
Web Data Accessing and the Web Searching Process
S. Petridou G. Pallis A. Vakali G. Papadimitriou A. Pomportsis

Dept. Informatics,
Aristotle University
Thessaloniki, 54124,

Greece
spetrido@ccf.auth.gr

Dept. Informatics,
Aristotle University
Thessaloniki, 54124,

Greece
gpallis@ccf.auth.gr

Dept. Informatics,
Aristotle University
Thessaloniki, 54124,

Greece
avakali@ccf.auth.gr

Dept. Informatics,
Aristotle University
Thessaloniki, 54124,

Greece
gp@csd.auth.gr

Dept. Informatics,
Aristotle University
Thessaloniki, 54124,

Greece
apompo@csd.auth.gr

Abstract
The enormous growth in the number of documents
circulated over the Web increases the need for improved
Web data management systems. Web data accessing and
Web searching are the main processes in Web data
management systems. In order to evaluate the performance
of such systems, various simulation approaches must be
used. In this paper, we survey the most recent approaches
for Web data representation, Web data accessing as well as
for Web search engines.

Keywords
Web technologies, Web data accessing, Information search
and retrieval
INTRODUCTION
The World Wide Web is growing so fast that the need of
effective Web data management systems has become
obligatory. This rapid growth is expected to persist as the
number of Web users continues to increase and as new
Web applications (such as electronic commerce) become
widely used. Currently, the Web circulates more than seven
billions documents and this enormous size has transformed
communications and business models so that the speed,
accuracy, and availability of network-delivered content
become absolutely critical factors for the overall
performance on the Web.
The emergence of the Web has changed our daily practice,
by providing rapid information exchange and business
transactions. Therefore, supportive approaches in data,
information and knowledge exchange become the key issue
in new Web technologies. In order to evaluate the quality of

these technologies many research efforts have used various
simulation approaches.
During the last years, a great interest for developing
simulation techniques on the Web Data Management
Systems has been observed. By using simulation
techniques, we can easily explore some models and
produce tools for effectively managing Web data. In that
framework, it is essential to identify the concepts in an
effective Web data management system, which improve
both the Web data accessing and the Web searching
process. The efforts in this area have focused on:
• Web Data Representation: Due to the explosive

growth of the Web, it is essential to represent it
appropriately. One solution would be to simulate the
Web as a directed graph. Graphs used for Web
representation provide an adequate structure,
considering both the Web pages and their links as
elements of a graph. In addition, the emergence of
XML, as the standard markup language on the Web
(for organizing and exchanging data), has driven to
new terms (such as ontologies, XML schemas) for
simulating the Web data representation with a more
effective way.

• Web Data Accessing: This process includes a
collection of analytical techniques used to reveal new
trends and patterns in Web data accessing records. The
process of selecting, exploring and modeling large
amounts of these records is essential for characterizing
the Web data workload. In this context, workload
characterization of Web data is clearly an important
step for better understanding the Web data of
behaviour.

• Web Data Searching: Due to the enormous size of
Web documents, the search engines are the most
widely used tools for retrieving Web data. Their goal is
to crawl the Web, and retrieve the requested
documents with low communication costs, at a
reasonable interval of time.

The remainder of this paper is organized as follows. The
next Section presents the main issues for Web data
representation, with more emphasis on Web graph
simulation models. The basic characteristics for Web data
accessing patterns are discussed in Section 3. The Section 4
describes the most basic tools for searching and retrieving
of the Web data. Section 5 summarizes the conclusions.

WEB DATA REPRESENTATION

Web Document Definition
Since, the amount of publicly available information on the
Web is rapidly increasing (together with the number of
users that request this information) various types of data
(such as text, images, video, sound or animation)
participate in Web documents. This information can be
designed by using a markup language (such as HTML or
XML), retrieved via protocols (such as HTTP or HTTPS)
and presented using a browser (such as Internet Explorer or
Netscape Communicator). We can further categorize Web
documents into:
• Static: The content of a static document is created

manually and does not depend on users’ requests. As a
result, this type of documents shows good retrieval
time but it is not recommended in applications, which
require frequent content changes. The hand-coded
HTML Web pages processed by simple plain text
editors (as well as the HTML documents created by
more sophisticated authoring tools) are examples of
static Web documents and (as noted in [14]) they
define the first Web generation.

