A Web-based evolutionary model
for Internet Data Caching

Athena Vakali
Department of Informatics
Aristotle University
54006 Thessaloniki, Greece
email: {avakali}@csd.auth.gr

Abstract

Caching is a standard solution to the problem of insuf-
ficient bandwidth caused by the rapid increase of in-
formation circulation across the Internet. Cache con-
sistency mechanisms are a crucial component of each
cache scheme influencing the cache usefulness and re-
liability. This paper presents a model for optimizing
Internet cache content by the use of a genetic algo-
rithm and examines the model by trace-driven exper-
iments. Cached data are considered as a population
evolving over simulated time by a number of succes-
sive cache “generations”. The model is tested by the
use of traces provided by a Squid prozy cache server.
Using trace-driven caching, we show that the pro-
posed evolutionary mechanisms improve cache non-
staleness and consistency and result in an updated
cache content.

Index terms: Internet applications, Web-based ob-
ject caching, evolutionary computation algorithms.

1 Introduction

Internet is a widely-expanded distributed system with
numerous servers which maintain caches. Improving
Web cache content is a major issue for facilitating and
fastening the information availability and reliability.
World-Wide Web information circulation has been al-
most doubling every six months, and despite efforts
for capacity increases demands aren’t always kept up
[8]. Caching presents an effective solution, since it
provides mechanisms to faster web access and im-
proves load balancing without demanding more band-
width. The World-Wide Web caching differs from a
distributed file system mainly in its access patterns
since Web is orders of magnitude larger than any dis-
tributed file system [7, 3]. Intelligent Caching has
been investigated in [12] whereas the potential for
document caching at the application-level has been
tested in [2]. Two other factors affecting cached data
management are the Caching and replication [1] and

the Cache hierarchy [4, 9].

The most significant problem of a cache server
is its ability to keep data as “fresh” as possible i.e.,
eliminate Web information staleness. The Web server
is responsible for the preservation of information ob-
ject’s “freshness” towards balancing the server load
and facilitating the internet information circulation.
Cache consistency policies have been included in al-
most every proxy cache server (e.g. [9]) and their
improvement became a major research issue. In [7]
a survey of contemporary cache consistency mecha-
nisms in Internet is presented and examines recent
research in Web cache consistency.

Evolutionary strategies have been used to solve
many computational problems demanding optimiza-
tion and adaptation to changing environments. Usu-
ally grouped under the term evolutionary algorithms
or evolutionary computation, are the domains of Ge-
netic Algorithms, evolution strategies, and genetic
programming. More specifically, Genetic Algorithms
have been applied in various research areas such as
scientific modeling, machine learning as well as net-
work infrastructure [6, 11, 5].

This paper presents a model which adapts the
evolutionary computation idea to preserve a consis-
tent cache 'population’ of World-Wide Web informa-
tion objects. A Web cache is modeled as a popula-
tion of information objects and the aim is to improve
the cache population regarding its consistency, avail-
ability and accessibility. The model is based on the
Squid proxy-cache server environment and is exper-
imented under real cache traces and cache log files.
The remainder of the paper is organized as follows.
The next section describes proxy cache environments
and presents the Genetic Algorithm process. Sections
3 and 4 present the implementation model and the
trace driven experimentation, respectively. Section 5
points some conclusions and discusses potential fu-
ture work.

2 The Internet Caching model

‘ Cache content ‘
{ =T
4 4
of [OLol.08 (o) or] o
[11]
1 | 1 1
7 7 7

stored Files (objects)
Figure 1: Squid proxy cache structure.

Caching was initially introduced to provide an in-
termediate storage space between the main memory
and the processor and the caching principle was ex-
tended to Web servers by considering them as another
level in the memory hierarchy.

2.1 Caching on the Web

A Web cache is an application residing between Web
servers and clients and watches requests for informa-
tion objects identified as html pages, images and files
saving a copy for itself. If another request concerns
the same object, cache will use the copy it has, in-
stead of asking the original server for it again. The
two main Web caches advantages are the reduce in
both latency (request is satisfied by the cache which
is closer to the client) and traffic (each object is got-
ten from the server once, thus reducing the band-
width used by a client). Nowadays, a variety of cache
servers are available for the World-Wide Web caching
and most of the recent Web servers include caching
modules (e.g. Apache, Spinner, Jigsaw, Purveyor).

e CERN prozy server has been widely adopted since
there was a large infrastructure of the CERN web
servers already installed. A heuristic known as time-
to-live (TTL), was used to manage object’s stale-
ness. A TTL timing frame based on request and
expiry dates, accompanies each document in the
cache [12, 7).

