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Abstract

Quality of service (QoS) has emerged as a new term in relation to adding innovation criteria in large scale

applications such as network based services, multimedia applications, storage services, etc. QoS has been
proposed in storage management towards effective disk space utilization and request servicing. This paper

presents a QoS based storage model for effective client negotiation in terms of performance, cost and reli-

ability. Clients can create their own profile with respect to certain QoS attributes in order to specify their

profile and requirements. A QoS negotiation model is proposed based on an available disk simulator which

is experimented under artificial request workload towards proposing improved system�s responsiveness,

performance and functionality. Certain remarks and conclusions are raised with respect to meeting the cli-

ents�s QoS requirements under the negotiated scheduling algorithms, the redundancy scheme and the capa-

city available to the client�s environment according to the client�s QoS requirements.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Quality of service; Storage subsystems; Attribute managed storage; QoS negotiation
1. Introduction

The term ‘‘Quality of service’’ (QoS) was introduced to describe certain technical characteristics
(mainly in communications technology) such as performance, speed and reliability. As demands
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for reliable and speedy storage increase drastically, it is effective to introduce QoS in storage sub-
systems. The increasing need for more efficient and effective storage configurations has become
more imperative due to the wide spread of multimedia data which demand great storage capacities
together with synchronization and appropriate retrieval. Thus, it is quite important to investigate
and evaluate QoS based storage subsystems.

Initially, the idea of QoS emerged to support networks functionality and became one of the
most elusive and ‘‘confusing’’ topics not only in the area of networks but in many areas of com-
puter science, since computer society individuals have assigned multiple meanings to this term. It
seems that hardware and software vendors, consumers and researchers have their own ideas and
definitions of the meaning of QoS, its functionality and its effectiveness. One first definition (by
the Reference Model for Open Distributed Processing) states that QoS is ‘‘a set of quality require-
ments on the collective behaviour of one or more objects’’ [25]. A more specialized definition in rela-
tion to QoS with multimedia applications is given in [25]: ‘‘Quality of service represents the set of
those quantitative and qualitative characteristics of a distributed multimedia system necessary to

achieve the required functionality of an application’’.
Conventional storage subsystems place data in random blocks on the disk. Such an architecture

cannot be widely applied for the storage of current applications data (such as multimedia) due to
possible unpredictable delays. Thus, new storage architectures and policies should be used in
order to succeed in implementing more effective and functional applications. Conventional disk
modeling and disk performance issues are discussed in [16,20,13] whereas in [5] disk arrays are
proposed as an attempt to maximize the performance and the reliability of the existing storage
systems. The main idea was that a storage subsystem could reach those goals by logically grouping
multiple disk drives into disk arrays. In such implementations the data array organization is de-
fined by their data distribution schemes and redundancy mechanisms. Disk scheduling policies
have been studied in early research efforts (e.g. [22]) whereas it always remain an open research
topic due to the importance of disk scheduling in relation to the storage system�s functionality
and responsiveness [15,19]. A variety of disk scheduling algorithms based on rotational position
is discussed in [9] whereas different approaches for continuous media disk scheduling have been
reported in [15,21].

Redundant array of inexpensive disks (RAID) are presented in [2,3]. More specifically, in [3]
design issues are studied, mathematical models are developed, and the performance of different
disk array architectures is examined, for both small and large I/O environments. Furthermore,
various redundancy storage models have been proposed, as in the case of using the so called shad-
owed disks [24]. Performance in relation to cost of redundant arrays of inexpensive disks is dis-
cussed in [14]. Furthermore, the use of parity disk(s) to serve as a redundancy mechanism for a
potential disk and system failure has been widely investigated in earlier research efforts (e.g.
[12,18]). A key technique for exploiting the potential for parallel access of the disk array is strip-
ing. In [11] two striping alternatives are considered Staggered Striping is a striping method and
uses the minimum width that can guarantee the continuity of the delay-sensitive data whereas
Streaming RAID method [23], when placing delay- sensitive data, uses the maximum width
(i.e. equal to the number of disks of the array) to achieve good performance through load balanc-
ing and high disk utilization. Furthermore, methods of random data allocation on disks combined
with partial replication to order to achieve load balance and high performance have been imple-
mented in [11,17].
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Attribute managed storage is discussed in [1,8] where the development of a new storage system
is proposed such that the system�s core would support user-oriented QoS. In such models a map-
ping of virtual to physical storage devices is introduced with quality of service guarantees. The
mapping of virtual stores on physical storage devices is expected to be optimized in order to
achieve balance in system performance against total system cost. Here, we consider the case of
attribute-managed storage in order to effectively manage storage resources with respect to the
most important characteristics such as scheduling, redundancy and multiple disk configurations.
Our goal is to facilitate the storage process by efficient resource utilization. It is quite important
for each client to determine the level and the type of QoS that (s)he requires. The clients negotiate
with the storage subsystem in order to specify a ‘‘profile’’ of storage medium usage such that each
user can utilize storage device(s) according to their needs.

The emergence of such systems has guided the present research effort towards evaluating the
QoS negotiation in storage subsystems. Since most organizations avoid buying heavy equipment
such as huge storage subsystems, the emergence of digital services ‘‘renting’’ such functionality
has been inevitable. In such a case the client should negotiate with the leasing company the
QoS characteristics of the storage system to be used. Client may have some QoS requirements re-
lated to cost, performance, reliability, etc., under a disk system which has several characteristics.
As most clients are not specialized in technical issues, the existence of a user friendly QoS param-
eters negotiation application intermediating between the client and the disk subsystem seems quite
efficient. The configuration of this system is shown in Fig. 1 where the client specifies its require-
ments which are filtered by the QoS negotiation system. Then a process is employed for mapping
the client�s QoS requirements to the underlying storage characteristics. Afterwards, the negotia-
tion process leads to a document with the resulting features of the subsystem able to satisfy the
needs of a client (possible contract). In case of an agreement, a contract signed by the QoS nego-
tiation system and the client indicates the end of the negotiation process, otherwise a cycle of rene-
gotiation immenses. Under a contract the ‘‘leasing’’ company is obliged to fulfill the terms of it,
e.g. the performance, the cost and the reliability levels.

