
Evolutionary Prefetching and Caching
in an Independent Storage Units Model

Athena Vakali

Department of Informatics
Aristotle University of Thessaloniki, Greece

E-mail: avakali@csd.auth.gr

Abstract. Modern applications demand support for a large number of
clients and require large scale storage subsystems. This paper presents
a theoretical model of prefetching and caching of storage objects un-
der a parallel storage units architecture. The storage objects are defined
as variable sized data blocks and a specific cache area is reserved for
data prefetching and caching. An evolutionary algorithm is proposed for
identifying the storage objects to be prefetched and cached. The stor-
age object prefetching approach is experimented under certain artificial
workloads of requests for a set of storage units and has shown significant
performance improvement with respect to request service times, as well
as cache and byte hit ratios.

Index terms: data prefetching and caching, parallel storage units,
object-based storage models.

1 Introduction

According to [3], the amount of storage sold has been almost doubling each year,
and storage demands are rapidly increasing due to the complexity and diversity
of many current applications. Research has focused on minimizing the so called
“ I/O bottleneck”. Here, we consider an object-based storage model and we
propose a prefetching and caching approach in order to reduce data access times
and improve data availability over a specified storage subsystem of a number of
independent storage units.

Modern disk drives attributes and characteristics have been identified in [11]
and their most significant performance factors have been indicated in [10,12].
Network Attached Storage systems [9,1] and NASD [4] have been introduced
as new scalable bandwidth storage architectures with an object-based storage
interface model.

File prefetching has been proven a quite effective technique for improving file
access performance. In [7] an analytical-based prefetching mechanism is proposed
and the prefetching approach has been proven quite effective while cache miss
ratios have been reduced significantly. Recommendations on how to improve
and benefit of file prefetching are pointed in [14]. Cooperative prefetching and

T. Yakhno (Ed.): ADVIS 2000, LNCS 1909, pp. 265–274, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



266 A. Vakali

caching is also discussed in [16], where the use of network-wide global resources
support prefetching and caching in the presence of hints of future demands.
Traditional caching in a distributed file system is discussed in [2].Finally, a web-
based evolutionary model has been presented in [15] where cache content is
updated by evolving over a number of successive cache objects populations and
it is shown by trace-driven simulation that cache content is improved.

This paper presents a theoretical analytical model which introduces the idea
of prefetching and caching of data objects collected by a number of independent
storage units. The storage units are considered to store information in the form
of the so-called storage objects which are variable sized data blocks. The prefet-
ching is not based on continuous data allocation but on request frequency of the
data storage objects. Storage objects are considered to formulate the individual
members of a large “population” residing among a predefined set of parallel
independent storage units. An initial process constructs a population of data
storage objects to be prefetched on a local cache server from the various storage
units. These data blocks populations are evolved such that their members are
as frequently requested and efficiently retrieved as possible. The identification of
the data objects to be prefetched is done by the introduction of an evolutionary-
type algorithm based on the Genetic Algorithm idea. The model performs the
request servicing by searching for requested data at the cache area first, then at
the other storage units. The prefetching process is applied at regular intervals
such that the populations are updated and confront with the requests access
patterns. The remainder of the paper is organized as follows. The next section
has the definition of the considered object-based storage model and of the stor-
age units characteristics and parameters. Section 3 presents the prefetching and
caching approach whereas the requests workload, the model’s experimentation
and results are presented in Section 4. Section 5 summarizes the conclusions and
discusses potential future work.

2 The Object-Based Storage Model

Figure 1 shows the architecture and topology of the proposed storage model. A
number of n clients requests data stored among k parallel independent storage
units. A local server is considered to host the cache area which is contacted by
the clients and a cache controller is assumed to handle and manage the caching
and prefetching.

– The Cache : A cache acts as a buffer area for storage of the most frequently
requested data. The caching policy is based on the idea that when a user
(client) requests a piece of data, the cache should be checked first. The cache
area is modeled as an information table which contains information about the
cached data block(s). Each row in the cache table has an index number which
uniquely characterizes objects stored and is also accompanied by a number
of attributes such as size, time of its being cached, storage unit it resides.
The cache area has a limited predefined size and there is a specific retrieval



Evolutionary Prefetching and Caching 267

Cache

Area

Storage

Unit 1

Storage

Unit 2

Storage

Unit k

.

.

.

