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Abstract—In the context of recommenders, providing suit-
able suggestions requires an effective content analysis where
information for items, in the form of features, can play a
significant role. Many recommenders suffer from the absence
of indicative features capable of capturing precisely the users’
preferences which constitutes a vital requirement for a successful
recommendation technique. Aiming to overcome such limitations,
we introduce a framework through which we extract dissimilarity
features based on differences in preferences of items’ attributes
among users. We enrich the representations of items with the
extracted features for the purpose of increasing the ability of a
recommender to highlight the preferred items. In this direction,
we incorporate the dissimilarity features into different types of
classifiers/recommenders (C4.5 and lib-SVM) and evaluate their
importance in terms of precision and relevance. Experimentation
on real data (Yahoo! Music Social Network) indicates that
the inclusion of the proposed features improves the classifiers’
performance, and subsequently the provided recommendations.

Keywords—Recommender Systems, Dissimilarity Features

I. INTRODUCTION

Recommenders search in collections of items and suggest
the most relevant ones to users [1]. The relevance of an item for
a user can be merely expressed with a decision of whether the
user likes it or not. Providing recommendations through such
decisions can be approached from a machine learning perspec-
tive where classifiers are trained to offer effective solutions to
this binary classification problem (i.e. like/dislike). Classifiers
have played an active role in the field of recommenders.
Probabilistic methods have been used in both content-based [2]
and collaborative-filtering [3] recommenders as well as in
hybrid solutions [4]. Furthermore, other types of classifiers
such as Decision Trees [5] and Support Vector Machines [6]
have also been utilized in recommendation methods.

A classifier’s performance is basically affected by the
discriminating power of the included features to precisely
separate samples belonging to different classes. In a classifier
that acts as a recommender, this discriminating power can
be expressed by the ability of features to effectively capture
users’ preferences by including indicative information that
leads to the preferred items. Therefore, the challenge is to
present features capable of capturing different aspects of the
analysed content. Solutions to this challenge answer to the
limited content analysis problem [1] that many recommenders
suffer from in cases where there is either a limited number of
features or these features fail to be indicative enough.

In this paper, we offer a solution to the very same problem
by introducing a framework through which we extract novel
dissimilarity features for items’ attributes (e.g. music artists,
movie genres). The notion of dissimilarity is represented by the

rationale that we focus on differences in preferences in such
attributes expressed by members of user communities. In our
case, each user is attached to a community defined by users
who share similar preferences, and the dissimilarity features
are based on information originating from members of such
communities. The understanding of users’ rating behaviour
constitutes an essential requirement for a recommender to
provide suitable suggestions to users. Therefore, we offer a
new way of approaching users’ preferences by enriching the
representations of items with the extracted features which may
lead us to valuable insights about them. The main contribution
of this paper is summarized in the following points:

User communities through pairwise similarities
We propose two methods of calculating pairwise user simi-
larities through which user communities are formed. The first
method takes pairs of users that share common rated items and
assesses a similarity value by utilizing preference information
originating from these items, while the second method focuses
on preferences of the attributes that two users share in common
(i.e. common attributes included to their rated items). Common
attributes are not necessarily found only in common rated
items. It is likely for two users to share the former without
sharing the latter (e.g. users rated different movies of the same
actors). This justifies our decision to use both methods.

Dissimilarity-based feature extraction
Through the introduction of a novel metric, we take users’
preferences into account along with the preferences originating
from communities of similar users to extract the new dissim-
ilarity features. For each attribute of an item one dissimilarity
feature is extracted. Thus, apart from its set of already available
attributes, an item is also characterized by a set of our features.
Such enrichments in items’ representations provide additional
information that helps us deal with the limited content analysis
problem.

Infusion to feature-based recommenders
The extracted features are not applicable only to specific
recommenders, but they can be used by any method that works
with item features in order to provide suggestions. This can be
proved useful especially in content-based recommenders where
additional information regarding items can be an asset.

We also present a classification framework where the
dissimilarity features are incorporated into several types of
recommenders/classifiers. We make use of a decision tree
learner along with a SVM-based method. The former can
be executed with both nominal and continuous features as
opposed to the latter which cannot support the first type.
Therefore, we convert the nominal values of items’ attributes
into continuous ones with the use of Naive Bayes [7]. Both
classifiers utilize our features along with the converted values
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of items’ attributes.

To ascertain the usability of our features we apply two
evaluation processes. To begin with, we measure the perfor-
mance of the classifiers in terms of precision to evaluate the
contribution of the dissimilarity features in solving the binary
classification problem. Furthermore, we apply feature selection
techniques to evaluate all features regarding their relevance
in the classification process. The experimentation has been
carried out on data from Yahoo! Music social network service1

which contains user ratings on songs.

The rest of the paper is structured as follows. Section II
briefly discusses several related studies. In Section III, we
present our feature extraction framework, while in Section IV
we describe how the dissimilarity features are utilized in
the classification process. Section V shows our experimental
results and in Section VI the conclusions and future work are
highlighted.

II. RELATED WORK

Feature extraction can be achieved by attaching information
from external resources and/or by analysing user ratings. In
this section, we present a number of the most representative
research efforts.

For the purpose of infusing exogenous information, seman-
tic technologies have played a significant role. For instance,
in [4] the authors create sense-based item representations by
using WordNet ontology. They make use of synonyms to for-
mulate matching criteria between items and user profiles that
help them find the most appropriate suggestions. Moreover,
content from external resources has also proved to be useful
in enriching item representations. Katz et al. [8] use Wikipedia
to enrich items’ content for a more precise pairwise item
similarities that lead to improved recommendations. Studies
similar to the aforementioned ones are based on text semantics
and/or on external content which, in our case, are not available.
Our dissimilarity features are extracted by analysing only the
user ratings.

In the direction of using ratings for feature extraction,
Kim et al. [9] present a method called data-blurring that
provides features which bring closer users who rated different
items with the same attributes. This rationale resembles our
user similarity method based on common rated attributes.
However, in [9] binary types of preferences (i.e. preferred or
unknown) are directly used on attributes, while we provide
a more sophisticated approach where popularity and rating
information are combined to calculate users’ preferences in
attributes. In another work, Symeonidis et al. [10] form feature-
weighted user profiles with correlations between users and
attributes. From these profiles similar users are discovered
through which top-𝑁 lists of recommendations are extracted.
In our work, user profiles contain preferences in attributes
which can be seen as another type of user-attribute correla-
tions, while we also make use of our profiles to form user
neighbourhoods. However, in our case, information from such
neighbourhoods does not directly result in recommendations,
but it is used in the calculation of the dissimilarity features
which affect the classifiers’ performance and subsequently the
final recommendations.