The remainder of the paper is organized as follows: the next section introduces negotiation pro-
cess between the client and the system in order to agree on the required levels of QoS. Sections 3–5
are devoted to each of the considered phases namely the initialization, the association and the
negotiation phases (respectively). Section 6 presents the potential applicability of the proposed
work over storage hierarchies. Finally, conclusions and further research topics are highlighted
in Section 6.
Fig. 1. QoS negotiation process information.
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2. QoS negotiation

The idea of QoS can easily be imported in the implementation and usage of a storage system.
Certainly such an attempt may be proved really effective nowadays that a variety of applications
have emerged, i.e. commercial, scientific, etc. Moreover, much research has been conducted for
guaranteeing high QoS levels in multimedia applications which are categorized into: (a) presenta-
tion-based, such as video-on-demand services, where requirements are really limited, and (b) inter-

active applications, where real-time multimedia communication is obligatory.
The manipulation of the QoS parameters negotiation between the client and the system is really

significant process that a QoS-based storage system has to perform. QoS is determined by three
indicative issues:

• Performance: High performance in storage systems has been associated with minimum response
time (i.e. the time period between the generation of a request and its servicing) or minimum
seek time (i.e. the time period between the generation of a request and the detection of the posi-
tion of the first requested data block).

• Cost: Performance and cost are rising in accordance, i.e. while performance is maximized so
does the cost. Therefore, the evaluation of the total cost of a storage subsystem is really crucial
since in another case the user would always ask for best performance. In general, the cost of a
storage subsystem is determined by:
– The number of disks used.
– The disk model used.
– The maintenance cost in case of a failure (or avoiding a failure. Therefore, cost is in contrast

with reliability, i.e. low cost and high reliability can never meet.
It is meaningful to examine the cost of a storage architecture against its storage capacity.
(Here the cost of a disk system is expressed in US dollars.)

• Reliability: The possibility of a disk failure rises as the number of disks increases in a storage
subsystem (i.e. the more the disks the higher the possibility of ones failure) [5]. Therefore, in a
modern storage system consisting of a disk array we may win in availability and performance
but lose in reliability. As mentioned earlier, data redundancy has been widely used to increase
data availability and reliability in critical applications and several methods have been proposed
to organize redundant data across a disk array (used to recover lost data in the event of a disk
failure). Reliability is quantified by the possibility of failure during a given time period and the
number of concurrent failures the disk system can survive.

The required level for these characteristics may vary according to the application and the user.
As it will be discussed later, the goal of the negotiation system is to suggest a disk subsystem offer-
ing the requested performance, cost and reliability levels.

In this paper we consider a negotiation process as the one shown in Fig. 2. The process is di-
vided into three repeated phases:

1. Initialization phase: during this phase the client provides information about his/her needs and
requirements. Moreover, (s)he specifies whether (s)he is an advanced client (i.e. a client hav-
ing technical knowledge about storage subsystem features) or a typical one. Such a catego-



Fig. 2. The negotiation cycle.
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rization will be proved useful in the next phases. Afterwards, the QoS negotiation system
tries to identify which QoS requirements (e.g. performance, cost, etc.) are more significant
according to the presented information. The outcome of this phase is a report which contains
a summary of the above information and a list of ascending significance concerning the per-
formance, cost and reliability requirements. That report is internal and it is not presented to
the client.

2. Association phase: the QoS-based information given by the client is associated with disk sys-
tem parameters so as to fulfill the QoS requirements (e.g. high performance level). In case the
client has declared (her)himself an advanced client, (s)he is given the opportunity to decide
by (her)himself on the appropriate parameters through a user-friendly interface. The out-
come of this phase is again an internal report which is passed to the next phase mechanism.
An advanced client may be able to see this report.

3. Negotiation phase: the client is presented with the features of the suggested storage subsystem
and the QoS parameters values. In case of an advanced client, a sequence of diagrams are
produced showing how a QoS value (e.g. response time) varies according to the chosen
scheduling algorithm or data placement technique, etc. The outcome of this phase is an
external report, shown to the client, which contains the values of those parameters indicating
the levels of the QoS features (e.g. performance is indicated by the response and seek time).
The negotiation process ends through the signing of this report (in such a case it plays the
role of a contract). If the negotiation fails, then the above activities will be repeated until
negotiation succeeds. In this case we result in a renegotiation cycle.

The real burden is to maintain the agreed QoS values. Therefore, the system should continu-
ously monitor the system performance and apply correction mechanisms in order to restore the
system to its required condition.

As such a system is client-oriented, it should be user-friendly. Therefore, a careful design of the
user interface is quite significant for the success of a QoS-dependent storage subsystem. The best
method to be employed is the ‘‘Quality query by example’’ suggested in [10], i.e. to hide the inter-
nal system QoS parameters and ask the user to decide through a list of QoS examples (as we shall
see through graphs or reports).
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3. The initialization phase

During this phase the client is asked to provide some useful information which will assist the
QoS negotiation system to specify the storage subsystem parameters which will guarantee the re-
quested QoS level. The client input is given under a user friendly interface depicted in Fig. 3 where
two possible examples are given. In both cases the clients are advanced and need a storage sub-
system used for textual or numeric data. In both cases the workload is read-oriented. As for the
application these subsystem are destined to support are differentiated. i.e. in the first case the sup-
ported application is commercial one whereas in the second scientific one. Moreover, both systems
are rather demanding since they are about to serve real-time applications. Finally, the first system
will contain crucial data (i.e. data of high importance).