• Dynamic: Dynamic content includes Web pages built
as a result of a specific user request (i.e. they could be
different for different user accesses). However, once a
dynamically created page sent to the client, it does not
change. This approach enables authors to develop Web
applications that access databases using programming
languages (CGI, PHP, ASP etc.) in order to present the
requested document. In this way, we can serve
documents with same structure or up-to-date content.
However, the dynamic content increases the server
load as well as the response time.

• Active: Active documents can change their content and
display in response to the user request (without
referring back to the server). More specifically, active
pages include code that is executed at the client side
and usually implemented by using code such as Java

and JavaScripts. Thus, active content does not require
server’s resources, but, it runs quite slowly since the
browser has to interpret every line of its code.

Both dynamic and active Web documents introduce the
second Web generation, where the content is machine-
generated [14]. The common feature between these two
Web generations is that they both design and present
information with a human-oriented manner. This refers to
the fact that Web pages are handled directly by humans
who either read the static content or produce the dynamic
and active content (executing server and client side code
correspondingly). Finally, the third Web generation, also
known as Semantic Web, focuses on machine-handled
information management. The primary goal of the
Semantic Web is to extend the current Web content to
computer meaningful content. Current data representation
and exchange standards (such as XML) could facilitate the
introduction of semantic representation techniques and
languages.

The Web Graph
The World Wide Web consists both of pages and hypertext
links between them. An effective method to study the
structure of the Web is to consider it as a directed graph.
Particularly, in the Web graph each node corresponds to a
page and arcs represent the hypertext links. We can further
separate these arcs in outgoing edges of a node (which are
the hypertext links contained in the corresponding page)
and incoming edges (which represent the hypertext links
through which the corresponding page is reached).
Considering Web as a graph is proving to be valuable for
applications such as Web indexing, detection of Web
communities and Web searching.
The actual Web graph is huge and appears to grow
exponentially over time. More specifically, in July 2000, it
was estimated that it consists of about 2.1 billions nodes
[24] and 15 billions edges, since the average node has
roughly seven hypertext links (directed edges) to other
pages [17]. Furthermore, approximately 7.3 millions pages
are added every day and many others are modified or
removed, so that the Web graph might currently (November
2002) contain more than seven billions nodes and about
fifty billions edges in all.
In studying the Web graph, two important elements should
be considered: its giant size and its rapid evolution. As it is
impossible to work on the actual graph we retrieve parts of
it, usually from several millions to several hundreds of
millions nodes. This procedure is called crawl and is
performed by software referred as crawlers, robots or
spiders. Actually simulation efforts focus on subgraphs
(which are supposed to be representative) in order to make

observations about the Web entirety and can be categorized
in:

Figure 1. Web communities on local structures of the Web
graph

• Local approaches: In this case, we can detect
structures with an unusually high density of links
among a small set of pages which is an indication that
they may be topically related. Local structures are of
great interest for "cyber-community" detection and
thus for improving search engines techniques. A
characteristic pattern in such communities contains a
collection of hub pages (lists or guides) linking to a
collection of authorities on a topic of common interest.
More specifically, as shown in Figure 1, each page of
the first set has a link to all pages of the second one,
while there is no link between pages of the second set.
The HITS (Hyperlink-Induced Topic Search)
algorithm [17] is applied to modify subgraphs and
computes lists of hubs and authorities for Web search
topics. The Trawling algorithms [9] enumerate all such
complete bipartite subgraphs of the Web graph. The
results of the [19] experimentation suggest that the
Web graph consists of several hundred thousand of
such subgraphs, the majority of which correspond to
communities with a definite topic of interest. An
alternate approach detect communities based on the
fact that some set of pages exhibit a link density that is
greater among the members of the set than between
members and the rest of the Internet, as shown in
Figure 1 (right) [18].