1Yahoo! R2 dataset in http://webscope.sandbox.yahoo.com

III. DISSIMILARITY FEATURE EXTRACTION FRAMEWORK

Aiming to precisely capture users’ preferences, we in-
troduce a feature extraction framework through which we
calculate novel dissimilarity features for the attribute values
of rated items. The nature of dissimilarity lies in the fact that
a feature expresses the level of difference in preferences in
an attribute value between a user who rated an item, to which
this value belongs, and a group of similar users. The main idea
behind this rationale can be shown by the following scenario.

Consider a band and a list of their songs which we are
about to suggest to a user. Instead of taking solely into account
the user’s opinion on this band, we discover her similar users
(i.e. regarding bands in general) and we make use of their
opinions as well. Strong differences between these opinions
may result in a different decision as opposed to the one we
may have taken if we have only considered the opinion of
the user in question. On the other hand, the credibility of the
user’s opinion may be enhanced in cases of consensus with
other opinions. We argue that such differences in opinions,
either strong or weak, offer indicative information regarding
a user’s preferences. Therefore, we quantify this information
through the dissimilarity features.

Fig. 1: Dissimilarity Feature Extraction Framework

As Figure 1 shows, we begin by formulating user profiles
that maintain preferences in attribute values which represent
the levels of interest a user shows in these values. These
user profiles are utilized to calculate pairwise user similarities
through which we get groups of top-𝑘 similar users (i.e. user
communities) for each user. Here, we propose two methods
of extracting similarities between users. Considering pairs of
users, the first method takes into account the common rated
items two users share, while the second focuses on the attribute
values they both have expressed opinion (i.e. values belonged
to their rated items). Then, we introduce a dissimilarity metric
through which preference information coming from sets of
similar users is utilized to calculate the dissimilarity features.
Each user similarity extraction method results in a separate set
of dissimilarity features. Each step is described in detail.

A. Creating User Profiles

We consider a set of items 𝐼 = {𝑖𝑡𝑒𝑚1, 𝑖𝑡𝑒𝑚2, ..., 𝑖𝑡𝑒𝑚𝐾}
along with their attributes 𝐴 = {𝐴1, 𝐴2, ..., 𝐴𝐿}. Each
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attribute is a finite set of attribute values, thus 𝐴𝑖 =
{𝑎𝑖1, 𝑎𝑖2, ..., 𝑎𝑖𝑙𝑖} where 𝑖 = [1, 2, ..., 𝐿] and 𝑙𝑖 defines the
number of values for the 𝑖-th attribute. Considering such
values, we describe each item with a 𝐿-tuple which con-
tains one value from each of the available attributes, thus
𝑖𝑡𝑒𝑚𝑖 = {𝑎1𝑥1

, 𝑎2𝑥2
, ..., 𝑎𝐿𝑥𝐿

} where 𝑖 = [1, 2, ...,𝐾] and
𝑎𝑗𝑥𝑗

∈ 𝐴𝑗 with 1 ≤ 𝑥𝑗 ≤ 𝑙𝑗 . Moreover, we maintain both
a set of users 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑁} and their preferences
𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑀}. Each preference is a triplet with a
rating of a user on an item, thus 𝑝𝑖 = {𝑢𝑎, 𝑖𝑡𝑒𝑚𝑏, 𝑟𝑖} where
𝑖 = [1, 2, ...,𝑀 ], 𝑢𝑎 ∈ 𝑈 , 𝑖𝑡𝑒𝑚𝑏 ∈ 𝐼 and 𝑟𝑖 ∈ ℜ.

The presented user modeling facilitates the extraction of the
dissimilarity features which, as mentioned earlier, are based
on levels of interest in attribute values coming from groups
of users. User profiles maintain these levels of interest, while
they also contain other parts that are utilized in the process of
forming these groups. In this paper, we extend the modeling
process of Zigkolis et al. [11] work to meet the needs of
calculating users’ levels of interest in more than one attributes
as well as supporting our user similarities extraction methods.

We begin by focusing on a single user’s preferences in
𝑃 represented by the subset 𝑃 (𝑢𝑎) = {∀𝑝𝑖 ∈ 𝑃 ∣ 𝑝𝑖 =
{𝑢𝑎, 𝑖𝑡𝑒𝑚, 𝑟𝑖}} where 𝑖𝑡𝑒𝑚 ∈ 𝐼 . From these preferences, we
extract a user’s rated items given by 𝐼(𝑢𝑎) = {∀𝑖𝑡𝑒𝑚 ∈ 𝐼 ∣
𝑝𝑖 = {𝑢𝑎, 𝑖𝑡𝑒𝑚, 𝑟𝑖}} where 𝑝𝑖 ∈ 𝑃 (𝑢𝑎). This set is used in the
user similarities extraction method presented in Section III-B1.
Furthermore, we calculate the average rating of a user by the
formula:

𝑎𝑣𝑔(𝑢𝑎) =

∑∣𝑃 (𝑢𝑎)∣
𝑖=1 {𝑑(𝑢𝑎)× 𝑟𝑖}

∣𝑃 (𝑢𝑎)∣ (1)

∀𝑝𝑖 ∈ 𝑃 (𝑢𝑎)∣𝑝𝑖 = {𝑢𝑎, 𝑖𝑡𝑒𝑚, 𝑟𝑖}. This average value will be
utilized in our classification framework (see Section IV) as a
threshold on ratings to label rated items.

Then, we filter 𝑃 (𝑢𝑎) according to attribute values and we
have 𝑃 (𝑢𝑎, 𝑎

𝑗
𝑥) = {∀𝑝𝑖 ∈ 𝑃 (𝑢𝑎) ∣ 𝑝𝑖 = {𝑢𝑎, 𝑎𝑗𝑥 ∈ 𝑖𝑡𝑒𝑚, 𝑟𝑖}}

where 𝑖𝑡𝑒𝑚 ∈ 𝐼 and 𝑎𝑗𝑥 ∈ 𝐴𝑗 . From such sets, we can
take the values of an attribute included in 𝑢𝑎’s items. Thus,
𝐴𝑉𝐴𝑗

(𝑢𝑎) = {∀𝑎𝑗𝑥 ∈ 𝐴𝑗 ∣ ∣𝑃 (𝑢𝑎, 𝑎
𝑗
𝑥)∣ > 0} which is used

in our second user similarities extraction method presented in
Section III-B2. Also, we calculate the average rating of a user
in an attribute value 𝑎𝑗𝑥 ∈ 𝐴𝑗 as follows:

𝑎𝑣𝑔(𝑢𝑎, 𝑎
𝑗
𝑥) =

∑∣𝑃 (𝑢𝑎,𝑎
𝑗
𝑥)∣

𝑖=1 {𝑑(𝑢𝑎)× 𝑟𝑖}
∣𝑃 (𝑢𝑎, 𝑎

𝑗
𝑥)∣

(2)

∀𝑝𝑖 ∈ 𝑃 (𝑢𝑎, 𝑎
𝑗
𝑥)∣𝑝𝑖 = {𝑢𝑎, 𝑖𝑡𝑒𝑚, 𝑟𝑖}.