The first question that the client should answer according to Fig. 3 is whether (s)he is advanced
in technical issues concerning disk subsystems or not. Such an information will be proved useful in
later phases.

An important issue is whether the storage subsystem is required to manage synchronized (e.g.
multimedia) or textual workload. Textual and synchronized workload is considered since it is the
most widely used type of workload. Synchronized data is characterized by its continuous nature
(e.g. video or audio). As a result it demands a quite different manipulation due the following main
characteristics:

• Real-time storage and retrieval: Continuous media (CM) devices produce a stream of different
media which have to be stored in real-time. Also, CM data should be displayed on time and in
certain order. In summary, CM data places time deadlines and demands strict synchronization.
Fig. 3. Initialization phase interface for collecting QoS-related information (two examples).
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• High data transfer rate and large storage space: Continuous data (such as video) require high
transfer rate and high disk storage capacity.

• Timing requirements: When the client asks requires for time-dependent multimedia objects the
system is obliged to consume and produce data in a constant, gap-free manner (intramedia
synchronization).

• Intermedia synchronization: The different objects (video, audio and text) of a multimedia stream
have to be synchronized.

Moreover, we should be given an indication of the type of the workload, i.e. whether it consists
mostly of read or write requests. Write requests usually ‘‘suffer’’ from lengthy delays since the sys-
tem remains idle until it receives a confirmation about the completion of the write task. Therefore,
it is really important to adopt techniques and methods reducing this delay.

The rest parameters are associated with one or more QoS issues. For example, the type of work-
load is associated with performance. Table 1 shows that type of association. Based on the type of
application emphasis is given to either cost or performance (i.e. minimized response and seek
times). For example, in commercial and light applications cost is of great importance, whereas
in scientific and governmental applications performance is considered as more significant. An-
other characteristic that is highly associated to performance is whether the application is real-time
one or not since in the first case great concern should be given in performance. Finally, the storage
of crucial data demands great deal of reliability.

These associations are quantified by a point-system where each choice is given points concern-
ing performance, cost and reliability. These values are shown in Fig. 3 inside the ellipses. The con-
sidered points assignment is used to balance the criteria of performance, cost and reliability.
Performance is expressed as p, cost as c and reliability as r. Inside the parenthesis the points that
are added to the specific QoS issue are given (e.g. p (+1) means that one point is added to the per-
formance). At the end of the procedure the performance points are added up and so are the cost
points and the reliability ones. Afterwards, these QoS issues are listed according to ascending sig-
nificance and they are written into a distinct internal document which will be passed to the next
phase. In our examples, the reports shown in Fig. 4 will be produced. On the top of the document
the information given by the client is summarized. The most important part of the document is the
list of QoS issues which specify that in the first case the negotiation system should primarily focus
on low cost and high reliability and then on high performance whereas in the latter case great con-
cern should be given to performance. Therefore, the appropriate parameters should be chosen in
the next phase.
Table 1

Associating client-given information with QoS issues

Performance Cost Reliability

Type of application + +

Real-time application +

Crucial data storage +



Initialization Phase Report
Client: Advanced

Workload
Type: Textual-numeric
Form: Read-oriented

Application: Commercial

Real-time workload: Yes

Storage of crucial data: Yes

Ascending order of QoS issues
1.    Cost: 2 points

Initialization Phase Report
Client: Advanced

Workload
Type: Textual-numeric
Form: Read-oriented

Application: Scientific

Real-time workload: Yes

Storage of crucial data: No

Ascending order of QoS issues
1.   Performance: 3points

Fig. 4. The initialization phase reports related to the information given in Fig. 3.
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4. The association phase

The next phase in the negotiation process is the definition of the storage system parameters in
accordance to the client-given information and the report produced in the previous phase. These
parameters are categorized in:

1. Disk parameters: which consist of the data placement and redundancy parameters. Moreover,
the number and the models of the used disks are defined.

2. Scheduling algorithm: the disk scheduling algorithm for servicing requests.
3. Initial delays: According to the workload form (read or write-oriented) parameter, the over-

head time and the initial delays are defined.

Table 2 refers to the association between the QoS issues (performance, cost and reliability) and
some other characteristics of the application to use such a system (given through the report of the
initialization phase) given in the rows, with the storage system parameters given in the columns.
Table 2

Associating client-given information and QoS parameters with storage subsystem parameters

Disk parameters Disk

scheduling

algorithm

Initial

delaysData placement Data redundancy Number of disks Disk model

Type of workload + + + +

Read–write requests + + +

Performance + + + + + +

Reliability + +

Cost + + + +
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For example, reliability is associated with data redundancy technique and the number of the used
disks, i.e. in order to modify the values of the reliability parameters (e.g. possibility of failure, abil-
ity of surviving multiple failures) the negotiation system should modify data redundancy tech-
niques and the number of disks.

Disk parameters refer to the definition of the data placement techniques and the redundancy
scheme to be used. Two more disk parameters are extremely important during the association
phase these are: (a) the number of disks, and (b) the model of the disks used. These parameters
are highly associated with the evaluation of the cost of a storage subsystem and moreover, its reli-
ability and performance as shown in Table 2. As the number of disks increases so does the cost,
the performance and the reliability. The disk model can also affect those issues.

4.1. Data placement

The term data placement defines the mapping of logical addresses used by the host into the disk
devices in the subsystem. Such a mapping can be employed under:

• Data placement for textual workload:
– a random method, according to which each disk is addressed independently and the mapping

from logical disk numbers to physical ones is done directly. The main disadvantage of this
method is that it needs system administrators to execute this distribution, when load balanc-
ing is required. Therefore, it may be proved time-consuming and thus influences negatively
performance. However, it is the most economic method.