Figure 2. The bow-tie structure of the Web

• Global approaches: At a global level, a recent study
[7] defines a bow-tie structure of the Web. Particularly,
an experiment on a 200 millions nodes graph with 1.5
billions links demonstrates that Web graph appears to
consist of four components of equivalent sizes (as
shown in Figure 2). The "heart" of this structure is the
largest, strongly connected component (SCC) of the
graph and composes the core in which every page can
reach every other or can be reachable by every other
through a path of hypertext links. The remaining
components can be defined by their relation to the
core: left-stream nodes or IN component can reach the
core but cannot be reached from it whereas the right-
stream or OUT component can be reached from the
core but cannot reach it. We can further explain the
flow from the IN component to core as links from new
Web pages to known interesting destinations and the
lack of paths from OUT component to the core as set
of pages whose links point only internally. Finally, the
"tendrils" contain pages that do not link to the core and
which are not reachable from it. The "tendrils"
compose a set of pages that neither has been
discovered yet from the rest of the Web community
nor do they contain interesting links back to it. The
remaining of about 9% of graph nodes consists of
disconnected components.

As already mentioned, analysis of the Web’s structure is
leading to improved methods for understanding, indexing
and, consequently, accessing the available information
through the design of more sophisticated or focused search
services. As an example, the Google’s ranking algorithm
(which called "RankPage") based on the link structure of
the Web [6]. More specifically, Google ranks results pages
uses information from the number of pages pointing to a
given document. This information is related to the quality

of the page, as "high-quality" Web sites pointed by other
"high-quality" Web sites.

WEB DATA ACCESSING

Capturing Web Users’ Patterns
The incredible growth in the size and use of the Web has
created difficulties in both the design of Web sites (to meet
a great variety of users' requirements) and the browsing
(through vast Web structures of pages and links) [4]. Most
Web sites are set up with little knowledge on the
navigational behaviour of the users (who access them). A
relatively recent research discipline, called Web Usage
Mining, applies data mining techniques to the Web data in
order to capture interesting usage patterns. Simulating
users' navigation patterns can be proved to be valuable both
to the Web site designers and to the Web site visitors. For
example, constructing dynamic interfaces based on visitors'
behaviour, preferences or profile has already been very
attractive to several applications (such as e-commerce,
advertising, e-business etc). So far, there have been two
main approaches to mining for user navigation patterns
from log records:
• Direct method: In this case techniques have been

developed which can be invoked directly on the raw
Web server’s log data. The most common approach to
extract information about usage of a Web site is
statistical analysis. Several open source packages that
provide information about the most popular pages, the
most frequently entry and exit points of navigations or
the average view time of a page have been developed.
This type of knowledge could be taken into
consideration during system improvement or site
modification tasks. For example, decisions about
caching policies could be based on detecting traffic
behaviour while identifying the pages where users
usually terminate their sessions is important for site
designers to improve their content.

• Indirect method: In this case the collected raw Web
data are transformed into data abstractions (during a
pre-processing phase) appropriate for the pattern
discovery procedure. According to [27] the types of
data that can be used for capturing interesting user’s
patterns are classified into the content, structure, usage
and user profile data. Such data usually be collected
from different sources (e.g. server log files, client level
or proxy level log files) and can be processed in order
to construct data abstractions such as user and server
session [27]. A user session consists of page requests
made by a single user across the entire Web while the
server session is the part of user session that contains
requests to a particular Web site. Once the data

abstractions have been created standard data mining
techniques, such as association rules, sequential
patterns and clustering analysis, are used in patterns
recognition [10].

In Web Usage Mining process, association rules discover
set of pages accessed together (without these pages being
necessarily connected directly through hyper-links).
Detecting such rules could be helpful for improving the
structure of a site or reducing latency due to page loadings
based on pre-fetched documents. On the other hand, the
action of detecting sequential patterns is that of observing
patterns among server sessions such that the access to a set
of pages is followed by another page in a time-ordered set
of sessions. This type of information is extremely useful in
e-business applications since placing advertisements aimed
at certain user groups can be based on discovery of
sequential patterns. Finally, clustering techniques can be
used for categorizing both the users and the requested
pages. User clusters involve users who exhibit similar
browsing behaviour, whereas page clusters consist of pages
with related content. The user clustering approach can
improve the development of e-commerce strategies.
Serving dynamic content focused on users' profile is a
challenge in Web research. Moreover, information about
page clusters can be useful for Web search engines.
Several mining systems have been developed in order to
extract interesting navigation patterns. In [26] the authors
present the Web Utilization Miner (WUM) system which,
firstly, executes a pre-processing task on the raw Web data
in order to infer a tree structure of detecting user sessions
and then performs the mining task. [4] presents the
Hypertext Probabilistic Grammar (HPG) model which
simulates the Web as a grammar, where the pages and
hyperlinks of the Web may be viewed as grammar's states
and rules. Data mining techniques are used to find the
higher probability strings which correspond to the user's
preferred navigation path. However, this model has the
drawback that returns a very large set of rules for low
values of threshold and a small set of very short rules for
high values of threshold. As a sequence, the heuristic
Inverse Fisheye (IFE) [5] computes small sets of long rules
using a dynamic threshold whose value is adapted to the
length of the traversal path. Finally, in [11] the WebSIFT
system is presented which performs Web Usage Mining
based on server logs. WebSIFT uses content, structure and
usage information and composed of pre-process, pattern
mining and pattern analysis modules.