e Netscape Prozy Server has been available commer-
cially since 1995 and supports management of ob-
ject’s staleness by TTL frames based on object’s
age when it is cached.

e Harvest cache software was developed with the aim
of making effective use of the information avail-
able on the Internet, by sharing the load of in-
formation gathering and publishing between many
servers. The first version of the Harvest cache soft-
ware supported TTLs, whereas more recent Harvest
versions support new options for the management

of object’s staleness. Newest Harvest developments
are available commercially whereas a team from the
National Laboratory for Advanced Networking Re-
search (NLANR) have continued to provide a free
version under the name Squid [10].

Squid caching software has gained a lot of atten-
tion lately, since it is used on an experimental network
of seven major co-operating servers across U.S.A. This
network is established under a project framework by
the National Laboratory for Advanced Networking
Research (NLANR) and supports links to collaborat-
ing cache projects in other countries. Aristotle Uni-
versity has installed Squid proxy cache for main and
sibling caches and supports a Squid mirror site. The
present paper uses for experimentation traced infor-
mation provided by this cache installation . Figure 1
represents the organization of cache hierarchy struc-
ture which consists of a two-level structure. Assum-
ing approximately 256 objects per directory there is
a potential of a total of 1,048,576 (=16 x256x256)
cached objects.

2.2 Evolutionary computation - Genetic
algorithms

f:> Population %
Evaluate Select parents
Fitness (according to fitness)

==

Figure 2: The Genetic Algorithm process.

(crossover, mutation)

Lol afol el ofofuf [[ilifolo[1] 1]ol1]

@CRDSSOVER

Lol s Fol el 1] o] 1]

i1 fofol1flofol]

Lol t1o[1]1] oo |H||]|:>H0\1\0\0| 1| o[o[1]

MUTATION

Figure 3: operators: crossover and mutation.

Evolutionary programming has been successfully
applied to numerous problems from different domains.
Genetic algorithms (GAs) comprise one of the main
evolutionary methods, applied to many computational
problems requiring either search through a huge num-
ber of possibilities for solutions, or adaptation to a
changing environment. A GA is an iterative proce-

dure that consists of a constant-size population of in-
dividuals each one represented by a finite string of
symbols, encoding a possible solution in a given prob-
lem space. The standard GA generates an initial pop-
ulation of individuals, which is updated at each evo-
lutionary step resulting in a new “generation”. The
individuals in the current population are decoded and
evaluated according to some predefined quality cri-
terion, called fitness function. Figure 2 depicts the
cycle of a GA applied in a space of individuals. Each
individual’s fitness evaluation is an important param-
eter, usually given as part of the problem’s descrip-
tion. Two genetically-inspired operations, known as
crossover and mutation are applied to selected indi-
viduals in order to successively create stronger gen-
erations. Figure 3 depicts these two operations in a
8-bit string individual.

Crossover is performed between two individuals (par-
ents) with some probability, in order to identify two
new individuals resulting by exchanging parts of par-
ents’ strings. The exchanging of parents parts are
performed by cutting each individual at a specific bit
position and produce two “head” and two “tail” seg-
ments. The tail segments are then swapped over to
produce two new full length individual strings.
Mutation is introduced in order to prevent prema-
ture convergence to local optima by randomly sam-
pling new points in the search space. Mutation is
applied to each child individually after crossover. It
randomly alters each individual with a (usually) small
probability (e.g. 0.001).

Provided that GA has been correctly implemented,
the population will evolve over successive generations
such that the fitness of the best and the average in-
dividual in each generation is improved towards the
global optimum.

3 The GA Cache model

The presented implementation adapts a GA evolu-
tionary approach to the cache information objects
update in order to optimize cacheable objects and
result in an improved cache content. The GA is used
because of two main reasons : First, the basic idea
of the GAs is based on the evolution of populations
by the criterion “survival of the fittest” and the the
cache should contain the fittest (most fresh) informa-
tion objects. Second, the GAs are applied to prob-
lems demanding optimization out of spaces which are
too large to be exhaustively searched and the cache
content consists of million(s) of information objects
(stored files) as indicated in Subsection 2.1. The pro-
posed GA model follows the Simple GA proposed in

[6].