– Disk striping: This method proposes the folding of multiple disk address spaces into a single,
unified space (seen by the host). This is achieved by considering the distribution of logical
data units among the several disks in a round-robin fashion. There are various striping pol-
icies usually categorized into the policies where data is distributed in such a way that all disks
cooperate to service every request (Fine-grained striping) or to policies where disks cooperate
only to service large requests and not elsewhere (Coarse-grained striping). Unlike indepen-
dent addressing, fine-grained striping provides perfect load balancing as each disk contains
equal fractions of each block. Due to the fact that N disks work on servicing one request the
transfer rate is N times greater than that of independent addressing. On the other hand, load
balancing is always achieved in coarse-grained striping so it can provide high levels of per-
formance with minimum maintenance costs.

• Data placement for synchronized workload: According to intramedia synchronization (i.e. con-
stant gap-free retrieval of the synchronized data) there are four policies [7]: (a) Interleaved pol-
icy according to which multimedia data is stored on disk in an interleaved way. This approach
guarantees smooth, gap-free display and this is a result of smoothing the speed gap between
disk and multimedia devices. Thus, it can reduce the buffer requirement significantly (i.e. better
performance and lower cost). (b) Contiguous policy where data is stored on disk contiguously.
This method has been introduced to avoid intrafile seeks that random placement demands. Of
course, this approach can achieve high levels of effective bandwidth but it imposes high over-
head because it entails enormous copying work during insertions and deletions. This policy is
effective for read-only environments. (c) Constrained placement which is used not to extinguish
the intrafile seeks but reduce them to a reasonable bound. This method is really attractive when



Table 3

Associating data placement techniques with QoS parameters

Performance Cost Type of workload Read–write requests

Random � � Textual Both

Fine-grained striping + + Textual Both

Coarse-grained striping + � Textual Both

Interleaved policy + � Synchronized Both

Contiguous policy + Synchronized Read

Constrained policy � Synchronized Both

Log-structured policy + + Synchronized Write
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the block size must be small. Unfortunately, using constrained placement demands also the
application of complicated algorithms to ensure that separation between blocks conforms to
the required constraints. Moreover, the scheduling algorithm should immediately retrieve all
blocks for a given stream before switching to any other stream. A SCAN-like algorithm that
orders blocks regardless of the stream they belong to, reduces significantly the drawbacks of
constrained placement. (d) Log-structured placement has been invented to reduce disk seeks.
The main idea of the function of this scheme is that the modified data are not stored to their
original positions but in a large contiguous space. Thus, performance levels are increased extre-
mely. From the above it is inferred that log-structured placement is really effective in systems
where a lot of modifies take place. However, in a read-only environment such a method
imposes large burden because modified blocks may change position.

Table 3 analyzes the various data placement techniques in relation to the associated QoS
parameters (Table 2). The ‘‘+’’ symbol indicates an increase whereas ‘‘�’’ a decrease. For exam-
ple, fine-grained data placement is appropriate for textual data and it improves performance levels
(+) but it is not so cost-effective as it leads to rising cost (+). Therefore, it may be chosen in case
performance is the first goal to be satisfied (according to the initialization phase report) and min-
imum cost is not that important.

4.2. Data redundancy

Data redundancy has been widely used to increase data availability in critical applications and
several methods have been proposed to organize redundant data across a disk array. Data redun-
dancy consists of either total data replication or the spreading of the data across the disk array
along with parity information which can be used to recover missing data in the event of disk
failure.

Cost is increased when redundancy is required (in relation to non-redundant systems) while
capacity is reduced and performance is degraded. Fortunately individual disk failures are infre-
quent and total system failures are rare. The problem is initiated by the time we further increase
the number of disks. Then the mean time between failure decreases extremely and it seems like
non-redundant disk systems are not feasible. This leads to the manipulation of mechanisms to re-
cover data in case of disk failure. For this purpose, two different approaches have been proposed,
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both based on data redundancy, and the resulting disk array architectures are known as
redundant arrays of inexpensive disks (RAID) systems. Thus, use of redundancy mechanisms is
obligatory especially when storing critical data. This mechanisms are divided into two main
categories:

• Data replication: It is the simplest way to protect data. Two or more copies of the same data are
stored on different disks, so that, if one disk fails, the data is still available from the other disks
[5,14].
This type of redundancy is widely known as disk mirroring, disk shadowing and RAID1. The
cost of a RAID architecture is determined by the number of disks so if the disk array consists
of N disks then the cost depends on N � 1. Thus, data replication methods are associated with
high costs.
Performance is affected with the workload format. The disadvantage is that a write function
should be applied on every copy. This may cause data loss or increased response time depend-
ing on the system. On the other hand, read function benefits from such architectures as N (num-
ber of disks = N) requests can be serviced simultaneously which means increasing throughput
and decreasing queue times. Moreover, each read request can be scheduled to the disk in which
is expected to face the smallest access delay. The improved read performance can decrease the
cost/performance ratio accordingly to non-redundant disk systems, even though the absolute
cost is multiplied by N. Therefore, data replication is suggested in cases when the workload
is read-oriented.
Several data replication techniques have been introduced but the oldest is the disk shadowing
where the N disks are divided into two groups each consisting of N/2 disks. Therefore, we have
N/2 pairs of disks where the ith pair is called mirror i. Every set of N identical sets can survive
N � 1 failures without data loss. However, each disk failure reduces the performance of a set
relative to other sets. This imbalance can cause reduction of the overall performance if a dam-
aged set becomes a bottleneck. A variation of this technique is the mirrored declustering where
data and copies are striped over the N/2 disks. Chained declustering (every disk contains both
primary and secondary data) and interleaved declustering (every disk contains both primary and
secondary data but secondary copies are striped across all the disks) have been implemented to
minimize the bottleneck phenomenon in case of a failure. With combination of clever schedul-
ing, these methods can maintain a balanced load after a failure, though the probability of sur-
viving multiple failures is reduced. It has been proved that chained declustering leads to higher
availability in the shared—nothing environment, i.e. an environment where distinct processes
have distinct address spaces.

