds the category of the accessed object (by scanning the

object categories file) and the access mode and finds the appro-

priate access element in order to increase the frequency by

one and add the identifier of the policy triggered by that

access. To find the new interests of the subject, the frequency

element should become zero periodically in order to discover

if interests change or not.
The interest profile contains both explicitly defined inter-

ests (i.e. object categories) and implicitly defined, and its

DTD is given in Fig. 2(b). The part of the file that is automati-

cally updated is the implicitlyDefined element. The term

‘‘interests’’ refers to object categories (i.e. similar objects, or

objects belonging to the same category, e.g. invoice) that the

subject has explicitly declared to be of her/his interest. Cer-

tainly, such interests may change and the system can implic-

itly realize such by analyzing the access log file of the subject.

Thus, the interest profile update module may frequently scan

the access log file in order to find out whether the subject fre-

quently accesses specific object categories (i.e. the frequency

attribute of the specific object category element is greater

than a threshold) which do not belong to his interests list. In

such a case another object category is added to the implicitly-

Defined element.

The subject policy file (its DTD is given in Fig. 3) contains the

list of policies that are more likely to be triggered by the asso-

ciated subject. This file is organized according to the object

categories for which one the accesses frequency is defined.

Moreover, for each object category, it contains a list of policies

referring to this category or to a specific object belonging to

this category.

Each policy element has the same elements as those

defined in Section 2 (i.e. cred-expr, path, target, priv, type,

prop). When the file is initialized it includes the object cate-

gories which are the explicitly defined subject’s interests

(according to the interest profile) and later on, the access log

file is scanned in order to find the policies referring to the

implicit interests. Those functions are executed by the update

subject policy file module.

3.2. Clustering of subjects

We propose the organization of subjects into clusters in order

to improve the execution time of the overall access request

evaluation process. The clusters are defined based on twofold

information:

1. Interests: by scanning the interest profiles of the subjects,

where each object category belonging in the interests of

a subject is associated with a frequency and based on this

information we can adopt an approach originating from

the Latent Semantic Indexing (Jiang, 1997) idea to represent

important associative relationships between subjects and

interests.
<?xml version="1.0"?>
<!DOCTYPE accessLogFile [
<!ELEMENT accessLogFile (access+)>
<!ELEMENT access (objectCategory, accessMode,

frequency, policyID)>
<!ELEMENT objectCategory (#PCDATA)>
<!ELEMENT accessMode empty>
<!ATTLIST accessMode
type=(read|write|execute)>
<!ELEMENT frequency (#PCDATA)>
<!ELEMENT policyID (#PCDATA)>
]>

<?xml version= “1.0” ?>
<!DOCTYPE interestProfile [ 
<!ELEMENT interestProfile (explicitlyDefined,

implicitlyDefined)>
<!ELEMENT explicitlyDefined (objectCategory?)>
<!ELEMENT implicitlyDefined (objectCategory?)>
<!ELEMENT objectCategory (#PCDATA)>
]>

(a) (b)

Fig. 2 – The DTD of (a) access log file and (b) interest profile.



c o m p u t e r s & s e c u r i t y 2 6 ( 2 0 0 7 ) 1 2 0 – 1 2 9124
<!xml version=”1.0”>
<!DOCTYPE subjectPolicyFile [
<!ELEMENT subjectPolicyFile (objectCategory+)>
<!ATTLIST subjectPolicyFile id ID #REQUIRED>
<!ELEMENT objectCategory (policy+)>
<!ATTLIST objectCategory name #CDATA #REQUIRED>
<!ATTLIST objectCategory frequency #CDATA>
<!ELEMENT policy (cred-expr, target, path?, priv, type, prop)>
<!ATTLIST policy id ID #REQUIRED>
<!ELEMENT cred-expr (#PCDATA)>
<!ELEMENT target (#PCDATA)>
<!ELEMENT path(#PCDATA)>
<!ELEMENT priv empty>
<!ATTLIST priv value (read|write|execute)>
<!ELEMENT type empty>
<!ATTLIST type value (+|-)>
<!ELEMENT prop empty>
<!ATTLIST prop type (no-prop|first-level|cascade)>
]>

Fig. 3 – DTD of the subject policy file.
2. Credentials: consider the credentials of the subjects and

prior to considering a new policy triggered by a subject for

clustering we evaluate both the subject’s interests and the

credentials.