In (1) and (2), 𝑑(𝑢𝑎) defines a normalization factor that
characterizes a user’s level of pessimism (or optimism) [12]
by comparing her ratings with all the ratings in data:

𝑑(𝑢𝑎) =

∑
𝑝𝑗∈𝑃

{𝑟𝑗}/∣𝑃 ∣∑
𝑝𝑖∈𝑃 (𝑢𝑎)

{𝑟𝑖}/∣𝑃 (𝑢𝑎)∣
(3)

∀𝑝𝑗 ∈ 𝑃 ∣𝑝𝑗 = {𝑢, 𝑖𝑡𝑒𝑚, 𝑟𝑗} and ∀𝑝𝑖 ∈ 𝑃 (𝑢𝑎)∣𝑝𝑖 =
{𝑢𝑎, 𝑖𝑡𝑒𝑚, 𝑟𝑖}. Before utilizing a rating, we multiple it first

with the normalization factor of the user who gave it. This
eliminates the variance of ratings by bringing them closer to
the total average rating in order to provide a common base
for all users [13]. The average ratings in (1) and (2) are the
normalized versions of the simple average ones.

Inspired by the work of Braak et al. [14], we capture
users’ interest in an attribute value with the combination of
two factors, the popularity and the likeness. Popularity is
determined by the percentage of items with a particular value
in all user’s rated items, while Likeness is extracted by user’s
average rating in an attribute value divided by the summarized
average ratings in all values of an attribute:

𝑃𝑜𝑝(𝑢𝑎, 𝑎
𝑗
𝑥) =

∣𝑃 (𝑢𝑎, 𝑎
𝑗
𝑥)∣

∣𝑃 (𝑢𝑎)∣ (4)

𝐿𝑖𝑘(𝑢𝑎, 𝑎
𝑗
𝑥) =

𝑎𝑣𝑔(𝑢𝑎, 𝑎
𝑗
𝑥)∑𝑙𝑗

𝑖=1 𝑎𝑣𝑔(𝑢𝑎, 𝑎
𝑗
𝑖 )

(5)

Contrary to the combination presented in [14] where both
factors share the same importance, we favoured an f-measure
equation in order to calculate the overall interest of a user in
an attribute value. Therefore, we can put more emphasis on
either popularity or likeness:

𝐴𝐼(𝑢𝑎, 𝑎
𝑗
𝑥) =

(1 + 𝛽2)× 𝐿𝑖𝑘(𝑢𝑎, 𝑎
𝑗
𝑥)× 𝑃𝑜𝑝(𝑢𝑎, 𝑎

𝑗
𝑥)

𝛽2 × 𝐿𝑖𝑘(𝑢𝑎, 𝑎
𝑗
𝑥) + 𝑃𝑜𝑝(𝑢𝑎, 𝑎

𝑗
𝑥)

(6)

where 𝛽 > 0 parameter depicts to which factor we put more
emphasis on (i.e. as 𝛽 increases, popularity is emphasized
against likeness). Through (6) it can be seen not only how
well the attribute value is rated, but also how often items of
that value are rated by the user. Its flexibility of favouring
factors enables us to test which one leads to improved results.
Finally, we proceed to a normalization step to calculate the
normalized user interest in an attribute value:

𝑛𝐴𝐼(𝑢𝑎, 𝑎
𝑗
𝑥) =

𝐴𝐼(𝑢𝑎, 𝑎
𝑗
𝑥)∑𝑙𝑗

𝑖=1𝐴𝐼(𝑢𝑎, 𝑎
𝑗
𝑖 )

(7)

B. Estimating User Similarities

As noted earlier, a dissimilarity feature is based on pref-
erence information originating from groups of users. Different
user selection criteria lead to different groups which eventually
affect the dissimilarity feature itself. One criterion could be to
select all users that have rated items with an attribute value
and use their preferences to extract the dissimilarity feature for
this value. However, we consider this solution too generalized
and prone to include noisy information. Hence, we suggest a
more focused selection process by calculating pairwise user
similarities through which we take only the top similar users
into account.

A user similarity value is based on two factors. We initially
create two vectors (i.e. one for each user) that contain their
preference information regarding an attribute and then we
calculate their correlation by using the Pearson formula. Also,
we use the Sørensen index to measure the similarity over their
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sets of common elements (i.e. rated items or attribute values).
This index acts as a boosting factor to the final similarity since
it favours pairs that share more common elements compared
with others. The generalized version of the similarity function
is defined as:

𝑆𝑖𝑚𝐴𝑗
(𝑢𝑎, 𝑢𝑏) = 𝑝𝐶(v𝐴𝑗

𝑢𝑎
, v𝐴𝑗

𝑢𝑏
)× 𝑆𝐼(𝐴,𝐵) (8)

where 𝐴𝑗 ∈ 𝐴 and the Pearson Correlator is defined as follows:

𝑝𝐶(v𝐴𝑗
𝑢𝑎 , v

𝐴𝑗
𝑢𝑏 ) =

∑𝑛

𝑖=1
(v

𝐴𝑗
𝑢𝑎 (𝑖)−v̄

𝐴𝑗
𝑢𝑎 )(v

𝐴𝑗
𝑢𝑏

(𝑖)−v̄
𝐴𝑗
𝑢𝑏

)√∑𝑛

𝑖=1
(v

𝐴𝑗
𝑢𝑎 (𝑖)−v̄

𝐴𝑗
𝑢𝑎 )2

√∑𝑛

𝑖=1
(v

𝐴𝑗
𝑢𝑎 (𝑖)−v̄

𝐴𝑗
𝑢𝑎 )2

where v𝐴𝑗
𝑢𝑎 and v𝐴𝑗

𝑢𝑏 are the vectors for the two users created
for the attribute 𝐴𝑗 , while v̄𝐴𝑗

𝑢𝑎 and v̄𝐴𝑗
𝑢𝑏 are the averages of

their values. In addition, the Sørensen index is represented by
the formula:

𝑆𝐼(𝐴,𝐵) = 2×∣𝐴∩𝐵∣
∣𝐴∣+∣𝐵∣

where 𝐴 and 𝐵 represent either the users’ rated items
(i.e. 𝐼(𝑢𝑎) and 𝐼(𝑢𝑏)) or the rated values of an attribute
(i.e. 𝐴𝑉𝐴𝑗

(𝑢𝑎) and 𝐴𝑉𝐴𝑗
(𝑢𝑏)). Note that, 𝑆𝑖𝑚𝐴𝑗

(𝑢𝑎, 𝑢𝑏) ∈
[−1, 1] since 𝑝𝐶(v𝐴𝑗

𝑢𝑎 , v
𝐴𝑗
𝑢𝑏 ) ∈ [−1, 1] and 𝑆𝐼(𝐴,𝐵) ∈ [0, 1].