• Parity-based protection: that form of redundancy is used to recover missing data when disk
fails. It is based on error detection and correction algorithms. According to coding theory, a
lost bit can be recovered from a parity bit, the other protected bits and knowledge on the era-
sure. Usually this approach does not require a large amount of physical disk space to be
reserved for redundancy. Therefore, it is attractive for economic reasons. Unfortunately, such
systems performance is still significantly lower than non-redundant disk systems or systems
which exploit data replication as in case of a write request it burdens the system with more
accesses when a write request arrives. That is due to the unavoidable update function of the
parity bits which may lead to very poor performance.



Table 4

Associating data redundancy techniques with QoS parameters

Total performance Performance

(in case of disk failure)

Cost Reliability Read–write requests

Disk shadowing + � + + Read

Mirrored declustering + + + + Read

Chained declustering + + + + Read

Interleaved declustering + + + + Read

Dedicated parity disk � � � + Both

Striped parity � + � + Both

Declustered parity � + � � Both
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Several methods for distributing parity information across the array have been proposed and
analyzed in the bibliography [5]. Dedicated parity disk is the most simplified method. There
is one disk in the system that contains only parity information. Although, the scheme facilitates
the mapping function of logical addresses to physical ones, every write must update the asso-
ciated bits on the single parity disk. Therefore, this method is suitable for fine-grained striping
where only one request is serviced at a time. In case of other distribution schemes the parity
disk can minimize performance. Striped parity avoids the potential bottleneck that the previous
scheme may cause. According to this scheme, the parity block of the first stripe is on disk N, the
one of the second stripe is on disk N � 1 and so on, and data blocks are stored according to
increasing values of their index while moving from disk 1 to disk N. By using striped parity
the array can perform multiple parity updates in parallel. An extension of the previous method
is the declustered parity which combines several smaller arrays protected by striped parity. It
can recover from a failure more quickly than other schemes but it can only survive a single
failure.

In general, data replication presents better performance (especially in read-oriented environ-
ments) than parity-based protection but it is less economic and less reliable. Therefore, if perfor-
mance is more significant data replication will be chosen. Table 4 shows how data redundancy
technique influences the levels of performance, cost and reliability and for which applications
are appropriate. For example, striped parity renders low levels of performance in general but quite
good in case of failure (comparing to other parity-based protection policies), it is quite cost-effec-
tive and offers high levels of reliability. Finally, it can serve both read and write requests.

4.3. Scheduling algorithm

The most typical disk scheduling algorithms (i.e. algorithms used to define the sequence of
servicing requests arriving to the disk subsystem) used by the conventional storage systems are
divided into: (a) Seek time optimizing algorithms and (b) Seek time and rotational latency

optimizing algorithms [19]. The algorithms belonging to the first category focused on the optimi-
zation of seek time solely. The simplest scheduling algorithm of this type is first-come-first-served
(FCFS) which is considered to be the worst algorithm referring to the average response time. The
shortest-seek-time-first (SSTF) was the next step towards improving performance. The main
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drawback of SSTF is the larger variance in response times. The most recently introduced algo-
rithm of this type is the V-SCAN algorithm which is similar to SCAN with the difference that
the possibility of keeping a direction depends on a variable. In this variable has a value of 0,
V-SCAN becomes SSTF, while in case it has a value of 1, V-SCAN becomes SCAN (it always
keeps the same direction of search) [6].

The most recent research efforts have focused on the introduction of disk scheduling algorithms
minimizing both seek and rotational delays. This move was partially caused by the advances in
disk technology which have reduced seek time and not rotational latencies. The shortest-process-
ing-time-first (SPTF) algorithm was meant to serve that need. According to SPTF the request
which yields the shortest seek time and rotational latency is chosen to be served first. Unfortu-
nately, SPTF may lead to starvation, leading to very poor response times [26]. The weighted-
shortest-processing-time-first (WPSTF) algorithm has been the evolution of SPTF since it keeps
SPTFs main idea but also employs an aging function. First, a threshold of maximum accepted
delay is assumed. Afterwards, for each SPTF calculation the actual response time is multiplied
by a weighting factor (i.e. the time left before the request will exceed the threshold). Therefore,
the longer time the request is waiting, the smaller the weighted factor becomes, and thus the re-
quest is more likely to be served. WPSTF renders remarkable performance.

Given that multimedia data has to meet deadlines, the earliest deadline first (EDF) algorithm
can provide real-time scheduling. This algorithm schedules the data block with the earliest dead-
line, i.e. the time limit that a block of data should be presented to the client. Thus, there is little
possibility that multimedia objects will miss their deadlines. However, such an algorithm may
cause great delays and maybe starvation. A variation of the above algorithm with enhanced per-
formance is SCAN-EDF. According to that algorithm the disk head scans the disk surface back
and forth and service the requests with the earliest deadline. In case there are more than one re-
quests with the same deadline, their data block are retrieved using SCAN algorithm. SCAN-EDF
shows high-performance when there are requests having the same deadline because in another
case it shows the same characteristics as EDF.