Characterizing the Workload of Web Users’
Patterns

Figure 3. A sample access log

Due to the enormous size of Web data accessing patterns, it
is essential to devise workload characterization that will be
representative of the underlying users’ behaviour. Analysis
derived from these patterns is reviewed in an effort to
characterize the entire structure of the Web. In this context,
one of the important steps before capturing Web users’
patterns is to model the users’ behaviour. The purpose of
this approach is to understand the characteristics of the
submitted workload and then to find a model for the Web
data behaviour using a collection of analytic techniques
(such as data mining).
Furthermore, workload characterization is the key issue for
simulation approaches on Web data management. In fact,
workload characterization is an essential source of
information for all the simulation models, which define a
compact description of the load (by means of quantitive and
qualitive parameters). Visually, the workload has a
hierarchical nature and measurements are collected at
various levels of detail. However, the complex nature of
the Web complicates measuring and gathering of the Web
usage loads. Web data workloads usually consist of patterns
which are issued by clients and be processed by servers.
Then, these patterns are recorded in files which called log
files [13]. Entries in the log file are recorded when the
pattern is completed, and the timestamp records the time at
which the socket is closed. Figure 3 presents a sample of
Squid logs. The task of workload characterization is not
simple since they have many unusual features. In this
context, the patterns of Web users can be represented
conventionally as multidimensional vectors, where each
dimension corresponds to a single feature. The Web
patterns have high variability (file sizes, time arrivals).
Another feature of Web workloads is that the traffic
patterns have also high variability and therefore, it can be
described statistically using the term of self-similarity.
Studies have shown that self-similarity in traffic has
negative results in the performance of Web data
management systems.
Capturing a specific set of Web logs is essential in order to
simulate an application’s behaviour. So the majority of

simulation efforts use Web workloads that are characterized
by several approaches. These approaches deal with
characterizing associations and sequences in individual data
items (Web logs) when analyzing a large collection of data.
In that framework, there are two common simulation
approaches for characterizing the workload of Web users’
patterns[3]:
• Trace-based approach: The most popular way to

characterize the workload of Web users’ patterns is by
analyzing the past Web servers log files. In [2] a
detailed workload characterization study, which uses
past logs, is presented for World Wide Web servers. It
is common to analyze the Web server logs for
reporting traffic patterns. In addition, many tools have
been developed for characterizing Web data workload
(such as Webalizer, Calamaris etc.). But,
characterizing the workload with captured logs has
many disadvantages, since it is tied to a known system.
Despite the fact that this approach is simple to
implement, it has limited flexibility. Firstly, this
workload analysis is based completely on past logs.
But the logs may lose their value if some references
within them are no longer valid. Secondly, the logs are
inaccurate when they return objects that may not have
the same characteristics with the current objects.
Finally, the logs should be recorded and processed
carefully because a false can lead to incorrect temporal
sequences. For example, the requests for a main page
can appear after the requests for images within the
page itself. So, all the above can lead to incorrect
results.

• Analytical approach: Another idea is for the Web
data workload characterization to use patterns that do
not currently exist. This kind of workload is called
synthetic workload and it is defined by using
mathematical models, which are usually based on
statistical methods, for the workload characteristics.
The main advantage of the analytical approach is that it
offers great flexibility. There are several workload
generation tools developed to study Web proxies. In
[3] the authors created a realistic Web workload
generation tool which mimics a set of real users’
patterns accessing a server. In [8] another synthetic
Web proxy workload generator is (called ProWGen)
described. However, the task of generating
representative log files is difficult because Web
workloads have a number of unusual features.
Sometimes, in attempting to generate artificial
workloads, we make significant assumptions such as
that all objects are cacheable, or that the requests
follow a particular distribution. These assumptions

may be necessary for testing, but are not always
absolutely true.