3.1 The Cache update algorithm

The following heuristics were made in order to adapt
the GA approach to the cache update scheme:

e cache is considered as a population of individuals,

e the individual is the actual cached object, identified
by the filename where it’s stored. Squid objects, the
last level in the cache storage hierarchy (Figure 1)
are stored in files with filenames coded as hexadec-
imal numbers strings (e.g. 001af200, 000be301)

e each individual is assigned with a fitness value de-
rived by a general fitness function declaring the ob-
ject’s freshness.

The cache update scheme is implemented in order
to perform cache reform and re-“generation” at reg-
ular time intervals. A pseudo-code version of the GA
scheme of our cache-update implementation follows:

initialize()
generation <- 1
while (generation <= maxgen) do
parl <- selection(popsize, fitness, old_pop)
par2 <- selection(popsize, fitness, old_pop)
crossover (parl,par2,old_pop,new_pop,p_cross)
mutation(new_pop, p_mutate)
statistical_report (new_pop)
old_pop <- new_pop
generation <- generation + 1

// old_pop=initial population

In the above GA maxgen corresponds to the maxi-
mum number of successive generation runs, popsize
is the cache population size, fitness is the cache up-
date factor (fitness evaluation is described in the next
subsection), parl and par2 are the parents chosen for
the reform of each generation, p_cross, p-mutate are
the probabilities for crossover and mutation, respec-
tively. Furthermore, each individual is decoded as a
binary bit string corresponding to the hexadecimal
string of the object’s filename. The implementation
of crossover above gets old_population and results in
new_population either by preserving the parents or
by reproducing a new individual based on parents fit-
ness. Mutation is performed on the new_population
by affecting few positions in the individuals string to-
wards a better fitness.

3.2 GA Cache Metrics

As mentioned earlier, cache generations are evolved
based on specific fitness function related to the ob-
ject’s freshness/staleness factor. In order to identify
this factor, Squid’s log files fields are used for each
object’s fitness function. Squid (in its default config-
uration) makes four logfiles:

e logs/access.log: requests issued to the proxy server
regarding how many users use the cache, how much
each requested etc.

e logs/cache.log: information Squid needs to know
such as errors, startup messages etc.

e logs/store.log: information of what’s happening with
our cache diskwise; it shows whenever an object is
added or removed from disk.

e cache/log: contains the mapping of objects to their
disk location.

Store log fields |

time time this entry was logged.

action RELEASE, SWAPIN, or SWAPOUT.
RELEASE : object removed from cache.
SWAPOUT : object saved to disk.
SWAPIN : object swapped into memory.
status HTTP reply code.

datehdr | HTTP Date: reply header.
lastmod | HTTP Last-Modified: reply header.
expires HTTP Expires: reply header.

type HTTP Content-Type reply header.

exp-len | HTTP Content-Length reply header.
real-len | # bytes of content actually read.
method | HTTP request method.

key cache key ; often simply the URL.

Table 1: store.log :Fields of each individual object

Since fitness function drives the evolution of the
GA population, is important to reward the improved
cache content individuals. Therefore, a metric char-
acterizing cache object’s freshness will be the best
choice for the GA caching scheme. As described in
Section 2 all proxy caches relate their object’s refresh
policy with timing object’s last modification period.
Therefore, in our GA caching, each individual ob-
ject’s fitness is evaluated by a factor corresponding
to the ratio of object’s “ages” since retrieval and its
last modification. More specifically,

agel

fitnessobject = (7,962
where agel corresponds to the time that passed since
the object’s retrieval and age2 is the age of the object
at the time of its retrieval. Fields of store.log (de-
scribed in Table 1) are used to evaluate each of these
parameters. By using these tags the evaluation of the
numerator results in agel = now — datehdr and
the denominator in and age2 = datehdr — lastmod.

4 Experiments - Results

The simulator was tested and validated by Squid cache
traces and their corresponding log files. Traces refer