Server
Client

1

Client

2

Client

n

.

.

.

Direct access to storage subsystem (over network)

Cache

Area

Storage

Unit 1

Storage

Unit 2

Storage

Unit k

.

.

.

Server
Client

1

Client

2

Client

n

.

.

.

Direct access to storage subsystem (over network)

Fig. 1. The Object-based Storage Model

Table 1. The storage model parameters

parameter description
idi object i identification (an index number).
si object’s i size, in KBytes.
ti time the object i was prefetched.
ai number of accesses since the last time object i was accessed.
cr the cache area retrieval rate, in MBytes per second.
CS the total cache size, in MBytes.
sr the storage unit retrieval rate, in MBytes per second.
D number of independent disks of the storage subsystem .
C number of cylinders per disk in each storage unit.

rate for request servicing. The parameters associated with the considered
object-based storage model are given in Table 1.
The most common performance metrics used for cache characterization are
the cache-hit ratio and byte-hit ratio :

– Cache hit ratio : represents the percentage of all requests being serviced
by a cache copy of the requested data, instead of searching the other
original storage unit. Similarly, a cache miss is related to requested data
not found in cache.

– Byte hit ratio : represents the percentage of all data transfered from
cache, i.e. corresponds to ratio of the size of data retrieved from the
cache area.

– The Storage Unit : We mainly concentrate on a multiple disks subsystem
where storage units are considered as similar technology disk drives, with
similar configuration requirements that can serve requests in parallel under
a considered storage subsystem.(Disks parameters are given in Table 1).
Request servicing is performed by accessing the storage unit which has the



268 A. Vakali

requested data and reading them from this drive. Disks serve requests in
parallel in order to exploit the system’s responsiveness.
The service time of a request in the disk mechanism is a function of the seek
time (ST), the rotational latency (RL) and the data transfer time (TT). [12,
13]. The most widely used formula for evaluating the expected service time
involves these time metrics and it is expressed by :

E[Disk Service T ime] = E[ST ] + E[RL] + E[TT ] (1)

where E[ST ] refers to the expected seek time, E[RL] refers to the expected
rotational delay and E[TT ] refers to the expected transferring time.
The following function has been used widely for the approximate evaluation
of the seek time, which is a major performance factor :

Seek T ime(dist) =




0 if dist = 0
a + b

√
dist if 0 < dist < cutoff

c + d dist if dist ≥ cutoff
(2)

where a, b, c, d and cutoff are device-specific parameters and dist is the
number of cylinders to be traveled. The expected rotational delay is eva-
luated by E[RL] ≈ Revolution Time

2 for randomly distributed requests. The
transfer time depends on the amount of data to be transferred and is eva-
luated by E[TT ] = Request Size

sr under a constant sr disk drive retrieval rate.

3 The Prefetching and Caching Algorithm

Cache

Area

Storage

Unit 1

Storage

Unit 2

Storage

Unit k

.

.

.

Server

Population

to be

Prefetched

to

Cache area

Cache

Manager

Cache

Area

Storage

Unit 1

Storage

Unit 2

Storage

Unit k

.

.

.

Server

Population

to be

Prefetched

to

Cache area

Cache

Manager

Fig. 2. The Prefetching and Caching Algorithm

Users/clients make requests which refer to data objects stored among the
k storage units spread over parallel storage units. Each request refers to an
arbitrary amount of data of a certain file. The file system divides the request



Evolutionary Prefetching and Caching 269

into several block-sized segments, each served separately by the file system [14].
Several blocks could be grouped in a cluster or segment in order to define the
“storage object” which is either cached or stored at a storage unit. Figure 2
depicts the proposed prefetching and caching process.

Definition 1 : The storage object is a group of logically sequential data
blocks that are stored consequently on a disk. A number of KBytes correspon-
ding to x data blocks defines the size of each stored object.