SEARCHING ON THE WEB

Searching for Web Documents
The World Wide Web is a huge, heterogeneous and
distributed collection of documents. However, the key
aspect of the Web that makes it a valuable recourse is that
an important piece of this information can be searchable
and, consequently, accessed by using search services such
as Web search engines [21]. Excite, Lycos, AltaVista and
Google are examples of most common search engines.
A Web search engine provides a front end to a database of
indexed Web documents. Using a search engine can be a
start point of Web activity. In this case, users apply a query
to a local database of Web resource, using a list of terms
that express their information need, and receive an ordered
list of Web pages that correspond to their query as better as
possible. Search engines consist of three components:
• Spiders: they are computer programs that traverse the

Web in order to identify pages. More specifically,
spiders browse the Web on the search engine's behalf,
as a user follows links from one page to another, using
a start set of URLs. According to the topics supported
by a search engine, there exist general purpose or
specialized search engines. Correspondingly, the
spiders can either crawl generally the Web or focus on
specialty sites. For example, Excite News indexes news
sites whereas Lycos Multimedia Search restricts its
index in audio, video and captures content.

• Index: it is a database that contains a copy of each
page gathered by spiders. Once the search engine has
completed the crawling cycle, it begins the indexing
procedure. There are two basic methods of indexing:
full-text indexing, where every word of gathered pages
is inserted into the database (AltaVista has a full-text
database) and keyword indexing, where only the
important words and phrases are put into the database
(Excite has a keyword index).

• The search and retrieval mechanism: it is the
technology that allows users to query the database and
resulted pages are returned by using a rank policy. The
way a search engine ranks the results pages is a very
crucial issue. There exist search engines that look on
the content of pages in order to determine relevance. In
this case, issues such as the presence of search terms in
the title, first heading, URL, HTML meta tag or the
frequency of appearances in the pages are taken into
consideration during ranking procedure. On the other
hand, there are search engines that look off the content
trying to improve the rank of the results list. For

example, Google rank a Web page based on the
number of "important" pages that link to it.

Based on the above, the search engines can be classified
into two major types:
• the individual search engines, that use spiders to

construct their own searchable database and
• the meta search engines, also known as parallel or

multi-threaded search engines, that do not have a local
database and rely on other sources

Therefore, a meta engine searches the Web by making
requests to multiple individual engines [21]. MetaCrawler
is a typical example of a meta search engine. Figure 4
shows the architecture of typical search and meta search
engines. The obvious advantage of a meta engine is the
combination of results of multiple search engines through a
single user interface. However, this could also be proved to
be main disadvantage if one thinks the lack of an efficiently
rank policy in a single engine. As shown in Figure 4, the
results returned from the meta engines ordered through a
combined rank policy. Usually, meta search engines
consider the titles, keywords, summaries and URLs
provided by each one of the engines behind them. Some
meta search engines, such as MetaCrawler, collate the
results and, eventually, post on the screen a single list with
the duplicate pages removed. Others, such as Dogpile,
response with separate lists of results, one for each engine
that was searched, where one can be find the same page
more than once.

Figure 4. The architecture of a typical search (left) and
meta search (right) engine

In spite of the great number of search engines, finding the
accurate information on the Web is remain a complicated
problem and several important questions bring up: can we
index all global information that the Web contains and how
can efficiently access it? Furthermore, how regularly can
we update indices of this information? In a study at NEC
Research Institute [20] the coverage of six Web search
engines is analysed yielding interesting results:

• None of the search engines covers more than about one
third of the indexable Web (for example they do not
index pages with authentication requirements or pages
generated after post action of a web form).

• The combination of the six engines covers about 3.5
times as much of the Web as one engine.

• The freshness of the several databases varies
significantly. However, there is a proportional
relationship between the comprehensiveness and
freshness of a search engine (for example, the most
comprehensive search engine had the largest
percentage of broken links).

Searching for XML-based Data
The flexibility of the XML standard has improved the
performance of Web searching process. In that framework,
the following subsections present the main research efforts
(Xyleme and Niagara) that have been done the last years
for developing a robust search engine.