Clustering is executed by the clustering subjects module

(Fig. 1) in order to continuously update subject policy files

with the policies triggered by other subjects belonging to the

same cluster. Moreover, the list of policies will be updated

automatically and it will be modified every time the interest

of the associated subject changes. We also consider a thresh-

old defining the maximum number of policies that can be

added in the policy list concerning an object category, and

every time this threshold is exceeded, garbage collection takes

place (i.e. update of the policy list to contain only frequently

triggered policies).

3.3. The access request evaluation process

Each access request can be modeled by the tuple (cred-expr,

target, path, priv), which involves the elements similar to those

defined previously in the policy tuple (in Section 2). The access

request evaluation procedure proposed here under the

dynamic update approach involves the following tasks:

Task 1: find the subject policy file associated with the

requesting subject.
Task 2 (implemented by scanSubjectPolicyFile( )): scan the list of

policies in the subject policy file related to the category of

the requested object until finding a match, i.e. evaluate

the policies until you find a policy that can be triggered. If

a match is found, return the policy to the access control

module else execute task 3.

Task 3 (implemented by scanPolicyBase( )): find in the policy

base the list containing policies related to the obj-cat of the

requested object and scan it until you find a policy that

can be triggered. If a match is found, return the policy to

the access control module else execute task 4.

Task 4 (optional): return the policy id value to the access

control module.

The overall access request process is sketched in Fig. 4

where the above tasks are highlighted in an algorithmic fash-

ion. The functionality of this algorithm is dependent on the

following characteristics:

� The objects are organized into categories according to their

XML Schema. For instance, with reference to the example

given in Fig. 1, since payroll.xml is an instance of pay-

roll.dtd, then such XML file belongs to the object category

payroll (object categories are identified by the term obj-cat).

� Credential types are not organized into hierarchies for

simplicity reasons.

� The policy base is also organized according to the object

category of the object that a policy protects.
Algorithm 1 : Access Request Process
INPUT: A request r=(cred-expr, target, path, priv) 
OUTPUT: A policy id that can be triggered or a null value if no policy can be triggered. 

PolicyId pid=null;
find the subjectPolicyFile associated with the requesting subject  //Task 1
pid=scanSubjectPolicyFile(r, subjectPolicyFile);  //Task 2
if pid!=null: return pid; 
else: goto policy base;

pid=scanPolicyBase(r);    //Task 3
return pid;  //Task 4

Fig. 4 – The access request processing algorithm.



c o m p u t e r s & s e c u r i t y 2 6 ( 2 0 0 7 ) 1 2 0 – 1 2 9 125
� Only the no-prop propagation option is considered for

simplicity reasons.

The two above mentioned functions, namely the scanSub

jectPolicyFile( ) (in task 2) and the scanPolicyBase( )

(in task 3) are highlighted in Fig. 6. Fig. 6(a) summarizes the

scanSubjectPolicyFile employed by the access control module

to verify whether the access request can be granted only by

inspecting the subject policy file. This function makes use of

the policyEvaluation( ) function (given in Fig. 5), that compares

the relating fields of an input policy p and an access request

r to discover if they match (in case of no match true is

returned). More specifically, in comparing policy p and request

r the following checking actions take place:

1. Is the priv of the request equal to that of the policy?

2. Does the requesting subject own the credential type given

in the cred-expr of the request?

3. Is the path of the request equal to that of the policy and is

any of the following cases also addressed?

a. The target of both policy and request is similar.

b. The target of the request is an XML file and the evaluated

policy’s target is the DTD that is followed by the request’s

target.

