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Abstract 
The enormous growth in the number of documents 
circulated over the Web increases the need for improved 
Web data management systems. Web data accessing and 
Web searching are the main processes in Web data 
management systems. In order to evaluate the performance 
of such systems, various simulation approaches must be 
used. In this paper, we survey the most recent approaches 
for Web data representation, Web data accessing as well as 
for Web search engines.  
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INTRODUCTION 
The World Wide Web is growing so fast that the need of 
effective Web data management systems has become 
obligatory. This rapid growth is expected to persist as the 
number of Web users continues to increase and as new 
Web applications (such as electronic commerce) become 
widely used. Currently, the Web circulates more than seven 
billions documents and this enormous size has transformed 
communications and business models so that the speed, 
accuracy, and availability of network-delivered content 
become absolutely critical factors for the overall 
performance on the Web. 
The emergence of the Web has changed our daily practice, 
by providing rapid information exchange and business 
transactions. Therefore, supportive approaches in data, 
information and knowledge exchange become the key issue 
in new Web technologies. In order to evaluate the quality of 

these technologies many research efforts have used various 
simulation approaches.  
During the last years, a great interest for developing 
simulation techniques on the Web Data Management 
Systems has been observed. By using simulation 
techniques, we can easily explore some models and 
produce tools for effectively managing Web data. In that 
framework, it is essential to identify the concepts in an 
effective Web data management system, which improve 
both the Web data accessing and the Web searching 
process. The efforts in this area have focused on: 
• Web Data Representation:  Due to the explosive 

growth of the Web, it is essential to represent it 
appropriately. One solution would be to simulate the 
Web as a directed graph. Graphs used for Web 
representation provide an adequate structure, 
considering both the Web pages and their links as 
elements of a graph. In addition, the emergence of 
XML, as the standard markup language on the Web 
(for organizing and exchanging data), has driven to 
new terms (such as ontologies, XML schemas) for 
simulating the Web data representation with a more 
effective way. 

• Web Data Accessing: This process includes a 
collection of analytical techniques used to reveal new 
trends and patterns in Web data accessing records. The 
process of selecting, exploring and modeling large 
amounts of these records is essential for characterizing 
the Web data workload.  In this context, workload 
characterization of Web data is clearly an important 
step for better understanding the Web data of 
behaviour. 



• Web Data Searching: Due to the enormous size of 
Web documents, the search engines are the most 
widely used tools for retrieving Web data. Their goal is 
to crawl the Web, and retrieve the requested 
documents with low communication costs, at a 
reasonable interval of time. 

 
The remainder of this paper is organized as follows. The 
next Section presents the main issues for Web data 
representation, with more emphasis on Web graph 
simulation models. The basic characteristics for Web data 
accessing patterns are discussed in Section 3. The Section 4 
describes the most basic tools for searching and retrieving 
of the Web data. Section 5 summarizes the conclusions. 

WEB DATA REPRESENTATION  

Web Document Definition 
Since, the amount of publicly available information on the 
Web is rapidly increasing (together with the number of 
users that request this information) various types of data 
(such as text, images, video, sound or animation) 
participate in Web documents. This information can be 
designed by using a markup language (such as HTML or 
XML), retrieved via protocols (such as HTTP or HTTPS) 
and presented using a browser (such as Internet Explorer or 
Netscape Communicator). We can further categorize Web 
documents into:  
• Static: The content of a static document is created 

manually and does not depend on users’ requests. As a 
result, this type of documents shows good retrieval 
time but it is not recommended in applications, which 
require frequent content changes. The hand-coded 
HTML Web pages processed by simple plain text 
editors (as well as the HTML documents created by 
more sophisticated authoring tools) are examples of 
static Web documents and (as noted in [14]) they 
define the first Web generation. 