The proposed methods have different starting points. Fo-
cusing on common rated items is different than working with
common rated attribute values. The first method guarantees
that users who share a number of common rated items, they
also share some common attribute values (i.e. the values
belonged to the common items). However, as said earlier,
there might be other common attribute values coming from
different rated items. Note that, the presented methods extract
similarities for each one of the available attributes which leads
us to the formation of 𝐿 symmetric matrices. This attribute-
level approach seems more appropriate due to the fact that our
dissimilarity features are also attribute-oriented. Both methods
are described in detail and for the rest of the paper, we will
refer to them as 𝐶𝐼 and 𝐶𝐴𝑉 respectively.

1) Similarities based on common rated items: In 𝐶𝐼
method, a pairwise user similarity value is assessed by users’
preference information derived from their common rated items.
Considering the users 𝑢𝑎 and 𝑢𝑏, the common items are
given by the intersection of their rated items, thus we have
𝐶𝐼(𝑢𝑎, 𝑢𝑏) = 𝐼(𝑢𝑎) ∩ 𝐼(𝑢𝑏). We apply a threshold 𝑡𝐶𝐼 to
the number of common items and we calculate similarity
values only for users who share an adequate number (i.e.
∣𝐶𝐼(𝑢𝑎, 𝑢𝑏)∣ ≥ 𝑡𝐶𝐼 ).

Considering an attribute 𝐴𝑗 ∈ 𝐴, we start by formulating
two vectors (i.e. v𝐴𝑗

𝑢𝑎 and v𝐴𝑗
𝑢𝑏 ) with users’ normalized interest

in the attribute values of 𝐴𝑗 that belong to the items of
𝐶𝐼(𝑢𝑎, 𝑢𝑏). In particular, for each common rated item, we
take its attribute value 𝑎𝑗𝑥𝑖

and we update the two vectors with
the values 𝑛𝐴𝐼(𝑢𝑎, 𝑎𝑗𝑥𝑖

) and 𝑛𝐴𝐼(𝑢𝑏, 𝑎
𝑗
𝑥𝑖
) respectively. Thus,

we have v𝐴𝑗
𝑢𝑎 (𝑖) = 𝑛𝐴𝐼(𝑢𝑎, 𝑎

𝑗
𝑥𝑖
) and v𝐴𝑗

𝑢𝑏 (𝑖) = 𝑛𝐴𝐼(𝑢𝑏, 𝑎
𝑗
𝑥𝑖
)

where 𝑎𝑗𝑥𝑖
is an attribute value of the 𝑖-th common rated item

with 𝑖 = [1, 2, ..., ∣𝐶𝐼(𝑢𝑎, 𝑢𝑏)∣] and 1 ≤ 𝑥𝑖 ≤ 𝑙𝑗 . Then, we

calculate the users’ similarity value for the attribute 𝐴𝑗 by
adjusting the (8) to meet the needs of this method:

𝑆𝑖𝑚𝐶𝐼𝐴𝑗
(𝑢𝑎, 𝑢𝑏) = 𝑝𝐶(v𝐴𝑗

𝑢𝑎
, v𝐴𝑗

𝑢𝑏
)× 2× ∣𝐶𝐼(𝑢𝑎, 𝑢𝑏)∣

∣𝐼(𝑢𝑎)∣+ ∣𝐼(𝑢𝑏)∣ (9)

We apply (9) to all pairs of users for each attribute and
from the populated 𝐿 symmetric similarity matrices we extract
𝐿 sets of top-𝑘 similar users for each available user. Thus, we
have 𝑡𝑜𝑝𝐾𝐶𝐼

𝐴𝑗
(𝑢𝑎) for each 𝐴𝑗 ∈ 𝐴. The algorithmic procedure

is presented by Algorithm 1.

Algorithm 1 User Similarities Based On Common Items
Require: 𝑈 , 𝐴, 𝑛𝐴𝐼 of attribute values for all users in 𝑈
Ensure: 𝑆𝑖𝑚𝐶𝐼𝐴𝑗

user similarities matrix ∀𝐴𝑗 ∈ 𝐴

for 𝑎 = 1→ ∣𝑈 ∣ do
for 𝑏 = 𝑖+ 1→ ∣𝑈 ∣ do

if ∣𝐶𝐼(𝑢𝑎, 𝑢𝑏)∣ ≥ 𝑡𝐶𝐼 then
for all 𝐴𝑗 ∈ 𝐴 do

for 𝑖 = 1→ ∣𝐶𝐼(𝑢𝑎, 𝑢𝑏)∣ do
𝑎𝑗
𝑥𝑖
∈ 𝑖𝑡𝑒𝑚𝑖 in 𝐶𝐼(𝑢𝑎, 𝑢𝑏)

v
𝐴𝑗
𝑢𝑎 (𝑖) = 𝑛𝐴𝐼(𝑢𝑎, 𝑎

𝑗
𝑥𝑖

)

v
𝐴𝑗
𝑢𝑏

(𝑖) = 𝑛𝐴𝐼(𝑢𝑏, 𝑎
𝑗
𝑥𝑖

)
end for
𝑆𝑖𝑚𝐶𝐼𝐴𝑗

(𝑢𝑎, 𝑢𝑏) = 𝑝𝐶(v
𝐴𝑗
𝑢𝑎 , v

𝐴𝑗
𝑢𝑏

) +
2×∣𝐶𝐼(𝑢𝑎,𝑢𝑏)∣
∣𝐼(𝑢𝑎)∣+∣𝐼(𝑢𝑏)∣

𝑆𝑖𝑚𝐶𝐼𝐴𝑗
(𝑢𝑏, 𝑢𝑎) = 𝑆𝑖𝑚𝐶𝐼𝐴𝑗

(𝑢𝑎, 𝑢𝑏)
end for

end if
end for

end for

The computational complexity for the extraction of the 𝐿
similarity matrices is affected by the number of users as well as
by the total average number of the common items they share.
In particular, we have:

𝑂(𝑝𝑎𝑖𝑟𝑠𝑡𝐶𝐼 × (𝐿× 𝜇𝐶𝐼)× 𝑒1 + 𝑒2)

where 𝑝𝑎𝑖𝑟𝑠𝑡𝐶𝐼 defines the pairs of users that have passed the
𝑡𝐶𝐼 threshold (i.e. 𝑝𝑎𝑖𝑟𝑠𝑡𝐶𝐼 < (∣𝑈 ∣2−∣𝑈 ∣)/2) for each of which
we create 𝐿 vectors by looping through their common rated
items. The average number of common items that all users
share is represented by 𝜇𝐶𝐼 . The 𝑒1 cost represents the total
time for the calculation of Pearson Correlation and for the final
computation of a similarity value. Lastly, the 𝑒2 cost defines
the time we need to sort the similarity values and get the top-𝑘
similar users. The complexity of the latter is affected by the
sorting algorithm one chooses to deploy. In our case, we make
use of merge sort which is one of the most efficient sorting
algorithms.

2) Similarities based on common attribute values: In 𝐶𝐴𝑉
method, we focus on common rated attribute values between
users to gauge a similarity value. Considering 𝑢𝑎 and 𝑢𝑏, the
set of the common rated attribute values is defined by the
intersection of their values in each attribute 𝐴𝑗 ∈ 𝐴, thus we
have 𝐶𝐴𝑉𝐴𝑗

(𝑢𝑎, 𝑢𝑏) = 𝐴𝑉𝐴𝑗
(𝑢𝑎) ∩ 𝐴𝑉𝐴𝑗

(𝑢𝑏). Note that, in
this method we have 𝐿 sets of common elements as opposed
to 𝐶𝐼 where we have only the set of common rated items.

Considering an attribute 𝐴𝑗 , we calculate a similarity value
only if users share an adequate number of common rated
attribute values of it. Between two users, we find the one
that has rated the fewer attribute values and we extract the
percentage of the common values with respect to this minimum
number. We apply a threshold 𝑡𝐶𝐴𝑉 to this percentage:
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𝑡𝐶𝐴𝑉 ≤ ∣𝐶𝐴𝑉𝐴𝑗
(𝑢𝑎,𝑢𝑎)∣

𝑚𝑖𝑛(∣𝐴𝑉𝐴𝑗
(𝑢𝑎)∣,∣𝐴𝑉𝐴𝑗

(𝑢𝑏)∣)

Then, we create the vectors v𝐴𝑗
𝑢𝑎 and v𝐴𝑗

𝑢𝑏 by utilizing the
users’ normalized interest in their common values of 𝐴𝑗 . We
have v𝐴𝑗

𝑢𝑎 (𝑖) = 𝑛𝐴𝐼(𝑢𝑎, 𝑎
𝑗
𝑥𝑖
) and v𝐴𝑗

𝑢𝑏 (𝑖) = 𝑛𝐴𝐼(𝑢𝑏, 𝑎
𝑗
𝑥𝑖
)

where 𝑎𝑗𝑥𝑖
is the 𝑖-th common attribute value belonged to

𝐶𝐴𝑉𝐴𝑗
(𝑢𝑎, 𝑢𝑏) with 𝑖 = [1, 2, ..., ∣𝐶𝐴𝑉𝐴𝑗

(𝑢𝑎, 𝑢𝑏)∣] and 1 ≤
𝑥𝑖 ≤ 𝑙𝑗 . After the creation of the two vectors, we can calculate
the users similarity value for the attribute 𝐴𝑗 by adjusting the
(8) to meet the needs of this method:

𝑆𝑖𝑚𝐶𝐴𝑉𝐴𝑗
(𝑢𝑎, 𝑢𝑏) = 𝑝𝐶(v𝐴𝑗

𝑢𝑎
, v𝐴𝑗

𝑢𝑏
)× 2× ∣𝐶𝐴𝑉𝐴𝑗

(𝑢𝑎, 𝑢𝑏)∣
∣𝐴𝑉𝐴𝑗

(𝑢𝑎)∣+ ∣𝐴𝑉𝐴𝑗
(𝑢𝑏)∣
(10)

From the extracted 𝐿 symmetric similarity matrices, we
once again keep 𝐿 sets of top-𝑘 similar users for each available
user. Thus, we have 𝑡𝑜𝑝𝐾𝐶𝐴𝑉

𝐴𝑗
(𝑢𝑎) for each 𝐴𝑗 ∈ 𝐴. We

describe the whole algorithmic procedure in Algorithm 1.

Algorithm 2 User Similarities Based On Common Attribute
Values
Require: 𝑈 , 𝐴, 𝑛𝐴𝐼 of attribute values for all users in 𝑈
Ensure: 𝑆𝑖𝑚𝐶𝐴𝑉𝐴𝑗

user similarities matrix ∀𝐴𝑗 ∈ 𝐴

for 𝑎 = 1→ ∣𝑈 ∣ do
for 𝑏 = 𝑖+ 1→ ∣𝑈 ∣ do

for all 𝐴𝑗 ∈ 𝐴 do

if (
∣𝐶𝐴𝑉𝐴𝑗

(𝑢𝑎,𝑢𝑏)∣
𝑚𝑖𝑛(∣𝐴𝑉𝐴𝑗

(𝑢𝑎)∣,∣𝐴𝑉𝐴𝑗
(𝑢𝑏)∣)

) ≥ 𝑡𝐶𝐴𝑉 then

for 𝑖 = 1→ ∣𝐶𝐴𝑉𝐴𝑗
(𝑢𝑎, 𝑢𝑏)∣ do

𝑎𝑗
𝑥𝑖
∈ 𝐶𝐴𝑉𝐴𝑗

(𝑢𝑎, 𝑢𝑏)

v
𝐴𝑗
𝑢𝑎 (𝑖) = 𝑛𝐴𝐼(𝑢𝑎, 𝑎

𝑗
𝑥𝑖

)

v
𝐴𝑗
𝑢𝑏

(𝑖) = 𝑛𝐴𝐼(𝑢𝑏, 𝑎
𝑗
𝑥𝑖

)
end for
𝑆𝑖𝑚𝐶𝐴𝑉𝐴𝑗

(𝑢𝑎, 𝑢𝑏) = 𝑝𝐶(v
𝐴𝑗
𝑢𝑎 , v

𝐴𝑗
𝑢𝑏

)