In case that there is no matching policy found in the

subject policy file, we have to scan the part of the policy

base containing policies relating to the obj-cat of the target in

the input access request. Such a task is implemented through

function scanPolicyBase( ) which takes as argument the request

r, and returns the policy id if an appropriate policy can be found

(summarized in Fig. 6(b)). The following section presents the
complexity analysis of the access request evaluation process

by estimating the complexity of each task described

previously.

4. Complexity analysis of access request
evaluation procedure

In order to evaluate the proposed access request process func-

tions we identify the main parameters involved which are

summarized in Table 4. More specifically we consider that

the number of object categories is n and that for the subject

policy file of subject i, in the j-th object category we have (soci)j
policies. Since we consider to adopt garbage collection, each

(soci)j will be smaller than a threshold msoc which is the max-

imum number of policies that can be found in the policy list of

an object category. Moreover, the policies in the policy base

are also organized according to the object category of the re-

source they refer to and if the number of policies for a category

i is poci the maximum number of policies (under the n object

categories) is mpoc¼max(poc1, poc2,.,pocn).

According to the dynamic update approach the response

time of the access request evaluation process will be calcu-

lated by adding the completion times of the following tasks

(discussed in Section 3.3):

1. Task 1: find the subject policy file associated with the

requesting subject.

2. Task 2: scanning subject policy file in order to retrieve

an appropriate policy (implemented by scanSubjectPolicy

File( )).
boolean policyEvaluation (Policy p, Request r)
{

   Boolean found=false;
goto the associated subject file 

/*The loop evaluates the cred-expr field of the policy
       against the subject types found in the subject profile of the subject subj-id. */ 

for(i=0;i<ci;i++)
{   if (priv of policy p is equal to that of request r)

           {   if((the p credential type of cred-expr == credential type i of subj-id)
               {found=true;
                if (cred-expr of r is a credential expression referring to 
                                         credential type i)
                { open credential file referring to type i;
                  if (attribute condition is addressed)
                            found=true;
                  else found=false;
                }
               }
               if (found=true)

   if ((path of policy p is null)|| (
                (( path of policy p is equal to that of request r)&&(target of
                           request r is equal to that of policy p))||
                ((target of request is an XML file)&&(target of policy is the DTD that
                      follows the target of request)))

{  return true;}
}

}
}
return false;

}

Fig. 5 – The policy evaluation function.



c o m p u t e r s & s e c u r i t y 2 6 ( 2 0 0 7 ) 1 2 0 – 1 2 9126
3. Task 3 (this task is only executed in the worst case, i.e. no

associated policy is found in the subject policy file):

scanning policy base for finding a policy to be triggered

(implemented by scanPolicyBase( )).

4. Task 4: send the policy identity to the access control

module.

Therefore, the response time of the access request evalua-

tion process in the worst case, when no policy is found in the

subject policy file, is given by the mathematical formula (1):

RTARE ¼ RTFSPF þ RTSSPF þ RTSPB þ TSend (1)

while in the mean case (which is estimated to take place in

the 80–90% of cases) the total response time is given by

formula (2).

RTARE ¼ RTFSPF þ RTSSPF þ TSend (2)

The definition of the times involved in formula (1) are given

in Table 3.

In order to evaluate the overall complexity of the

proposed access control approach we should estimate the

Table 3 – Times associated with the access request
evaluation process

Parameter Description

RTARE Time for evaluating an access request

RTFSPF Time for finding the appropriate subject policy file

(completion time of task 1)

RTSSPF Time for scanning subject policy file and retrieving an

appropriate policy (completion time of task 2)

RTSPB Time for scanning policy base and retrieving an

appropriate policy (completion time of task 3)

TSend Time for sending the policy id to the access control

module (completion time of task 4)

RTPE Completion time of the policy evaluation function.

TSCF Time for opening a credentials file

TFMP Time for scanning the policy list until we find a

matching policy.

RPLs Time for retrieving a policy list from a specific

subject policy file.

RPLp Time for retrieving a policy list from the policy base.