• Dynamic: Dynamic content includes Web pages built 
as a result of a specific user request (i.e. they could be 
different for different user accesses). However, once a 
dynamically created page sent to the client, it does not 
change. This approach enables authors to develop Web 
applications that access databases using programming 
languages (CGI, PHP, ASP etc.) in order to present the 
requested document. In this way, we can serve 
documents with same structure or up-to-date content. 
However, the dynamic content increases the server 
load as well as the response time. 

• Active: Active documents can change their content and 
display in response to the user request (without 
referring back to the server). More specifically, active 
pages include code that is executed at the client side 
and usually implemented by using code such as Java 

and JavaScripts. Thus, active content does not require 
server’s resources, but, it runs quite slowly since the 
browser has to interpret every line of its code. 

Both dynamic and active Web documents introduce the 
second Web generation, where the content is machine-
generated [14]. The common feature between these two 
Web generations is that they both design and present 
information with a human-oriented manner. This refers to 
the fact that Web pages are handled directly by humans 
who either read the static content or produce the dynamic 
and active content (executing server and client side code 
correspondingly). Finally, the third Web generation, also 
known as Semantic Web, focuses on machine-handled 
information management. The primary goal of the 
Semantic Web is to extend the current Web content to 
computer meaningful content. Current data representation 
and exchange standards (such as XML) could facilitate the 
introduction of semantic representation techniques and 
languages. 

The Web Graph 
The World Wide Web consists both of pages and hypertext 
links between them. An effective method to study the 
structure of the Web is to consider it as a directed graph. 
Particularly, in the Web graph each node corresponds to a 
page and arcs represent the hypertext links. We can further 
separate these arcs in outgoing edges of a node (which are 
the hypertext links contained in the corresponding page) 
and incoming edges (which represent the hypertext links 
through which the corresponding page is reached). 
Considering Web as a graph is proving to be valuable for 
applications such as Web indexing, detection of Web 
communities and Web searching. 
The actual Web graph is huge and appears to grow 
exponentially over time. More specifically, in July 2000, it 
was estimated that it consists of about 2.1 billions nodes 
[24] and 15 billions edges, since the average node has 
roughly seven hypertext links (directed edges) to other 
pages [17]. Furthermore, approximately 7.3 millions pages 
are added every day and many others are modified or 
removed, so that the Web graph might currently (November 
2002) contain more than seven billions nodes and about 
fifty billions edges in all. 
In studying the Web graph, two important elements should 
be considered: its giant size and its rapid evolution. As it is 
impossible to work on the actual graph we retrieve parts of 
it, usually from several millions to several hundreds of 
millions nodes. This procedure is called crawl and is 
performed by software referred as crawlers, robots or 
spiders. Actually simulation efforts focus on subgraphs 
(which are supposed to be representative) in order to make 



observations about the Web entirety and can be categorized 
in: 

 

Figure 1. Web communities on local structures of the Web 
graph 

• Local approaches: In this case, we can detect 
structures with an unusually high density of links 
among a small set of pages which is an indication that 
they may be topically related. Local structures are of 
great interest for "cyber-community" detection and 
thus for improving search engines techniques. A 
characteristic pattern in such communities contains a 
collection of hub pages (lists or guides) linking to a 
collection of authorities on a topic of common interest. 
More specifically, as shown in Figure 1, each page of 
the first set has a link to all pages of the second one, 
while there is no link between pages of the second set. 
The HITS (Hyperlink-Induced Topic Search) 
algorithm [17] is applied to modify subgraphs and 
computes lists of hubs and authorities for Web search 
topics. The Trawling algorithms [9] enumerate all such 
complete bipartite subgraphs of the Web graph. The 
results of the [19] experimentation suggest that the 
Web graph consists of several hundred thousand of 
such subgraphs, the majority of which correspond to 
communities with a definite topic of interest. An 
alternate approach detect communities based on the 
fact that some set of pages exhibit a link density that is 
greater among the members of the set than between 
members and the rest of the Internet, as shown in 
Figure 1 (right) [18]. 