Avg / Max fitness; generations
A\W

0.6 1

max_fitness —o—
average_fitness ——

Fitness value

02 F 1

of generations

Figure 4: avg/max fitness over generations

Cache storage ; generations
450 T

400

350

300

N
@
3

N
S
3

SWAPIN -
RELEASE —+—
SWAPOUT &+

cache storage action

= .
) a
S] 3

@
S

[20 40 60 80 100
of generations

Figure 5: actions over generations

to the period from October to December 1998 and in-
formation objects refer to a typical 5-day run over the
overall trace period. GA scheme was applied to cache
population when hits were reduced, i.e. at night sim-
ulated time. Initial population for the GA scheme is
the population produced by Squid proxy. Figures 4,
5, 6 and 7 depict the effect of the number of genera-
tions to the cache metrics. More specifically, Figure 4
presents the average and maximum fitness values for a
cache population being reproduced by 10, 20, - - -, 100
generations. Crossover probability is 0.6 whereas mu-
tation probability is 0.0333, since these values have
been suggested as a representative trial set for most
GA optimizations. The population’s average fitness
value decreases, even for the 10 generations reproduc-
tion, whereas the maximum fitness remains at almost
the same rate. Decreasing average objects fitness, i.e.
last modified ratios is important since cache will con-
sist of more “fresh” members. The decreasing rate
in the last modified ratios (fitness) is more than 50%
for some generations. Figure 5 presents the actions
(SWAPIN, RELEASE, SWAPOUT) that each cache
generation will take. It is important to note that as

Cache File types ; generations
T T

500

450

350

300

250

of files

200 gif —— -
html ~—
jpeg =—
150 other »—

100

0 M M
0 20 40 60 80 100
of generations

Figure 6: file types over generations

Cache Length; generations
10000 T T

8000

6000

length / KB —=—

cache KBytes

4000

2000

0 20 40 60 80 100
of generations

Figure 7: KBytes over generations

generations evolve, the GA scheme attempts to favor
the RELEASE action in order to update cache. Fig-
ure 6 represents the file types content of each cache
generation. Files include the html, gif, jpeg types
which are the most common in cache populations and
all other types include mostly plain/text files as well
as application files. The g¢if and jpeg files are the most
commonly used in each generation, whereas htmls re-
main at almost the same rate. Figure 7 refers to
the KBytes length variation at each cache generation.
This length is the actual length (real_len) and not the
expected length (exp_len) of the store.log headers (Ta-
ble 1). This length is reduced significantly for larger
number of generations (>50) and depends on the file
types that cache contains, since more gif and jpeg files
occupy more space.

5 Conclusions - Future Work

The Internet data caching is studied under a GA
model for preserving cache consistency. The simula-
tion process included almost all of the necessary pa-

rameters to study the model under real Squid cache
traces, with support to the most indicative cache pa-
rameters (last modification factor, cache length, ac-
tions and file types). The GA scheme has been proven
quite effective since cache population evolved over the
simulation time for an increasing number of genera-
tions.

Further research should further experiment the
present scheme under different fitness selection poli-
cies. Other evolving computation schemes (e.g. simu-

lated annealing, threshold acceptance), could be adopted

in internet caching, in order to study their effect on
cache consistency.

References

[1] M. Baentsch et al.: Enhancing the Web’s Infrastruc-
ture: From Caching to Replication, IEEE Internet
Computing, Vol.1, No.2, pp. 18-27, Mar-Apr 1997.

[2] A. Bestavros, R.L. Carter and M. Crovella:
Application-level Document Caching in the Internet,
Proceedings of 2nd International Workshop in Dis-
tributed and Networked Environments, SDNE 1995.

[3] M. A. Blaze: Caching in Large-Scale Distributed File
Systems, Princeton University, PhD thesis, Jan 1993.

[4] A. Chankhunthod, P. Danzig and C. Neerdaels:
A Hierarchical Internet Object Cache, Proceedings
of the USENIX 1996 Annual Technical Conference,
pp-153-163, San Diego, California, Jan 1996.

[5] B. Dengiz, F. Atiparmak, A. E. Smith : Local Search
Genetic Algorithm for Optimization of Highly Reli-
able Communications Networks, IEEE Transactions
on Evolutionary Computation, Vol.1, No. 3, pp. 179-
188, Aug 1997.

[6] D. Goldberg: Genetic Algorithms in Search, Opti-
mization, and Machine Learning, Addison-Wesley,
1989.

[7] J. Gwertzman and M. Seltzer: World Wide Web
Cache Consistency, Proceedings of the USENIX
1996 Annual Technical Conference, pp.141-151, San
Diego, California, Jan 1996.

[8] A. S. Heddaya: DynaCache: Weaving Caching into
the Internet, Infolibria, 1998.

[9] O. Pearson: The Squid Cache software, Squid Users
Guide, http://www.auth.gr/SquidUsers/, 1998.

[10] Squid: Squid Internet Object Cache,
http://www.auth.gr/Squid/, 1998.

[11] T. Starkweather, D. Whitley and K. Mathias: Op-
timization Using Distributed Genetic Algorithms,
Parallel Problem Solving, Springer Verlag, 1991.

[12] D. Wessels: Intelligent Caching World-Wide Web
Objects, Proceedings of the INET’95 Conference, Jan
1995.