Fig. 3. The Genetic Algorithm Cycle
Fig. 4. GA operators: crossover and muta-
tion

The Genetic Algorithm (GA) idea is applied in a considered population of the
storage objects as defined above. The GA is used because of two main reasons
: First, the basic idea of the GAs is based on the evolution of populations by
the criterion “survival of the fittest” and the objects to be prefetched should be
the fittest (i.e. the most frequently accessed in best retrieval rates) of the stored
objects. Second, the GAs are applied to problems demanding optimization out
of spaces which are too large to be exhaustively searched and all storage units
have a huge amount of storage objects, impossible to be searched exhaustively
in a realistic amount of time. Figure 3 depicts the cycle of a GA applied in a
space of individual stored objects. In the present paper, the stored objects are
modeled as the individuals considered for evolution. The individuals are asses-
sed according to predefined quality criterion, called objective or fitness function.
Two genetically-inspired operations, known as crossover and mutation are ap-
plied to selected cached objects (considered to be the population individuals)
to successively create stronger “generations” of considered storage objects. The
propose GA model follows the simple GA proposed in [5].

– Encoding and Operators : Each stored object individual must be iden-
tified according to a predetermined encoded string. The encode scheme is
chosen such that the potential solution to our problem may be represented
as a set of parameters. These parameters are joined together to form the



270 A. Vakali

encode string. In order to consider the identification of each stored object
individual, the stored objects filenames are mapped to the integer values
1, 2, . . . , O where O is the total number of objects to be prefetched in the
are reserved for prefetching and caching. Parameters acti, dfi, cr and si

are the ones to guide the optimization problem, therefore they are included
in the proposed encoding string. Each parameter is assigned a value and
the presence of that parameter is signaled by the presence of that value in
the ordered encode string. Crossover is performed between two stored ob-
ject individuals (“parents”) with some probability, in order to identify two
new individuals resulting by exchanging parts of parents’ strings. Figure 4
presents the crossover operation on an example of an 8-bit binary encoded
string, partitioned after its 5th bit, in order to result into two new 8-bit in-
dividuals. Mutation is introduced in order to prevent premature convergence
to local optima by randomly sampling new points in the search space. It ran-
domly alters each individual with a (usually) small probability (e.g. 0.001).
Figure 4 depicts the mutation operation in an binary 8-bit string where the
4th bit is mutated to result in a new individual.
The stored objects population will evolve over successive generations such
that the fitness of the best and the average stored object individual in each
generation is improved towards the global optimum. An objective (or fitness)
function is devised based on the need to have a figure of merit proportional
to the utility or ability of the encoded stored object individual. Our fitness
function is the considered access frequency of each storage object.

– The GA Prefetching and Caching Algorithm Each population is for-
med by the most promising and strong storage objects of all considered
storage units. Then, the standard operators defined above mix and recom-
bine the encoding strings of the initial population to form offspring of the
next generation. In this process of evolution, the fitter stored object indivi-
duals will create a larger number of offspring, and thus have a higher chance
of “surviving” to subsequent generations. A pseudo-code version of the GA
prefetching and caching algorithm follows :

initialize()
old_storage_pop <- initial objects population
evaluate_fitness(old_storage_pop)
generation <- 1
while (generation <= maxgen) do

par1 <- selection(popsize, fitness, old_storage_pop)
par2 <- selection(popsize, fitness, old_storage_pop)
crossover(par1,par2,old_storage_pop,new_storage_pop,p_cross)
mutation(new_storage_pop, p_mutate)
evaluate_fitness(new_storage_pop)
statistical_report(new_storage_pop)
old_storage_pop <- new_storage_pop
generation <- generation + 1

In the above GA maxgen corresponds to the maximum number of successive
generation runs, popsize is the stored objects population size, fitness is the



Evolutionary Prefetching and Caching 271

stored objects fitness metric. Variables par1 and par2 define the parents cho-
sen for the reform of each generation, p cross, p mutate are the probabilities
for the crossover and mutation operators, respectively. The old storage pop
refers to the initial population in every GA cycle whereas the new storage pop
is the resulting population of each GA run.

4 Experimentation — Results

Table 2. The model’s storage units parameters and their values

Secondary Storage Parameters
Number of Storage Units Drives (k) 10
Seek time parameters a=3.24ms b=0.4ms.
(equation 2) c=8.0ms d=0.008ms.

cutoff=383.
Number of Cylinders (C) 1936.
Rotational Speed 4002 rpm.
Data Transfer Rate (sr) 10 MB/sec.