Another popular algorithm that reduces the drawbacks of the previous ones is grouped sweep-
ing scheme (GSS) which minimizes seek latencies and interstream delays. According to GSS each
round is partitioned into groups each containing a number of streams. Groups in a round are ser-
viced always in the same order. Finally, SCAN algorithm is applied in each group. Therefore, if
we succeed in optimizing the deriving of groups then we will achieve the best performance [7,15].
Table 5

Associating scheduling algorithms with QoS parameters

Performance Type of workload

FCFS � Textual

SSTF, VSCAN + Textual

SPTF � Textual

WPSTF + Textual

EDF � Multimedia

SCAN–EDF + Multimedia

GSS + Multimedia
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Therefore, a scheduling algorithm is selected firstly according to the type of workload and sec-
ondly according to the required performance level. Table 5 shows which scheduling algorithm is
for which type of data and how they affect performance.

4.4. Client-oriented negotiations

A final characteristic defined by the client is the form of the workload (whether most requests are
read or write), which negotiation subsystem depicts to real values associated with the initial delays.

The result of this phase is a report containing the QoS needs and the recommended parameters
able to satisfy them. This report is presented only to advanced clients, otherwise is an internal report
which is passed to the next phase. For the needs expressed in the initialization phase report shown in
Fig. 4 the report shown in Fig. 5 could be produced. In the first case random data placement tech-
nique may be used as it is the most economic. Coarse-grained striping is economic and more effec-
tive than random placement. Since high levels of reliability are required striped parity disk is
recommended as parity-based protection is general more economic than data redundancy and more
reliable. Of course, a dedicated parity disk may also be used as it is more economic than striped par-
ity (due to less maintenance cost). Unfortunately, it renders to worse response times but perfor-
mance is not the core need of the specific client. The SSTF and SPTF scheduling algorithms are
recommended as they render rather high levels of performance, they are common scheduling algo-
rithms and they are appropriate for textual data. Finally, client is recommended to use five disks
since it needs both economic and reliable system. The report is supposed to suggest a disk model
but we will not refer to a specific model so as not to be accused for advertising a specific brand.

On the other hand, the second client is concerned primarily about performance. Therefore, fine-
grained or coarse-grained striping is suggested. Moreover, data replication methods are proposed
due to their better performance. Two or three copies may be used since minimizing cost is not one
of the goals of this client. Finally, WPSTF is suggested as it is the most effective for every form of
textual workload.
Association Phase Report
Data placement policy

Random or coarse-grained striping

Redundancy
Dedicated parity disk or striped parity
disk

Scheduling algorithm
SPTF or SSTF

Number of disks
3 or 4

Number of copies
0

Disk Model

Association Phase Report
Data placement policy

Fine-grained or coarse-grained striping

Redundancy
No redundancy or shadowing (chained
declustering or interleaved declustering)

Scheduling algorithm
WPSTF

Number of disks
8

Number of copies
1 or 2

Disk Model

Fig. 5. The association phase reports related to the information given in Fig. 3.
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In case of a specialized client, this report is presented and, moreover, an interface in order to
define (him)herself the requested storage system parameters. Fig. 6 depicts that interface filled
in with the above discussed parameters referring to the first example.
5. The negotiation phase

The goal of the negotiation phase is to use the recommended sets of parameters in a simulation
environment so as to test their effects. Of course, the client may ask for the simulation of a specific
set, otherwise all of them are tested. The tool used for such a task is the DISKSIM simulator.

DiskSim is an effective, strong disk system simulator implemented by Ganger et al. [4]. Its effec-
tiveness, results from the fact that it includes detailed modules for the most significant compo-
nents of a disk storage subsystem. The components that are emulated are: disks, controllers,



122 K. Stoupa, A. Vakali / Data & Knowledge Engineering 58 (2006) 107–128
buses and disk block caches. Their configuration is very detailed as it involves a large number of
parameters. We experiment with the adequate ones of them in order to assess the several data
placement schemes, data topologies and scheduling policies. DiskSim major advantage is its abil-
ity to be used as part of a larger simulation environment and the output provides valuable results
about the disk subsystem (such as response time, seek time, etc.). One last feature of DiskSim is
that it can work by using either traces or internally generated synthetic workload. Therefore, an
analyzer is able to evaluate real workload by exploiting existing traces and to produce simulation
results which will be the outcome of the service of synthetic workload. It has been proved [4] that
the results are really similar, a fact that exacerbate this tool�s power and capabilities.

After the recommended parameters sets are simulated with the help of DISKSIM, a results report
is produced containing the performance, cost and reliability results (e.g. response time, seek time,
total cost, failure frequency, ability of surviving multiple failures, etc.) as the one shown in Fig.
7. That report will play the role of a contract in case it will be signed by both the client and the stor-
age subsystem. In case of advanced clients, graphs are also produced depicting the results of the tests
so as to choose (him)herself the required set of parameters describing the storage subsystem.

The client may not consent to the QoS parameters values. In such a case the whole negotiation
cycle is repeated until it results to a contract acceptable by both parts which will be finally signed
by the two peers.

5.1. Negotiation experimentation

As it has already been mentioned, in case of an advanced client this phase produces graphs
depicting the performance characteristics of the suggested parameters. The aim of this task is
Negotiation Phase Report
Client: Specialized

Workload
Type: Textual
Form: Read-oriented

Application: Commercial

Real-time workload: Yes

Storage of crucialdata: Yes

Data placement policy
Coarse-grained striping

Redundancy
Striped parity

Scheduling algorithm
SSTF

Number of disks
3

Number of copies
0

Disk model

Negotiation Phase Report
Client: Specialized

Workload
Type: Textual
Form: Read-oriented

Application: Scientific

Real-time workload: Yes

Storage of crucialdata: No

Data placement policy
Fine-grained striping

Redundancy
No redundancy

Scheduling algorithm
WPSTF

Number of disks
8

Number of copies
0

Disk model

Fig. 7. The negotiation phase reports (possible contracts) for the two cases.
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to aid client in choosing the storage system that will perfectly fit (his)her needs. In order to test the
proposed storage subsystem parameters for the two cases, we used a workload with the following
characteristics:

• The number of requests was 10,000 and the used disk model was HP-C2490A.
• It included 80% of read requests and 20% of write requests.
• There were included sequential read/write requests. Seven percentage of the read requests was

sequential and 4.8% of the write requests.
• All of the requests were time-critical.
• The average size of the requests was 10.16678 with a variation 10.423334.
• In case of shadowing one copy is used (i.e. if the storage system consists of two disks, the one

contains the original data and the other plays the role of the shadow).