 

Figure 2. The bow-tie structure of the Web 

• Global approaches: At a global level, a recent study 
[7] defines a bow-tie structure of the Web. Particularly, 
an experiment on a 200 millions nodes graph with 1.5 
billions links demonstrates that Web graph appears to 
consist of four components of equivalent sizes (as 
shown in Figure 2). The "heart" of this structure is the 
largest, strongly connected component (SCC) of the 
graph and composes the core in which every page can 
reach every other or can be reachable by every other 
through a path of hypertext links. The remaining 
components can be defined by their relation to the 
core: left-stream nodes or IN component can reach the 
core but cannot be reached from it whereas the right-
stream or OUT component can be reached from the 
core but cannot reach it. We can further explain the 
flow from the IN component to core as links from new 
Web pages to known interesting destinations and the 
lack of paths from OUT component to the core as set 
of pages whose links point only internally. Finally, the 
"tendrils" contain pages that do not link to the core and 
which are not reachable from it. The "tendrils" 
compose a set of pages that neither has been 
discovered yet from the rest of the Web community 
nor do they contain interesting links back to it. The 
remaining of about 9% of graph nodes consists of 
disconnected components. 

As already mentioned, analysis of the Web’s structure is 
leading to improved methods for understanding, indexing 
and, consequently, accessing the available information 
through the design of more sophisticated  or focused search 
services. As an example, the Google’s ranking algorithm 
(which called "RankPage") based on the link structure of 
the Web [6]. More specifically, Google ranks results pages 
uses information from the number of pages pointing to a 
given document. This information is related to the quality 



of the page, as "high-quality" Web sites pointed by other 
"high-quality" Web sites. 

WEB DATA ACCESSING 

Capturing Web Users’ Patterns 
The incredible growth in the size and use of the Web has 
created difficulties in both the design of Web sites (to meet 
a great variety of users' requirements) and the browsing 
(through vast Web structures of pages and links) [4]. Most 
Web sites are set up with little knowledge on the 
navigational behaviour of the users (who access them). A 
relatively recent research discipline, called Web Usage 
Mining, applies data mining techniques to the Web data in 
order to capture interesting usage patterns. Simulating 
users' navigation patterns can be proved to be valuable both 
to the Web site designers and to the Web site visitors. For 
example, constructing dynamic interfaces based on visitors' 
behaviour, preferences or profile has already been very 
attractive to several applications (such as e-commerce, 
advertising, e-business etc). So far, there have been two 
main approaches to mining for user navigation patterns 
from log records: 
• Direct method: In this case techniques have been 

developed which can be invoked directly on the raw 
Web server’s log data. The most common approach to 
extract information about usage of a Web site is 
statistical analysis. Several open source packages that 
provide information about the most popular pages, the 
most frequently entry and exit points of navigations or 
the average view time of a page have been developed. 
This type of knowledge could be taken into 
consideration during system improvement or site 
modification tasks. For example, decisions about 
caching policies could be based on detecting traffic 
behaviour while identifying the pages where users 
usually terminate their sessions is important for site 
designers to improve their content. 

• Indirect method: In this case the collected raw Web 
data are transformed into data abstractions (during a 
pre-processing phase) appropriate for the pattern 
discovery procedure. According to [27] the types of 
data that can be used for capturing interesting user’s 
patterns are classified into the content, structure, usage 
and user profile data. Such data usually be collected 
from different sources (e.g. server log files, client level 
or proxy level log files) and can be processed in order 
to construct data abstractions such as user and server 
session [27]. A user session consists of page requests 
made by a single user across the entire Web while the 
server session is the part of user session that contains 
requests to a particular Web site. Once the data 

abstractions have been created standard data mining 
techniques, such as association rules, sequential 
patterns and clustering analysis, are used in patterns 
recognition [10]. 