Xyleme
Xyleme is a research project whose goal is to implement a
smart and user friendly search engine, able to answer
queries relying on the structure of XML data. In this
context, it is targeted on discovering XML pages on the
Web that are of interest for people, synthesizing
information from distinct documents and finally
maintaining them up to date. Xyleme started as an "opened"
group of researchers in September 2000. At the end of
2001, 25 researchers were employed for this project. In
general, Xyleme is a dynamic warehouse for XML data of
the Web [28]. The Xyleme system runs on a local network
of Linux PCs. As illustrated in Figure 5, Xyleme is
implemented between three autonomous machines:

Figure 5. Xyleme Architecture

• Repository Machines: They are responsible for
storing the XML documents. Documents are clustered
according to a semantic classification. Each repository
machine stores the XML data as trees in a conventional
DBMS (DataBase Management System) until a certain
depth and then stores the XML pages as byte streams.
More details about these approaches can be found in
[16].

• Index Machines: These machines have enough
memory to fit the indexes that they are maintaining.
For example, there will be several index machines for
only one repository machine.

• Interface Machines: These kinds of machines are
connected to the Web. They run applications and send
either tasks or processes to the other machines.

The main feature of Xyleme, which distinguishes from
other systems, is that it is based on warehousing. In
particular, the performance of Xyleme is heavily depended
on the efficiency of the repositories, replicating XML
documents. So, the main functionalities of Xyleme can be
summarized into the following modules:
• Data Acquisition Module: It decides when to update a

document in Xyleme, evaluating the importance of the
document, its size etc.

• Query Processor Module: The task of query
processor module is to extract data from the
repositories. Xyleme uses for this purpose a query
language, which is a mix of OQL and XQL. More
details about this module can be found in [1].

• Change Control Module: This module manages
query subscriptions, processes temporal queries and
decides which documents to adapt.

• Semantic Module: This module is responsible for
analyzing documents and defining connections
between summaries and real documents which are
called views. Using data mining techniques and some
human interaction, Xyleme provides views that can
easily be queried by users.

Niagara
Niagara is another very promising tool which effectively
manages the XML documents. The Niagara Internet Query
System is designed to enable users to pose XML queries
over the Web, retrieve XML documents and monitor them.
It was initiated by a group of researchers in the University
of Wisconsin-Madison. Instead of Xyleme, Niagara is
open-source software and it runs either on UNIX PCs or
Windows PCs. The Niagara has two main components:
• Search Engine
• Query Engine
The system has been implemented in a Java platform. Both
the Query Engine and Search Engine are also written in
Java and structured as multi-threaded servers. The next
paragraphs describe the architecture of the Niagara Query
System.

Figure 6. Niagara Architecture

As illustrated in Figure 6, the users use a Graphical User
Interface (GUI) and send their XML-QL queries to the
Query Engine for execution. Each query is then parsed and
optimized. Afterwards, the Query Engine extracts a query
to the Search one, asking for the URLs that arise from the
XML files. Two of the main components of Search Engine

are the Index Manager and the Crawler. The Crawler
crawls the Web for new and updated XML documents and
then it returns a list of them either to the Query Engine or to
the users. On the other hand, Index Manager indexes the
list of these documents. Afterwards, Query Engine receives
the list and Data Manager (which is its main component)
fetches asynchronously all the appropriate documents from
the Web. Finally the results are given to the users via a GUI
that can be run as an applet in a browser and connects to the
Niagara server. More details about Niagara can be found in
[25].
However, the Niagara Query System is not so flexible as
Xyleme because it does not provide a semantic module in
its architecture. So, the users should have prior knowledge
for the structure of the XML files that they want to find. In
other words, they should select by themselves the DTDs
(Document Type Definitions) that define the structure of
XML documents which are relevant to their queries.