Indicative results of the experimentation are depicted in Fig. 8 which can justify the employ-
ment of the storage parameters referred to the possible contract. More specifically, Fig. 8(a)
has the curves of response time with respect to the number of disks when different scheduling algo-
rithms are used under a 10,000 requests workload. As depicted in this figure, FCFS algorithm
shows the worst response time as it was expected. This performance is extremely obvious in the
case of two disks where the FCFS response is around 51 ms when the SSTF, SPTF and VSCAN
response time is between 45.5 and 47.5 ms. Furthermore, in case of a non-redundant system, the
WPSTF algorithm renders a response time around 49 ms which is quite disappointing as its per-
formance is similar to that of FCFS. In the first case, that performance is of not that much sig-
nificance, both FCFS and SSTF algorithms may be used. A really interesting feature is the sharp
fall of response time from 2 disks to 4 disks. All of algorithms decrease their response times by
about 50%. Thus, the more disks a subsystem has the more effective it is. Of course, after a certain
number of disks the decrease in response time is not so great as to balance the increase in cost, the
difference in response time for a subsystem with 12 disks and one with 14 disks is only 0.5 ms.
Therefore, for the second case a system with 8 disks is proposed whereas in the first case 3. An-
other remark is that the response times for the various scheduling algorithms are becoming equal
as the number of disks is increased.

Fig. 8(b) tests the redundancy schemes since it shows the curves of response time when using
different redundancy schemes. It is obvious that shadowed and no redundancy exhibit much better
performance than parity disk redundancy but the first are less reliable and less cost-effective.
Therefore, in the first case where reliability is important, parity disk redundancy is proposed,
whereas in the second case no redundancy as the goal is high performance and low reliability. Fur-
thermore, in the second case, when 8 disks are suggested to be used both methods render similar
response times. It is really interesting that parity disk redundancy results in almost double re-
sponse time compared with shadowed redundancy.

Fig. 8(c) is related to a subsystem which uses striped data placement and various types of re-
dundancy. Our choices are to use ‘‘No redundancy’’, ‘‘Shadowed redundancy’’ and ‘‘A dedicated
parity disk’’. As it is obvious, when parity-disk redundancy is used response time increases signif-
icantly. This was expected because as discussed in Section 3, although parity information redun-
dancy provides high protection levels, it burdens response time due to the overhead that write
requests impose. On the other hand, response time of shadowed redundancy is almost equal
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Fig. 8. (a) Response time for different scheduling algorithms under a 10,000 request workload, (b) response time for

different redundancy schemes under a 10,000 request workload, (c) response time for different striped data under

different scheduling algorithms under a workload of 10,000 requests, and (d) response time for different striped data

under different scheduling algorithms under a workload of 10,000 requests.

124 K. Stoupa, A. Vakali / Data & Knowledge Engineering 58 (2006) 107–128
to that of a disk subsystem without redundancy. Therefore, we can gain much profit by using
shadowed redundancy with almost no impact on response time. Furthermore, parity redundancy
shows almost the same performance for subsystems with four or more disks. Thus, it is not advis-
able to use many disks with this type of redundancy, as we will increase cost without increasing
performance. For this in the first case only 3 disks are suggested. By comparing this figure with
Fig. 8(b) one can notice that the combination of striped data placement with parity-based protec-
tion is more effective than random placement with parity-based protection that is why it is recom-
mended in the first case (response time decrease of almost 1 ms for 5 disks). In the second case,
striped data placement in conjunction with no or shadowed redundancy is recommended since
it renders better response times comparing to random data placement.
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Fig. 8(d) has the response time of striped placement under various scheduling algorithms. The
curves of response time for striped placement involve using FCFS, SSTF, VSCAN, WPCTF. The
interesting point is that all of the algorithms (except for FCFS) lead to (almost) equal response
times. Again, a great decrease is obvious when switching from a disk system containing two disks
to a one containing four disks. As the number of disks increases, response time faces little
improvement. In case of the first client when 3 disks will be used it is important to use SSTF
and not FCFS as for this number of disks there is a performance gap of about 2 ms between
FCFS and the rest algorithms.

By studying the above graphs the second client may object to the suggested contract since no
redundancy and shadowed redundancy for a system with 8 disks renders similar response times
but shadowed redundancy, moreover, offers reliability. In such a case the negotiation cycle is exe-
cuted again.
6. Extensions to storage hierarchies

Currently, due to heavy storage needs, a group of disks is not always efficient. Frequently, other
peripheral storage mediums are used, such as tapes, cd arrays, etc. Therefore, a logical storage
hierarchy can be formed. A storage hierarchy consists of various levels form which the first
one is a local memory or cache which provides high speed but temporary storage. The second level
is the whole group of local memories of every computer in the distributed network. Finally, the
third level is every permanent storage device, such as hard disks, tapes, optical disks, etc. The for-
mat of such hierarchy is shown in Fig. 9.