In Web Usage Mining process, association rules discover 
set of pages accessed together (without these pages being 
necessarily connected directly through hyper-links). 
Detecting such rules could be helpful for improving the 
structure of a site or reducing latency due to page loadings 
based on pre-fetched documents. On the other hand, the 
action of detecting sequential patterns is that of observing 
patterns among server sessions such that the access to a set 
of pages is followed by another page in a time-ordered set 
of sessions. This type of information is extremely useful in 
e-business applications since placing advertisements aimed 
at certain user groups can be based on discovery of 
sequential patterns. Finally, clustering techniques can be 
used for categorizing both the users and the requested 
pages. User clusters involve users who exhibit similar 
browsing behaviour, whereas page clusters consist of pages 
with related content. The user clustering approach can 
improve the development of e-commerce strategies. 
Serving dynamic content focused on users' profile is a 
challenge in Web research. Moreover, information about 
page clusters can be useful for Web search engines. 
Several mining systems have been developed in order to 
extract interesting navigation patterns. In [26] the authors 
present the Web Utilization Miner (WUM) system which, 
firstly, executes a pre-processing task on the raw Web data 
in order to infer a tree structure of detecting user sessions 
and then performs the mining task. [4] presents the 
Hypertext Probabilistic Grammar (HPG) model which 
simulates the Web as a grammar, where the pages and 
hyperlinks of the Web may be viewed as grammar's states 
and rules. Data mining techniques are used to find the 
higher probability strings which correspond to the user's 
preferred navigation path. However, this model has the 
drawback that returns a very large set of rules for low 
values of threshold and a small set of very short rules for 
high values of threshold. As a sequence, the heuristic 
Inverse Fisheye (IFE) [5] computes small sets of long rules 
using a dynamic threshold whose value is adapted to the 
length of the traversal path. Finally, in [11] the WebSIFT 
system is presented which performs Web Usage Mining 
based on server logs. WebSIFT uses content, structure and 
usage information and composed of pre-process, pattern 
mining and pattern analysis modules. 



Characterizing the Workload of Web Users’ 
Patterns 

 

Figure 3. A sample access log 

Due to the enormous size of Web data accessing patterns, it 
is essential to devise workload characterization that will be 
representative of the underlying users’ behaviour. Analysis 
derived from these patterns is reviewed in an effort to 
characterize the entire structure of the Web. In this context, 
one of the important steps before capturing Web users’ 
patterns is to model the users’ behaviour. The purpose of 
this approach is to understand the characteristics of the 
submitted workload and then to find a model for the Web 
data behaviour using a collection of analytic techniques 
(such as data mining).  
Furthermore, workload characterization is the key issue for 
simulation approaches on Web data management. In fact, 
workload characterization is an essential source of 
information for all the simulation models, which define a 
compact description of the load (by means of quantitive and 
qualitive parameters). Visually, the workload has a 
hierarchical nature and measurements are collected at 
various levels of detail.  However, the complex nature of 
the Web complicates measuring and gathering of the Web 
usage loads. Web data workloads usually consist of patterns 
which are issued by clients and be processed by servers. 
Then, these patterns are recorded in files which called log 
files [13]. Entries in the log file are recorded when the 
pattern is completed, and the timestamp records the time at 
which the socket is closed. Figure 3 presents a sample of 
Squid logs. The task of workload characterization is not 
simple since they have many unusual features. In this 
context, the patterns of Web users can be represented 
conventionally as multidimensional vectors, where each 
dimension corresponds to a single feature. The Web 
patterns have high variability (file sizes, time arrivals).  
Another feature of Web workloads is that the traffic 
patterns have also high variability and therefore, it can be 
described statistically using the term of self-similarity. 
Studies have shown that self-similarity in traffic has 
negative results in the performance of Web data 
management systems.  
Capturing a specific set of Web logs is essential in order to 
simulate an application’s behaviour. So the majority of 