Table 4 – Parameters characterizing the access control
procedure

Parameter Description

m The number of subjects.

n The number of object categories.

(soci)j The number of policies in the policy list concerning

the j-th object category in the subject policy file of

the subject i.

ci The number of credential types of subject i

msoc Maximum number of policies in a policy list

referring to an object category in a subject policy file.

poci The number of policies in the policy base concerning

objects belonging in the i-th object category.

mpoc Maximum number of policies in a policy list referring

to an object category in the policy base.

mc Maximum number of subject types that a

subject can have.
complexities involved in each of the four tasks and thus,

the total complexity of the dynamic update approach in the

worst case will be:

OARE ¼ OFSPF þ OSSPF þ OSPB þ OSend (3)

while in the mean case it will be:

OARE ¼ OFSPF þ OSSPF þ OSend (4)

where

OARE: complexity of access request evaluation process.

OFSPF: complexity of finding the associated subject policy file

(task 1).

OSSPF: complexity of scanning subject policy file to find a

policy to trigger (task 2).

OSPB: complexity of scanning policy base to find a policy to

trigger (task 3).

OSend: complexity of returning an identity of the policy to be

triggered (task 4).

4.1. Calculating complexities for each task

In order to calculate the complexity of the access request eval-

uation process we should first evaluate the complexity of each

of the four involved tasks discussed in Section 3.3. Since tasks

2 and 3 involve the policy evaluation function it would be

better if we begin our analysis by computing the complexity

of this function.

4.1.1. Policy evaluation function (Fig. 5)
Since the cred-expr field is a credential type or a credential

expression (referring to a credential type), in order to decide

if there is a match we have to compare it with the creden-

tials in the subject profile of the requesting subject. In case

it is a credential expression, the associating credential file

should be opened in order to check if the condition is

addressed. Such a function will be executed at most once

and we define this as a time by the constant TSCF. There-

fore, if we consider that ci is the number of credential types

of subject i, for each policy evaluation we may have ci

checking actions. If mc¼max(c1, c2,.,cm), for the m subjects,

then the completion time of the policy evaluation function

will be:

RTPE ¼ TSCF þmc� Tcheck

Since Tcheck is considered to be constant, the complexity of

the policy evaluation function is (Table 4)

OPE ¼ OðTSCF þmc� Tcheck þ ÞzOðmcÞ: (5)

4.1.2. Task 1: find the subject policy file associated with
the requesting subject
In the dynamic update approach, we first scan the subject

policy file of the requested subject in order to discover a pol-

icy that can be triggered. The time for the retrieval of the ap-

propriate subject policy file is a constant (defined by RTFSPF)

since indexes are used on finding the appropriate subject

policy file. The time for accessing a specific entry in the

file using the index is proportional to the mean seek time,



c o m p u t e r s & s e c u r i t y 2 6 ( 2 0 0 7 ) 1 2 0 – 1 2 9 127
rotational latency and the page transfer time which are

specified for every storage system. Thus, the complexity of

this task is:

OFSPF ¼ OðRTFSPFÞzcs1

where cs1 is a constant.

4.1.3. Task 2: (scanSubjectPolicyFile – Fig. 6(a))
This task’s complexity will be evaluated by the actions of (a)

finding the appropriate policy list, and (b) scanning the policy

list until we find a matching policy, i.e:

RTSSPF ¼ RPLs þ TFMP

The first action is executed in a constant time RPLs since we

also use indices for finding policy lists in the subject policy

file, whereas for the second action we need to use the func-

tion getPolicy( ) which involves the retrieval of a policy. Since

msoc is the maximum number of policies in a list the loop

should be executed msoc times and every step of the loop

requires a call to the policyEvaluation( ) function which

according to Eq. (5) has a complexity of O(mc). Thus, the

complexity of the second action is O(msoc�mc). Thus, the

complexity of the whole task is:

OSSPF ¼ OðRPLs þmsoc�mcÞzc

þ Oðmsoc�mcÞzOðmsoc�mcÞ:

4.1.4. Task 3: (scanPolicyBase – Fig. 6(b))
This task’s complexity is characterized by the complexity of

(a) finding the appropriate policy list in the policy base, and

(b) scan the policy list until we find a matching policy which

is send to the access control module. The completion time

of this task is given by the following formula:

RTSPB ¼ RPLp þ TFMP

Again, the first action is executed in a constant time RPLp

and since mpoc is the maximum number of policies in a list,

the loop should be executed msoc times. Every step of the

loop involves the execution of function policyEvaluation

which has a complexity of O(mc), i.e. the complexity of the

second action is O(mpoc�mc) and the complexity of the
whole task is:

OSPB ¼ O
�
RPLp þmpoc�mc

�
zc

þ Oðmpoc�mcÞzOðmpoc�mcÞ:

where c is a constant.

4.1.5. Task 4: sending reply to the access control module
If no policy is found either in the subject policy file or in the

policy base a failure message is sent to the access control

module otherwise the policy identity is sent. The time

required for this task is a constant and thus:

OSend ¼ OðTSendÞzcs2

4.2. Overall complexity of the access request
evaluation process

In order to evaluate the complexity of the proposed approach,

we will consider an indicative example: suppose that a person

A.V. is the general manager of the ‘‘X-Company’’ and another

person K.S. is the manager of the human resources depart-

ment. After conducting clustering both of the above subjects

belong to the same cluster since they have similar interests

and credentials. If one of their common interests is objects be-

longing to the ‘‘payroll’’ category, then the subject policy files

of both of them will contain policies referring to this category.

Moreover, consider the following actions:

� A.V. requests to read the salary element of payroll.xml

following the payroll.dtd. In such a case the policy 1

from Table 2 is triggered and access is allowed. Since this

access refers to an object belonging in the interests of the

subject, an entry is added in the policy list of the associated

object category of her subject policy file.

� K.S. has already read and modified the hireDate element of

payroll.xml by triggering the second and the fourth policy,

respectively (Table 2). Since, the above object belongs to her

interests, the two policies are added to her subject policy file.

� In idle times the update subject policy file module will enrich

the subject policy file of A.V. with those policies triggered

by K.S. (and the other members of the cluster) which are

included in the payroll category policy list of her file and
/* retrieve a policy from the Source which is
/*             given as an argument. */

Policy getPolicy(Source from);
PolicyId scanSubjectPolicyFile (Request r,
                                     Source s)
{

find the policy list associated with the
             obj-cat of target of request r;

do
{   policy=getPolicy(s);

if (policyEvaluation(policy, r)):
return policy.id;

} while (the obj-cat of the policy target
           is equal to that or request target)

return null;
}

PolicyId scanPolicyBase(Request r)
{

find list associated with obj-cat of
                                     r.target;

do
{

  policy=getPolicy(PolicyBase); 
if (policyEvaluation(policy, r):

return policy.id;
} while (obj-cat of the policy target

           is equal to that or request target)
return null;

}

(a) (b)

Fig. 6 – Find a matching policy in the (a) subject policy file and (b) policy base.



c o m p u t e r s & s e c u r i t y 2 6 ( 2 0 0 7 ) 1 2 0 – 1 2 9128
VS. Therefore, the list of K.S. will be enriched with the first

policy and that of A.V. with the second policy.

Since subjects tend to request access to the same objects

most of the time, after some accesses their subject policy files

will contain the policies that are most likely to be triggered.

Thus, the worst case, when both the subject policy file and

the policy base should be scanned, will occur very scarcely.

Moreover, since the files are also enriched with those policies

that have been triggered by other members of the same clus-

ter, few accesses are enough to have a subject policy file that

will satisfy most of the access requests.

It should be noted that under a typical access request process-

ing approach when no dynamic update is involved, the overall

complexity is estimated by the execution of tasks 1, 3 and 4

and thus:

OARE ¼ OFSPF þ OSPB þ OSendzcs1 þ Oðmpoc�mcÞ þ cs2

¼ Oðmpoc�mcÞ

Under the dynamic update approach, two conditions may occur

(in the worst case):

1. No policy is able to be triggered from subject policy file (thus

the whole list of associated policies should be checked).