The proposed negotiation environment can also be extended to support the whole storage hier-
archy and not only the hard disk subsystem. Therefore, according to the client�s preferences
regarding the permanence and performance of storage, the negotiation system can decide whether
Third Level

Second Level

First Level

Local
Memory

Cache

Distributed local
memories

Optical
disks

TapesHard
disks

Fig. 9. A storage hierarchy.
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Fig. 10. The extended QoS negotiation architecture.
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it will employ the first, second or third storage level and which device of the specified level. Thus,
the extended system can have the format of Fig. 10. Of course, the most used level will be the third
one since the modifications of the devices belonging to it does not highly affect the function of the
machine (something not right for the first level).
7. Conclusions—future work

In this paper, QoS has been introduced towards improving performance and utilization under a
considered storage topology. The adoption of a negotiation interface has been proposed to en-
hance the performance and functionality of a disk subsystem towards user request servicing facil-
itation and effectiveness. A disk simulator has been used to experiment under varying storage
subsystem parameters and certain conclusions were discussed about the proposed QoS parameters
specification. The negotiation cycles and the client demands specification has been proven quite
beneficial with respect to the overall response times.

Further work can consider more complicated storage subsystems which should involve storage
hierarchies such as caching, disks and tapes. It will be quite beneficial to employ QoS parameters
at all storage levels in order to result in more effective user request servicing. Furthermore, the
system could store client profiles in order to prevent them from repeating their QoS requirements
and each client should be informed of the effectiveness of their choices in order to re-negotiate on
their QoS parameters specification.
References

[1] E. Borowsky, R. Golding, A. Merchant, L. Schreier, E. Shriver, M. Spasojevic, J. Wilkes, Using attribute-managed

storage to achieve QoS, HP Technical Report, 1994.

[2] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, D.A. Patterson, RAID: high performance, reliable secondary

storage, ACM Computer Surveys 26 (2) (1994) 145–185.

[3] S. Chen, D. Towsley, A performance evaluation of RAID architectures, IEEE Transactions on Computers 45 (10)

(1996) 1116–1130.

[4] G. Ganger, B. Worthington, Y. Patt, The DiskSim Simulation Environment. Available from: <http://

www.ece.cmu.edu/ganger/disksim>, 2003.

[5] G.R. Ganger, B.L. Wothington, R.Y. Hou, Y.N. Patt, Disk arrays: high-performance, high-reliability storage

subsystems, IEEE Computer 27 (3) (1994) 30–36.

[6] R. Geist, S. Daniel, A continuum of disk scheduling algorithms, ACM Transactions on Computer Systems 5 (1)

(1987) 77–92.

http://www.ece.cmu.edu/ganger/disksim
http://www.ece.cmu.edu/ganger/disksim


K. Stoupa, A. Vakali / Data & Knowledge Engineering 58 (2006) 107–128 127
[7] J. Gemmell, H.M. Vin, D.D. Kandlur, P.V. Rangan, L.A. Rowe, Multimedia storage servers: a tutorial, IEEE

Computer 28 (5) (1995) 40–49.

[8] R. Golding, E. Shriver, T. Sullian, J. Wilkes, Attribute-managed storage, Workshop of Modeling and Specification

of I/O MSIO, San Antonio, TX, 1995.

[9] D.M. Jacobson, J. Wilkes, Disk scheduling algorithms based on rotational position, HP Laboratories Technical

Report, HPL-CSP-91-7rev1, 1995.

[10] G. Kalkbrenner et al., Quality of service (QoS) in distributed hypermedia systems, in: Proc. of the 2nd Int.

Workshop on Principles of Document Processing, 1994.

[11] J. Korst, Random duplicated assignment: an alternative to striping in video servers, in: Proc. of the 5th ACM Int.

Conf on Multimedia, 1997, pp. 219–226.

[12] E.K. Lee, R.H. Katz, Performance consequences of parity placement in disk arrays, in: Proc. of the 4th ACM Int.

Conf. on Architectural Support for Programming Languages and Operating Systems, vol. 19, No. 2, 1991, pp. 190–

199.

[13] S.W. Ng, Advances in disk technology, performance issues, The IEEE Computer 2 (2) (1998) 75–81.

[14] F. Quaglia, B. Ciciani, Performance vs. cost of redundant arrays of inexpensive disks, Simulation Practice and

Theory 7 (1999) 153–170.

[15] Y. Rompogiannakis, G. Nerjes, P. Muth, M. Paterakis, P. Triantafillou, G. Weikum, Disk scheduling for mixed-

media workloads in a multimedia server, in: Proc. of the 6th ACM Int. Conf. on Multimedia, 1998, pp. 297–302.

[16] C. Ruemmler, J. Wilkes, An introduction to disk drive modeling, IEEE Computer 27 (3) (1994) 17–28.

[17] J.R. Santos, R. Mutz, Performance analysis of the RIO multimedia storage system with heterogeneous disk

configurations, in: Proc. of the ACM Int. Conf. on Multimedia, 1998, pp. 303–305.

[18] E.J. Schwabe, I.M. Sutherland, Flexible usage of parity storage space in disk arrays, in: Proc. of the 8th Annual

ACM Symposium on Parallel Algorithms and Architectures, 1996, 99–108.

[19] M. Seltzer, P. Chen, J. Ousterhout, Disk scheduling revisited, USENIX Winter Technical Conference, 1990, pp.

313–323.

[20] E. Shriver, Performance modeling for realistic storage devices, Ph.D. thesis, Computer Science, New York

University, 1997.

[21] R. Steinmetz, Multimedia file systems survey: approaches for continuous media disk scheduling, ACM Computer

Communications 16 (3) (1995).

[22] T.J. Teorey, T.B. Pinkerton, A comparative analysis of disk scheduling policies, Communications of the ACM 15

(3) (1972) 177–184.

[23] F.A. Tobagi, Streaming RAID—a disk array management system for video files, in: Proc. of the 1st ACM Int.

Conf. on Multimedia, 1993, pp. 393–400.

[24] A. Vakali, Y. Manolopoulos, An exact analysis on expected seeks in shadowed disks, Information Processing

Letters 61 (1997) 325–329.
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