simulation efforts use Web workloads that are characterized 
by several approaches. These approaches deal with 
characterizing associations and sequences in individual data 
items (Web logs) when analyzing a large collection of data. 
In that framework, there are two common simulation 
approaches for characterizing the workload of Web users’ 
patterns[3]: 
• Trace-based approach:  The most popular way to 

characterize the workload of Web users’ patterns is by 
analyzing the past Web servers log files. In [2] a 
detailed workload characterization study, which uses 
past logs, is presented for World Wide Web servers. It 
is common to analyze the Web server logs for 
reporting traffic patterns. In addition, many tools have 
been developed for characterizing Web data workload 
(such as Webalizer, Calamaris etc.). But, 
characterizing the workload with captured logs has 
many disadvantages, since it is tied to a known system. 
Despite the fact that this approach is simple to 
implement, it has limited flexibility. Firstly, this 
workload analysis is based completely on past logs. 
But the logs may lose their value if some references 
within them are no longer valid. Secondly, the logs are 
inaccurate when they return objects that may not have 
the same characteristics with the current objects. 
Finally, the logs should be recorded and processed 
carefully because a false can lead to incorrect temporal 
sequences. For example, the requests for a main page 
can appear after the requests for images within the 
page itself. So, all the above can lead to incorrect 
results. 

• Analytical approach:  Another idea is for the Web 
data workload characterization to use patterns that do 
not currently exist. This kind of workload is called 
synthetic workload and it is defined by using 
mathematical models, which are usually based on 
statistical methods, for the workload characteristics. 
The main advantage of the analytical approach is that it 
offers great flexibility. There are several workload 
generation tools developed to study Web proxies. In 
[3] the authors created a realistic Web workload 
generation tool which mimics a set of real users’ 
patterns accessing a server. In [8] another synthetic 
Web proxy workload generator is (called ProWGen) 
described. However, the task of generating 
representative log files is difficult because Web 
workloads have a number of unusual features. 
Sometimes, in attempting to generate artificial 
workloads, we make significant assumptions such as 
that all objects are cacheable, or that the requests 
follow a particular distribution. These assumptions 



may be necessary for testing, but are not always 
absolutely true.  

SEARCHING ON THE WEB 

Searching for Web Documents 
The World Wide Web is a huge, heterogeneous and 
distributed collection of documents. However, the key 
aspect of the Web that makes it a valuable recourse is that 
an important piece of this information can be searchable 
and, consequently, accessed by using search services such 
as Web search engines [21]. Excite, Lycos, AltaVista and 
Google are examples of most common search engines. 
A Web search engine provides a front end to a database of 
indexed Web documents. Using a search engine can be a 
start point of Web activity. In this case, users apply a query 
to a local database of Web resource, using a list of terms 
that express their information need, and receive an ordered 
list of Web pages that correspond to their query as better as 
possible. Search engines consist of three components: 
• Spiders: they are computer programs that traverse the 

Web in order to identify pages. More specifically, 
spiders browse the Web on the search engine's behalf, 
as a user follows links from one page to another, using 
a start set of URLs. According to the topics supported 
by a search engine, there exist general purpose or 
specialized search engines. Correspondingly, the 
spiders can either crawl generally the Web or focus on 
specialty sites. For example, Excite News indexes news 
sites whereas Lycos Multimedia Search restricts its 
index in audio, video and captures content. 

• Index: it is a database that contains a copy of each 
page gathered by spiders. Once the search engine has 
completed the crawling cycle, it begins the indexing 
procedure. There are two basic methods of indexing: 
full-text indexing, where every word of gathered pages 
is inserted into the database (AltaVista has a full-text 
database) and keyword indexing, where only the 
important words and phrases are put into the database 
(Excite has a keyword index). 