2. No policy can be triggered form the list of policies associ-

ated with the specified object category from the policy

base, and in such a case access is denied.

Therefore, in the worst case executing all of the four

tasks (according to formula (3)) will result in an overall com-

plexity of:

OARE ¼ OFSPF þ OSSPF þ OSPB þ OSendzcs1 þ Oðmsoc�mcÞ
þ Oðmpoc�mcÞ þ cs2¼ O½ðmsocþmpocÞmc�

since both loops have to be executed. Since msoc�mpoc

then the complexity of the access request evaluation in the

dynamic update approach converges to that of the typical

approach and it will be:

OAREzOðmsoc�mcÞ

In the mean case task 3 is not executed and therefore the

complexity according to formula (4) will be:

OARE ¼ OFSPF þ OSSPF þ OSendzcs1 þ Oðmsoc�mcÞ þ cs2

¼ Oðmsoc�mcÞ

Table 5 summarizes the complexities of the dynamic update

approach and the typical approach in the worst and mean

cases, respectively.

Table 5 – Complexity analysis of the dynamic update and
the typical approach for the worst and mean case

Type of approach Complexity

Worst case Dynamic update O[(msocþmpoc)mc]z

O(mpoc�mc)

Typical O(mpoc�mc)

Mean case Dynamic update O(msoc�mc)

Typical O(mpoc�mc)
Considering the above example, as subjects access the

system and dynamic update is executed, the subject policy

file is enriched with policies that are most likely to be trig-

gered. Therefore, it is expected that most of the times only

the subject policy file will be scanned in order to find the

appropriate policy to be triggered (mean case). In such

a case the complexity is O(msoc�mc), since only the subject

policy file should be scanned. Thus, it is expected that in

most of the cases the complexity of the access request

evaluation will be significantly reduced and in the worst

case (which will occur rarely) it will converge to the typical

approach.

5. Conclusions and future work

In this paper, we have proposed an approach for improving

access control execution time by using clustering. We have

tried to address the needs of subscription environments

where subjects’ attributes are given through credentials. The

dynamic update approach clusters subjects according to their

interests, which are identified by their access history. The

members of a specified cluster are likely to trigger the same

policies and therefore they are associated with them and

upon a request there is no need to scan the whole policy

base in order to find the appropriate policy to trigger.

According to a complexity analysis we found that the pro-

posed approach results in improved times. Due to the above

encouraging results and the few research work conducted in

the speeding up field, the proposed module is an immediate

future plan. We have already begun the implementation of

the subscription and the clustering module. Moreover, we

have defined the format of the involved files (subject policy

file, access log file, etc.) and we have checked the performance

of the dynamic update approach by also implementing a first

access control module protecting confined environments pro-

tecting XML files where few subjects can have access. Since

the first results are really promising, after we have imple-

mented the whole access control and dynamic update module

we will try to improve it in order to work for even open envi-

ronments where subjects are unknown. Furthermore, since

lately there is interest in controlling access to web services,

these promising results may find an interesting application

to environments protecting them.

r e f e r e n c e s

Baldi P, Frasconi P, Smyth P. Modeling the Internet and the web.
Wiley; 2003.

Bertino E, Castano S, Ferrari E. Securing XML documents with
author-X. IEEE Internet Computing May–June 2001;21–31.

Carminati B, Ferrari E. AC-XML documents: improving the per-
formance of a web access control module. In: Proceedings of
the 10th ACM symposium of access control models and
technologies. Sweden: Stockholm; 2005.

Castano S, Ferrari E. Protecting datasources over the web:
policies, models and mechanisms, web-powered databases.
Idea Group Publishing; 2003. p. 299–330.