Regarding the storage units, the model configuration considered, follows the
disk drive configuration for the HP 97560 disk drive which has been used in pre-
vious research [11,6]. The values for the parameters characterizing this particular
disk drive are given in Table 2.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

8 16 32 64 128

Im
p
ro

v
e
m

e
n
t 
R

a
te

Request Size (KBytes)

Improvement rate for prefetching over non-prefetching ; uniformly distributed requests

PF_8
PF_16
PF_32

Fig. 5. prefetch/non-prefetch; req size

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

8 16 32 64 128

Im
p
ro

v
e
m

e
n
t 
R

a
te

Request Size (KBytes)

Improvement rate for prefetching over non-prefetching ; bursty requests

PF_8
PF_16
PF_32

Fig. 6. prefetch/non-prefetch; req size



272 A. Vakali

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

64 128 256 512 1024

Im
p
ro

v
e
m

e
n
t 
R

a
te

Cache Size (KBytes)

Improvement rate for prefetching over non-prefetching ; uniformly distributed requests

PF_8
PF_16
PF_32

Fig. 7. prefetch/non-prefetch;cache size

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

64 128 256 512 1024

Im
p
ro

v
e
m

e
n
t 
R

a
te

Cache Size (KBytes)

Improvement rate for prefetching over non-prefetching ; bursty requests

PF_8
PF_16
PF_32

Fig. 8. prefetch/non-prefetch;cache size

The proposed analytic model for prefetching and caching has been experi-
mented under various request workloads. The workload is characterized by its
arrival process, its request rate and its burstiness of arrivals. There were more
than 100,000 requests generated for every execution cycle and the requests were
randomly distributed among the considered storage units. The notations PF 8,
PF 16 and PF 32 refer to the prefetching and caching algorithm applied on va-
riable sized data blocks grouped into objects of sizes 8, 16 and 32 KBytes, respec-
tively. The prefetching and caching algorithm follows the GA idea and the crosso-
ver and mutation probabilities values are pcrossover = 0.6 and pmutation = 0.001
since these values are in the range of suggested representative trial sets for many
GA optimizations [5,8]. The initial population for the GA scheme as applied in
the considered storage units is generated by a randomly produced population.
Furthermore, the typical non-prefetching approach of a conventional storage sy-
stem has been experimented in order to serve as a basis for comparisons and
discussion. The performance metrics evaluated are the metrics defined in Sec-
tion 2.

The PF 8, PF 16 and PF 32 approaches were used for prefetching and ca-
ching under several requests workloads of various experimentation data sets. The
average service time of the storage system has been evaluated by using the results
for the service time of each request. The service times have been evaluated for
the conventional Non-Prefetching as well as for the three proposed prefetching
and caching algorithms, under varying request sizes and under varying cache
sizes. The three proposed prefetching and caching algorithms, have been proven
to be quite effective compared to the conventional Non-Prefetching strategy.

Figures 5 and 6 represent the percentage rate for the improvement in service
times compared to the non-prefetching scheme, under request sizes of 8, 16, · · · ,
128 KBytes and under a cache size of 128 KBytes. Figure 5 refers to results



Evolutionary Prefetching and Caching 273

from a workload of 112,000 uniformly ditributed requests and Figure 6 results
from a similar 111,800 workload of more bursty requests. All of the prefetching
and caching approaches have resulted in better performance metrics compared
to the typical non-prefeching scheme. The benefits in service times are improved
as the request sizes increase. This is explained since in a non-prefetching scheme,
the larger the request size, the more search among storage hierarchies has to be
done, resulting in worse service times. The PF 32 approach is the most beneficial
for the storage system since the service times improvement rates get to 42% as
the request size increases. This shows that prefetching and caching favors the
larger request sizes since the requested data can be accessed faster. Servicing
requests by the cache area instead of contacting the original storage unit results
in increasing of service times due to the slower characteristics of the disk storage
units (ref. parameters Table 2).

Figures 7 and 8 represent the percentage rate for the improvement in service
times compared to the non-prefetching scheme, under cache sizes of 64, 128, · · · ,
1024 KBytes and under a request size of 32 KBytes. Figure 7 refers to results
from a workload of 112,000 uniformly ditributed requests and Figure 8 from
a similar 111,800 workload of more bursty requests. All of the prefetching and
caching approaches have resulted in better service times compared to the typical
non-prefeching scheme. The benefits in service times are improved as the cache
sizes increase. This was expected since the data availability in cache is improved
when having more space reserved for prefetching and caching. Therefore, the
difference in service times between the proposed schemes and the conventional
non-prefetching scheme will become more intense as the prefetching and caching
area gets increased. Again, the PF 32 approach is the most beneficial for the
storage system since the service times improvement rates can get to about 48%
as the request size increases. For example there is a 51% for PF 32 under cache
size of 1,024 KBytes of the first workload and there is a 46% for PF 32 under
cache size of 1,024 KBytes under the second workload. In conclusion, it has been
shown by the experimentation that the GA-based prefetching and caching can
be a quite effective approach in order to improve the request servicing process in
a hierarchical storage model. The performance gain is significant, since service
times can be improved at rates of 24%–48% value as the cache sizes and the
request sizes increase.