• The search and retrieval mechanism: it is the 
technology that allows users to query the database and 
resulted pages are returned by using a rank policy. The 
way a search engine ranks the results pages is a very 
crucial issue. There exist search engines that look on 
the content of pages in order to determine relevance. In 
this case, issues such as the presence of search terms in 
the title, first heading, URL, HTML meta tag or the 
frequency of appearances in the pages are taken into 
consideration during ranking procedure. On the other 
hand, there are search engines that look off the content 
trying to improve the rank of the results list. For 

example, Google rank a Web page based on the 
number of "important" pages that link to it.  

Based on the above, the search engines can be classified 
into two major types: 
• the individual search engines, that use spiders to 

construct their own searchable database and 
• the meta search engines, also known as parallel or 

multi-threaded search engines, that do not have a local 
database and rely on other sources 

Therefore, a meta engine searches the Web by making 
requests to multiple individual engines [21]. MetaCrawler 
is a typical example of a meta search engine. Figure 4 
shows the architecture of typical search and meta search 
engines. The obvious advantage of a meta engine is the 
combination of results of multiple search engines through a 
single user interface. However, this could also be proved to 
be main disadvantage if one thinks the lack of an efficiently 
rank policy in a single engine. As shown in Figure 4, the 
results returned from the meta engines ordered through a 
combined rank policy. Usually, meta search engines 
consider the titles, keywords, summaries and URLs 
provided by each one of the engines behind them. Some 
meta search engines, such as MetaCrawler, collate the 
results and, eventually, post on the screen a single list with 
the duplicate pages removed. Others, such as Dogpile, 
response with separate lists of results, one for each engine 
that was searched, where one can be find the same page 
more than once. 

 

Figure 4. The architecture of a typical search (left) and 
meta search (right) engine 

In spite of the great number of search engines, finding the 
accurate information on the Web is remain a complicated 
problem and several important questions bring up: can we 
index all global information that the Web contains and how 
can efficiently access it? Furthermore, how regularly can 
we update indices of this information? In a study at NEC 
Research Institute [20] the coverage of six Web search 
engines is analysed yielding interesting results: 



• None of the search engines covers more than about one 
third of the indexable Web (for example they do not 
index pages with authentication requirements or pages 
generated after post action of a web form). 

• The combination of the six engines covers about 3.5 
times as much of the Web as one engine. 

• The freshness of the several databases varies 
significantly. However, there is a proportional 
relationship between the comprehensiveness and 
freshness of a search engine (for example, the most 
comprehensive search engine had the largest 
percentage of broken links). 

Searching for XML-based Data 
The flexibility of the XML standard has improved the 
performance of Web searching process.  In that framework, 
the following subsections present the main research efforts 
(Xyleme and Niagara) that have been done the last years 
for developing a robust search engine. 

Xyleme 
Xyleme is a research project whose goal is to implement a 
smart and user friendly search engine, able to answer 
queries relying on the structure of XML data. In this 
context, it is targeted on discovering XML pages on the 
Web that are of interest for people, synthesizing 
information from distinct documents and finally 
maintaining them up to date. Xyleme started as an "opened" 
group of researchers in September 2000. At the end of 
2001, 25 researchers were employed for this project. In 
general, Xyleme is a dynamic warehouse for XML data of 
the Web [28]. The Xyleme system runs on a local network 
of Linux PCs. As illustrated in Figure 5, Xyleme is 
implemented between three autonomous machines: 

Figure 5. Xyleme Architecture 

• Repository Machines: They are responsible for 
storing the XML documents. Documents are clustered 
according to a semantic classification. Each repository 
machine stores the XML data as trees in a conventional 
DBMS (DataBase Management System) until a certain 
depth and then stores the XML pages as byte streams. 
More details about these approaches can be found in 
[16]. 

• Index Machines: These machines have enough 
memory to fit the indexes that they are maintaining. 
For example, there will be several index machines for 
only one repository machine. 

• Interface Machines: These kinds of machines are 
connected to the Web. They run applications and send 
either tasks or processes to the other machines.  