+
2×∣𝐶𝐴𝑉𝐴𝑗

(𝑢𝑎,𝑢𝑏)∣
∣𝐴𝑉𝐴𝑗

(𝑢𝑎)∣+∣𝐴𝑉𝐴𝑗
(𝑢𝑏)∣

𝑆𝑖𝑚𝐶𝐴𝑉𝐴𝑗
(𝑢𝑏, 𝑢𝑎) = 𝑆𝑖𝑚𝐶𝐴𝑉𝐴𝑗

(𝑢𝑎, 𝑢𝑏)
end if

end for
end for

end for

The computational complexity of this method is affected
by the number of users as well as the total average number of
their common rated attribute values. In particular, we have:

𝑂((𝑝𝑎𝑖𝑟𝑠× 𝜇𝐿)× 𝜇𝐶𝐴𝑉 × 𝑒1 + 𝑒2)

where 𝑝𝑎𝑖𝑟𝑠 = (∣𝑈 ∣2−∣𝑈 ∣)/2 is the pairs of users for each
of which we check to see for which attributes the threshold
𝑡𝐶𝐴𝑉 is passed (i.e. 𝜇𝐿 ≤ 𝐿). For these attributes we
create vectors by looping through users’ sets of common rated
attribute values. The average number of these sets between
all pairs of users is represented by 𝜇𝐶𝐴𝑉 . Once again, the
𝑒1 cost measures the total time for the calculation of Pearson
Correlation and for the final computation of a similarity value,
while the 𝑒2 cost defines the time the merge sort needs to sort
the similarity values and extract the top-𝑘 similar users.

C. Estimating Dissimilarity Features

A dissimilarity feature is calculated for each attribute value
of a rated item resulting in 𝐿 new features for it. Considering
an item with 𝑎𝑗𝑥 ∈ 𝐴𝑗 being one of each attribute values,

the dissimilarity feature of 𝑎𝑗𝑥 represents the difference in the
interest shown by the user 𝑢𝑎 who gave the rating and her most
similar ones regarding the 𝐴𝑗 . To quantify this difference, we
propose a dissimilarity metric where we make use of users’
normalized interest in 𝑎𝑗𝑥:

𝐷𝑆
𝑢𝑎
(𝑎𝑗𝑥) =

∑
𝑢𝑏∈𝑈 ′ 𝑤𝑎𝑏 × (𝑛𝐴𝐼(𝑢𝑎, 𝑎

𝑗
𝑥)− 𝑛𝐴𝐼(𝑢𝑏, 𝑎

𝑗
𝑥))∑

𝑢𝑏∈𝑈 ′ 𝑤𝑎𝑏

(11)

where 𝑆 indicates either 𝐶𝐼 or 𝐶𝐴𝑉 method. In case of 𝐶𝐼 ,
the set 𝑈 ′ = 𝑡𝑜𝑝𝐾𝐶𝐼

𝐴𝑗
(𝑢𝑎) and 𝑤𝑎𝑏 = 𝑆𝑖𝑚𝐶𝐼𝐴𝑗

(𝑢𝑎, 𝑢𝑏), while
in case of 𝐶𝐴𝑉 , the set 𝑈 ′ = 𝑡𝑜𝑝𝐾𝐶𝐴𝑉

𝐴𝑗
(𝑢𝑎) and 𝑤𝑎𝑏 =

𝑆𝑖𝑚𝐶𝐴𝑉𝐴𝑗
(𝑢𝑎, 𝑢𝑏).

The more similar two users are, the more important
we consider their difference in preference. Therefore, we
make use of user similarities as weights in (11) to support
this rationale. According to (8) and (11), both similarity
values and dissimilarity features share the same range (i.e.
[−1, 1]). At the end, we update an item’s representation by
adding its extracted dissimilarity features. For the user 𝑢𝑎,
we have 𝐼 ′(𝑢𝑎) = {𝑖𝑡𝑒𝑚′1, ..., 𝑖𝑡𝑒𝑚′∣𝐼(𝑢𝑎)∣} where 𝑖𝑡𝑒𝑚′𝑖 =

{{𝑎1𝑥1
, ..., 𝑎𝐿𝑥𝐿

}, {𝐷𝑆
𝑢𝑎
(𝑎1𝑥1

), ..., 𝐷𝑆
𝑢𝑎
(𝑎𝐿𝑥𝐿

)}} is the augmented
version of the 𝑖-th item of 𝐼(𝑢𝑎).

IV. CLASSIFICATION FRAMEWORK

In this section, we present a classification framework
through which we train classifiers to solve the binary classifi-
cation problem of deciding which items users like or not. We
start by converting the nominal attribute values of items into
continuous ones and then, we label the items by using rating
information. After that, we train classifiers by using users’
items as samples and we test their performance with various
evaluation metrics (see Section V-C).

Community-based Naive Bayes Conversion
The applied SVM-based classifier cannot handle nominal fea-
tures, thus, the problem of converting them from qualitative
to quantitative arises. Several techniques have addressed this
issue such as binary flag fields, text categorization, principal
component analysis [15] and bayesian network classifiers.
In this work, we adopt the latter by using Naive Bayes
method [7].

For each user 𝑢𝑎, we take the similar users associated
with all attributes. Thus, we define 𝑡𝑜𝑝𝐾𝑆

𝐴(𝑢𝑎)⊎ 𝑡𝑜𝑝𝐾𝑆
𝐴𝑗

(𝑢𝑎)
for each 𝐴𝑗 ∈ 𝐴 where 𝑆 indicates 𝐶𝐼 or 𝐶𝐴𝑉 method.
Once this group of users has been formed, we gather all
their samples in 𝐼𝑆𝐴(𝑢𝑎) ⊎ 𝐼 ′(𝑢𝑖) for each 𝑢𝑖 ∈ 𝑡𝑜𝑝𝐾𝑆

𝐴(𝑢𝑎).
Through 𝐼𝑆𝐴(𝑢𝑎) we formulate a sample-attribute matrix for
𝑢𝑎. Similarly to [7], we replace nominal attribute values
with scores. However, instead of replacing all values of a
sample with one score, we calculate a score for each of
its values. In particular, from the user’s sample-attribute
matrix we take into account one attribute at a time through
which posterior probabilities for its values are calculated.
These probabilities lead us to the final scores. At the
end, we update each item’s representation by replacing
the attributes with their corresponding scores. Thus, we
have 𝐼 ′′(𝑢𝑎) = {𝑖𝑡𝑒𝑚′′1 , ..., 𝑖𝑡𝑒𝑚′′∣𝐼(𝑢𝑎)∣} where 𝑖𝑡𝑒𝑚′′𝑖 =
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{{𝑁𝐵𝑆
𝑢𝑎
(𝑎1𝑥1

), ..., 𝑁𝐵𝑆
𝑢𝑎
(𝑎𝐿𝑥𝐿

)}, {𝐷𝑆
𝑢𝑎
(𝑎1𝑥1

), ..., 𝐷𝑆
𝑢𝑎
(𝑎𝐿𝑥𝐿

)}}
is the updated version of the 𝑖-th sample of 𝐼 ′(𝑢𝑎).