Chakrabarti S. Mining the web. Morgan Kaufmann; 2003.



c o m p u t e r s & s e c u r i t y 2 6 ( 2 0 0 7 ) 1 2 0 – 1 2 9 129
Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM
Computing Surveys 1999;31(3):264–323.

Jeng H-J, Chen Z, Ma W-Y. A unified framework for clustering
heterogeneous web objects. In: Proceedings of the third
international conference on web information systems
engineering; 2002.

Jiang J. Using latent semantic indexing for data mining. Thesis
presented for the Master of Science Degree, The University
of Tennessee, Knoxville; 1997.

Middleton SE, Shadbolt NR, De Roure DC. Ontological user
profiling in recommender systems. ACM Transactions on
Information Systems 2004;22(1):54–88.

Murata M, Tozawa A, Kudo M, Hada S. XML access control using static
analysis. In:Proceedingsof the 10th ACM conference on computer
and communications security, Washington, DC, USA; 2003.

Pallis G, Stoupa K, Vakali A. Storage and access control issues
for XML documents, Web information systems. Idea Group
Publishing; 2004. p. 104–40.

Stoupa K, Vakali A. Policies for web security services, book
chapter in web and information security. In: Ferrari
E, Thuraisingham B, editors. Idea Group Publishing; 2006.
p. 52–72.

Wang Q, Makaroff DJ, Edwards HK. Characterizing customer
groups for an E-commerce website. In: Proceedings of ACM
conference on electronic commerce (EC’ 2004), New York,
USA; 2004.

Ward P, Smith CL. The development of access control policies for
information technology systems [Elsevier]. Computers and
Security 2002;21(4):356–71.

Winslett M, Ching N, Jones V, Slepchin I. Using digital credentials
on the world-wide web. Journal on Computer Security 1997;5:
255–67.

Xie Y, Phoha VV. Web user clustering from access log using
belief function. In: Proceedings of first international confer-
ence on knowledge capture, Victoria, British Columbia,
Canada; 2001.
Yang C, Li C. Access control in a hierarchy using one-way
hash functions [Elsevier]. Computers and Security 2004;23(8):
659–64.

Konstantina E. Stoupa received her B.Sc. degree in Computer

Science from the Department of Informatics at the Aristotle

University of Thessaloniki where she is currently a Ph.D.

graduate student. She has also received the M.B.A. degree

from the University of Macedonia in Thessaloniki, Greece. She

has published papers on Access Control using XML, Delegation

and Revocation of Authorizations and Roles, and Storage Sub-

systems in international journals and conferences. Her primary

research interests include Access Control especially in distrib-

uted, widely accessed environments. She is also a teaching

member in the Information Management Department of Tech-

nological Educational Institute of Kavala.

Athena I. Vakali received a B.Sc. degree in Mathematics from

the Aristotle University of Thessaloniki, Greece, a M.Sc. degree

in Computer Science from Purdue University, USA (with a

Fulbright scholarship) and a Ph.D. degree in Computer Science

from the Department of Informatics at the Aristotle University

of Thessaloniki. Since 1997, she is a faculty member of the De-

partment of Informatics, Aristotle University of Thessaloniki,

Greece (currently she is an Assistant Professor). Her research

interests include design, performance and analysis of storage

subsystems and data placement schemes for multimedia and

Web based information. She is currently working on Web data

management and she has focused on XML data storage issues.

She has published several papers in international journals and

conferences.


	Clustering subjects in a credential-based access control framework
	Introduction
	An access control scenario
	The dynamic update approach
	Structure of the files involved
	Clustering of subjects
	The access request evaluation process

	Complexity analysis of access request evaluation procedure
	Calculating complexities for each task
	Policy evaluation function (Fig.&nbsp;5)
	Task 1: find the subject policy file associated with the&nbsp;requesting subject
	Task 2: (scanSubjectPolicyFile &ndash; Fig.&nbsp;6(a))
	Task 3: (scanPolicyBase &ndash; Fig.&nbsp;6(b))
	Task 4: sending reply to the access control module
	Overall complexity of the access request evaluation process

	Conclusions and future work
	References