The main feature of Xyleme, which distinguishes from 
other systems, is that it is based on warehousing. In 
particular, the performance of Xyleme is heavily depended 
on the efficiency of the repositories, replicating XML 
documents. So, the main functionalities of Xyleme can be 
summarized into the following modules: 
• Data Acquisition Module: It decides when to update a 

document in Xyleme, evaluating the importance of the 
document, its size etc. 

• Query Processor Module: The task of query 
processor module is to extract data from the 
repositories. Xyleme uses for this purpose a query 
language, which is a mix of OQL and XQL. More 
details about this module can be found in [1]. 



• Change Control Module: This module manages 
query subscriptions, processes temporal queries and 
decides which documents to adapt. 

• Semantic Module: This module is responsible for 
analyzing documents and defining connections 
between summaries and real documents which are 
called views. Using data mining techniques and some 
human interaction, Xyleme provides views that can 
easily be queried by users. 

Niagara 
Niagara is another very promising tool which effectively 
manages the XML documents. The Niagara Internet Query 
System is designed to enable users to pose XML queries 
over the Web, retrieve XML documents and monitor them. 
It was initiated by a group of researchers in the University 
of Wisconsin-Madison. Instead of Xyleme, Niagara is 
open-source software and it runs either on UNIX PCs or 
Windows PCs. The Niagara has two main components: 
• Search Engine  
• Query Engine  
The system has been implemented in a Java platform. Both 
the Query Engine and Search Engine are also written in 
Java and structured as multi-threaded servers. The next 
paragraphs describe the architecture of the Niagara Query 
System. 

 

Figure 6. Niagara Architecture 

As illustrated in Figure 6, the users use a Graphical User 
Interface (GUI) and send their XML-QL queries to the 
Query Engine for execution. Each query is then parsed and 
optimized. Afterwards, the Query Engine extracts a query 
to the Search one, asking for the URLs that arise from the 
XML files. Two of the main components of Search Engine 

are the Index Manager and the Crawler. The Crawler 
crawls the Web for new and updated XML documents and 
then it returns a list of them either to the Query Engine or to 
the users. On the other hand, Index Manager indexes the 
list of these documents. Afterwards, Query Engine receives 
the list and Data Manager (which is its main component) 
fetches asynchronously all the appropriate documents from 
the Web. Finally the results are given to the users via a GUI 
that can be run as an applet in a browser and connects to the 
Niagara server. More details about Niagara can be found in 
[25]. 
However, the Niagara Query System is not so flexible as 
Xyleme because it does not provide a semantic module in 
its architecture. So, the users should have prior knowledge 
for the structure of the XML files that they want to find. In 
other words, they should select by themselves the DTDs 
(Document Type Definitions) that define the structure of 
XML documents which are relevant to their queries. 

CONCLUSIONS 
This paper presents a study in Web data accessing and Web 
searching process. The extremely large volume of the Web 
documents has increased the need for advanced 
management software implementations that offer an 
improvement on the quality of Web services. 
Selection of an appropriate evaluation methodology for 
Web data management systems depends on various 
concerns. In this context, several simulation approaches for 
Web data management have been developed during the last 
years. Firstly, these approaches are focused on simulating 
the structure of Web. Web graphs are the most common 
implementations for Web data representation. Secondly, it 
is essential to simulate the Web data workloads. This can 
be implemented using data mining techniques. These 
techniques study carefully the structure of Web data and 
find new trends and patterns that fit well with a statistical 
model. Finally, various systems have been developed for 
simulating Web caching approaches. These approaches are 
used for an effective storage.  
All the previous simulation approaches, in conjunction with 
the emergence of search engines, try to improve both the 
management of Web data (on the server side) and the 
overall Web performance (on the user side). The emergence 
of XML standard simplifies the task of managing the Web 
data and it has many possibilities to dominate in the near 
future on the Web data management systems.  So, the next 
generation of Web data management systems will be 
distinguished from their flexibility and customizability, 
providing also a significantly improvement on the QoS. 
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