This community-based approach of formulating a sample-
attribute matrix for each user leads us to a matrix which
captures more precisely the user’s preferences which would
not be the case if all users’ samples are used. In the latter
case, individual preferences would be lost since one score
would be produced for each attribute value regardless the user’s
preferences. As a result, recommendation precision would be
adversely affected. Note that, the samples of a user capture
perfectly her preferences and they could be used to formulate
the sample-attribute matrix. However, this approach is too
biased and it is rejected.

Samples Labelling
A classifier needs labels on samples to be trained. Therefore,
we label each sample of a user with one of our two classes,
like or dislike, by comparing its normalized rating with the
user’s normalized total average rating of (1). The samples with
ratings above the average are labelled with the like class whilst
the others go to the dislike class. Therefore, we have:

𝑠𝑎𝑚𝑝𝑙𝑒𝑙𝑎𝑏𝑒𝑙(𝑖) =

{
𝑙𝑖𝑘𝑒 if 𝑑(𝑢𝑎)× 𝑟𝑖 ≥ 𝑎𝑣𝑔(𝑢𝑎)
𝑑𝑖𝑠𝑙𝑖𝑘𝑒 otherwise

where 𝑠𝑎𝑚𝑝𝑙𝑒(𝑖) is the 𝑖-th item of 𝐼 ′′(𝑢𝑎) and 𝑟𝑖 is 𝑢𝑎’s
rating on it.

Applying different thresholds to 𝐶𝐼 and 𝐶𝐴𝑉 will result
in different groups of similar users. This directly affects the
dissimilarity features as well as the extracted scores. Hence, for
each execution of these methods we obtain different samples
for users which are used to train our classifiers. In particular,
we formulate three different sets of features for each user’s
samples: the NB set which contains the scores of the attribute
values, the DF set where the dissimilarity features of the
updated item representations are included, and the NB+DF
which is their combination. Considering a feature set, we train
and test a classifier for each user as described in the Section V.

V. EXPERIMENTATION

We carried out experiments on a real-world dataset to
ascertain the usability of the proposed dissimilarity features
in providing suitable recommendations through the use of
classifiers. In this section, we describe the dataset and the
classifiers we make use of, while we also evaluate our features
in terms of discriminating ability.

A. Dataset Description

We make use of Yahoo! Music dataset which contains user
ratings on songs accompanied by three types of attributes:
genres, albums and artists. The dataset provides more than
700 million ratings, although we keep only a fragment of this
vast amount of data. We omit the items that have missing
attribute values and then, we maintain only the users that
have rated more than 20 items. As a result, numbers of both
items and users are greatly reduced (i.e. almost 92M ratings,
18K songs and 770K users). We also make use of a genre
hierarchy to replace each genre with its connected one from

the highest level. For instance, consider a song with a third-
level genre “Southern Rock” connected with the first-level
genre “Rock”. In this case, we replace the former with the
latter. Although with such replacements we overlook detailed
genre information, we manage to decrease the sparsity of
this attribute (i.e. more rated items share common genres). A
similar approach cannot be applied to the other attributes due
to lack of hierarchies.

We further proceed to a 5% random sampling on the
remaining set of users which is adequate to evaluate the
performance of our classification framework. From a statistical
perspective, the error produced by our random sampling for
a 99% confidence margin can be estimated by the formula
𝑅𝑆𝐸 = 1.29/

√
∣𝑈 ∣. In our case, the random sampling error rate

is estimated to ±0.6% which is of no concern considering the
results presented later. Table I contains the sizes of all entities
we make use of.

∣𝑈 ∣ users 39, 427
∣𝐼∣ items 18, 442
∣𝑃 ∣ preferences 4, 617, 240
𝐴1 = 𝑔𝑒𝑛𝑟𝑒𝑠 𝑙1 = 18
𝐴2 = 𝑎𝑙𝑏𝑢𝑚𝑠 𝑙3 = 2, 385
𝐴3 = 𝑎𝑟𝑡𝑖𝑠𝑡𝑠 𝑙2 = 877

TABLE I: Dataset Description

B. Classifiers as Recommenders

We evaluate our dissimilarity features by incorporating
them into different recommenders/classifiers. Through Weka,
we apply two representative classifiers from two widely used
algorithmic families, the C4.5 decision tree learner and the
lib-SVM. Regarding the C4.5 classifier, we make use of an
unpruned decision tree with the default parameters of the
Weka implementation. As for the lib-SVM, we make use of
two types, the nu-SVC and the C-SVC, in order to manage
two different groups of users. The nu-SVC is used for users
that have a balanced number of like and dislike labelled
items, while the C-SVC is used for the unbalanced ones. This
separation is performed due to the inability of the former type
to be applied to the group of the unbalanced users (i.e. 𝑛𝑢
cannot be estimated). In both types, a simple linear kernel is
preferred with some changes in the default Weka parameter
values2.

C. Evaluation Metrics

To test the usability of our features we apply two evaluation
processes. In the first process, we measure the precision of the
applied classifiers through which we can assess the importance
of our features in the classification tasks when they are used
along with other features. Increased precision in such cases
will indicate that the dissimilarity features can deal with our
binary classification problem. In addition, we apply feature
selection techniques which produce ordered lists of features
regarding their relevance. In this case, the goal is for our
features to be placed higher in these lists comparing to other
features.

2Normalization and Probability Estimation parameters are changed to true
value
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C4.5 Classifier
𝐶𝐼 method 𝐶𝐴𝑉 method

𝑡𝐶𝐼 = 10 𝑡𝐶𝐼 = 20 𝑡𝐶𝐼 = 30 𝑡𝐶𝐴𝑉 = 0.1 𝑡𝐶𝐴𝑉 = 0.2 𝑡𝐶𝐴𝑉 = 0.3
NB 67.62% 66.28% 66.28% 72.65% 72.58% 72.10%
DF 76.66% 78.98% 79.37% 71.21% 71.51% 73.93%

NB+DF 77.81% 79.75% 79.77% 74.27% 74.39% 75.77%
lib-SVM Classifier

NB 64.49% 62.87% 62.06% 69.12% 69.02% 68.57%
DF 69.50% 69.73% 67.62% 65.10% 65.27% 66.60%

NB+DF 68.02% 68.21% 69.69% 70.09% 70.07% 70.03%

TABLE II: Weighted Precision Results

1) Precision Results: A classifier’s performance is based
on class predictions for samples against their actual classes.
The more correct predictions, the more effective a classifier
is. Here, we make use of the precision metric where for each
class we count the ratio between the positive predictions and
the negative ones. Although recall metric is often used to
evaluate the performance of classifiers, we exclude it from
our experiments due to the fact that we do not focus on top-𝑛
recommendations. On the contrary, we predict labels for all
samples which results in no false negatives for the classes.
Therefore, recall metric is not relevant in the context of our
experimentation.