5 Conclusions — Future Work

This paper has presented a study of applying the prefetching and caching idea
to a theoretical model of parallel storage units. The proposed approaches for
prefetching and caching were based on algorithms of the Genetic Algorithm
idea, guided by an objective function in relation to objects frequency of access.
The results have shown that the proposed prefetching and caching schemes could
be very beneficial for the request servicing process since the improvement in this
figure can get as high as 49% for certain request and cache sizes.



274 A. Vakali

Further research should experiment the present scheme under a simulation
model which could be based on a certain storage subsystem topology. This is
a challenging issue since different storage systems have complex characteristics
and requirements that need to be synchronized and parameterized. Furthermore,
the use of traced workloads will help in identifying the demerit figures for the
proposed model in order to use it in storage system implementations.

References

1. D. Anderson :“Network Attached Storage Research”,
http://www.nsic.org/nasd/meetings.html, Mar., Jun. 1998.

2. M. A. Blaze: Caching in Large-Scale Distributed File Systems, Princeton Univer-
sity, PhD thesis, Jan 1993.

3. G.A. Gibson, J.S. Vitter, J. Wilkes et al.: “Strategic directions in Storage I/O Issues
in Large-Scale Computing”, ACM Computing Surveys, Vol.28, No.4, pp.779–763,
1996.

4. G.A. Gibson, D. F. Nagle, W. Courtright II, N. Lanza, P. Mazaitis, M. Unagst
and J. Zelenka : “NASD Scalable Storage Systems”, USENIX 1999 Extreme Linux
Workshop Monterey, California, Jun 1999.

5. D. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, 1989.

6. D. Kotz, S.B. Toh and S. Radhakrishnan: “A Detailed Simulation Model of the
HP 97560 Disk Drive”, Department of Computer Science, Dartmouth College,
Technical Report TR94-220, Jul 1994.

7. H. Lei and D. Duchamp : “An analytical Approach to file prefetching”, Proceedings
of the 1997 USENIX Annual Technical Conference, Anaheim, California, Jan 1997.

8. Z. Michalewicz: Genetic Algorithms + Data Structures=Evolution Program, 3rd
edition, Springer-Verlag, 1996.

9. NSIC : National Storage Industry Consortium, http://www.nsic.org/nasd, 1999.
10. S.W. Ng: “Advances in Disk Technology — Performance Issues”, IEEE Computer,

Vol.31, No.5, pp.75–81, 1998.
11. C. Ruemmler and J. Wilkes: “An Introduction to Disk Drive Modeling”, IEEE

Computer, Vol.27, No.3, pp.17–28, 1994.
12. E. Shriver: “Performance modeling for realistic storage devices”, Ph.D. Thesis,

Department of Computer Science, New York University, May 1997.
13. E. Shriver, A. Merchant and J. Wilkes: “An Analytic model for disk drives with

readahead caches and request reordering”, ACM SIGMETRICS’98, Conference
Proceedings, pp.182–191, Jun 1998.

14. E. Shriver, C. Small and K.A. Smith : “Why does file system prefetching work ?”,
Proceedings of the 1999 USENIX Annual Technical Conference, pp.71–84, Monte-
rey, California, Jun 1999.

15. A. Vakali: A Web-based evolutionary model for Internet Data Caching, Procee-
dings of the 2nd International Workshop on Network-Based Information Systems,
NBIS’99,IEEE Computer Society Press, Florence,Italy, Aug 1999.

16. G. M. Voelker et. al : “Implementing Cooperative Prefetching and Caching in a
Globally-Managed Memory System”, ACM SIGMETRICS’98, Conference Procee-
dings, pp.33–43, Jun 1998.


	Introduction
	The Object-Based Storage Model
	The Prefetching and Caching Algorithm
	Experimentation --- Results
	Conclusions --- Future Work