Focusing only on precision, we calculate a weighted preci-
sion for a classifier by combing the precisions of all classes the
sizes of which are also taken into account. For each user we
train and evaluate one classifier by using the 10-fold validation
technique, and, at the end, we calculate the average weighted
precision from all classifiers. Table II contains the results of the
applied classifiers with respect to both 𝐶𝐼 or 𝐶𝐴𝑉 methods
executed with different 𝑡𝐶𝐼 and 𝑡𝐶𝐴𝑉 thresholds. In all of our
experiments, we define 𝛽 = 1 for (7) and 𝑘 = 100 for the top
similar users.

As Table II depicts, the DF sets outperform the NB sets in
almost all cases. Regarding the C4.5 classifier, the improve-
ment ranges from 1.83% to 13.09%, while for the SVM-based
classifier we get from 5.01% to 6.86%. However, there are
some cases where the NB sets produce better precision that
the DF sets ranging from 1.07% to 4.02%. The latter does not
indicate invaluable dissimilarity features and this can be further
countered by the fact that the combined sets NB+DF produce
improved results in all cases ranging from 0.97% to 13.49%.
This endorses the reasoning that our features enhance the
discriminating power of the applied classifiers. Furthermore,
we observe that NB+DF sets produce better results when we
increase the thresholds. This could be attributed to the fact that
increased thresholds result in more suitable user communities
regarding similarity, which propagates less “noisy” information
in the calculation of the dissimilarity features.

2) Ranking through Feature Selection: Apart from the
evaluation based on precision, we also rank features according
to five popular feature selection techniques3 (i) information
gain with respect to classes (IGEval), (ii) Pearson correlation
between features and classes (PCEval), (iii) importance of
features based on the One-Rule classification (ORCEval), (iv)
using Relief criteria [16] (RCEval) and (v) features’ sym-
metrical uncertainty with respect to classes (SUEval). Each
technique analyses a user’s samples and produces an ordered

3All techniques are included in Weka software

list of features where the places indicate the features’ rele-
vance regarding the classification. Scores are given to features
between 1 and 6 where 1 indicates the lowest ranked feature
and 6 the highest one. Considering all users and the ordered
lists produced by a technique, we calculate an average score
for each type of feature:

𝑎𝑣𝑔𝑆𝑐𝑜𝑟𝑒𝐶(𝐹 ) =

∑
𝑢𝑎∈𝑈

𝑠𝑐𝑜𝑟𝑒𝐶𝑢𝑎
(𝑓)

∣𝑈 ∣ ∈ [1, 6]

where 𝑠𝑐𝑜𝑟𝑒𝐶𝑢𝑎
(𝑓) is the score of criterion 𝐶 given to the

feature 𝑓 belonged to 𝑢𝑎’s NB+DF set. The set 𝐹 contains 6
elements each one of which represents features from NB+DF
sets of the same type. For instance, 𝑁𝐵(𝐴1) represents all
converted values for 𝐴1 attribute, while 𝐷(𝐴1) is for all
dissimilarity features of values of the same attribute.
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(a) 𝐶𝐼 method with 𝑡𝐶𝐼 = 30
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(b) 𝐶𝐴𝑉 method with 𝑡𝐶𝐴𝑉 = 0.3

Fig. 2: Features Ranking Points

Here, we present the average scores for the NB+DF fea-
tures that produced the best precision results in our exper-
iments. Figure 2a depicts the scores of features originating
from the 𝐶𝐼 method with 𝑡𝐶𝐼 = 30, while Figure 2b shows
the results when the 𝐶𝐴𝑉 is applied with 𝑡𝐶𝐴𝑉 = 0.3. Note
that, the results for NB+DF features originating from both 𝐶𝐼
and 𝐶𝐴𝑉 method executed with the other thresholds lead to
similar conclusions, therefore they are not presented.

831831



Results indicate that our features perform adequately well
in all evaluation criteria. In particular, when 𝐶𝐼 method is ap-
plied, 𝐷(𝐴1) and 𝐷(𝐴3) achieve the highest scores comparing
to all others indicating that they play the most significant role
in classifying users’ samples. Regarding the 𝐶𝐴𝑉 method,
although the 𝑁𝐵(𝐴1) and 𝑁𝐵(𝐴3) get the best scores, the
scores of 𝐷(𝐴1) and 𝐷(𝐴3) remain adequately high which
infers that they also contribute in the classification tasks.
Finally, both 𝑁𝐵(𝐴2) and 𝐷(𝐴2) produce the lowest scores in
all criteria which may lead to the conclusion that the attribute
𝐴2 = 𝑎𝑙𝑏𝑢𝑚𝑠 offers little to no additional discriminating
power to the classifiers as opposed to the others due to its
great sparsity (i.e. see Table I).

VI. CONCLUSIONS & FUTURE WORK

In this work, we introduce a dissimilarity feature extraction
framework through which we augment items’ representations
with new features. When utilized in classification tasks, these
enriched representations are proved to be effective in dis-
covering preferred items, since they result in an improved
performance in terms of precision. Presented results from the
applied classifiers and the feature selection techniques endorse
the usability of our features.

In future work, we are interested in comparing our features
with state-of-the-art research efforts such as matrix factoriza-
tion techniques [17]. Such comparison studies will greatly
enhance the importance of our work. Furthermore, consid-
ering the computational complexity of our feature extraction
framework, we plan to provide a distributed implementation
through which its execution time will be reduced. Finally, the
proposed framework could be adjusted in order to provide
suggestions in the context of social networks. Considering a
community of users, we could calculate dissimilarity features
for the items they have expressed their opinion. Then, these
features could lead to dissimilarities between users which can
be used for their separation into two poles. The one pole would
contain the users with small pairwise dissimilarity weights
(i.e. like-minded users), while the other pole would include
the ones with high dissimilarity weights (i.e. opposite-minded
user). Applications that seek a balance between accuracy and
diversity could use both poles of users.
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