CONCLUSIONS
This paper presents a study in Web data accessing and Web
searching process. The extremely large volume of the Web
documents has increased the need for advanced
management software implementations that offer an
improvement on the quality of Web services.
Selection of an appropriate evaluation methodology for
Web data management systems depends on various
concerns. In this context, several simulation approaches for
Web data management have been developed during the last
years. Firstly, these approaches are focused on simulating
the structure of Web. Web graphs are the most common
implementations for Web data representation. Secondly, it
is essential to simulate the Web data workloads. This can
be implemented using data mining techniques. These
techniques study carefully the structure of Web data and
find new trends and patterns that fit well with a statistical
model. Finally, various systems have been developed for
simulating Web caching approaches. These approaches are
used for an effective storage.
All the previous simulation approaches, in conjunction with
the emergence of search engines, try to improve both the
management of Web data (on the server side) and the
overall Web performance (on the user side). The emergence
of XML standard simplifies the task of managing the Web
data and it has many possibilities to dominate in the near
future on the Web data management systems. So, the next
generation of Web data management systems will be
distinguished from their flexibility and customizability,
providing also a significantly improvement on the QoS.

REFERENCES
[1] V. Aguilera, S. Cluet, P. Veltri, D. Vodislav, F.

Wattez. Querying XML Documents in Xyleme.
Proceedings of the ACM-SIGIR 2000 Workshop on
XML and Information Retrieval, Athens, Greece, Jul.
2000.

[2] M. Arlitt, C. Williamson. Internet Web servers:
Workload Characterization and Performance
Implications. IEEE/ACM Transactions on
Networking, Vol. 5, No. 5, pp. 631-645, Oct. 1997.

[3] P. Barford and M. Crovella. Generating representative
Web workloads for network and server performance
evaluation. Proceedings of the SIGMETRICS '98
conference, Jun. 1998.

[4] J. Borges and M. Levene. Data Mining of User
Navigation Patterns. Proceedings of the Web Usage
Analysis and User Profiling Workshop (WEBKDD99),
pp. 31-36, San Diego, Aug 1999.

[5] J. Borges and M. Levene. A Heuristic to Capture
Longer User Web Navigation Patterns. Proceedings of
the 1st International Conference on Electronic
Commerce and Web Technologies, Greenwish, U.K.,
Sep. 2000.

[6] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Proc. of 7th
International World Wide Web Conference, Brisbane,
Australia, 1998.

[7] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan, S.
Rajagopalan, R. Stata, A. Tomkins, J. L. Wiener.
Graph Structure in the Web. Proceedings of 9th
International Conference (WWW9)/Computer
Networks, Vol. 33, No. 1-6, pp. 309-320, 2000.

[8] M. Busari and C. Williamson. ProWGen: A Synthetic
Workload Generation Tool for Simulation Evaluation
of Web Proxy Caches. Computer Networks, Vol. 38,
No. 6, pp. 779-794, Jun. 2002.

[9] S. Chakrabarti, B. E. Dom, R. Kumar, P. Raghavan, S.
Rajagopalan, A. Tomkins, D. Gibson, J. M. Kleinberg.
Mining the Web's Link Structure. IEEE Computer, Vol.
32, No. 8, pp. 60-67, 1999.

[10] R. Cooley, B. Mobasher, J. Stivastava. Data
Preparation for Mining World Wide Web Browsing
Patterns. Journal of Knowledge and Information
systems, Vol. 1, No. 1, 1999.

[11] R. Cooley, P. Tan, J. Stivastava. WebSIFT: The Web
Site Information Filter System. Proceedings of the
Workshop on Web Usage Analysis and User Profiling
(WEBKDD99), San Diego, Aug. 1999.

[12] J. Cowie, D. M. Nicol, A. T. Ogielski. Modeling the
Global Internet. In Computing in Science and

Engineering, Vol. 1, No. 1, pp. 42-50, January-
February 1999.

[13] B. D. Davison. Web Traffic Logs: An Imperfect
Resource for Evaluation. Proceedings of the 9th
Annual Conference of the Internet Society (INET'99),
Jun. 1999.

[14] S. Decker, F. Harmelen, J. Broekstra, M. Erdmann, D.
Fensel, I. Horrocks, M. Klein, S. Melnik. The Semantic
Web - on the Respective Roles of XML and RDF. IEEE
Internet Computing, 2000.

[15] M. Holiday. Techniques for Cache and Memory
Simulation Using Address Reference Traces.
International Journal in Computer Simulation, Vol. 1,
No. 1, pp. 129-151, 1991.

[16] C. C. Kanne and G. Moerkotte. Efficient Storage of
XML data. Technical Report 8/99, University of
Mannheim, 1999.

[17] J. M. Kleinberg, R. Kumar, P. Raghavan, S.
Rajagopalan, A. Tomkins. The Web as a Graph:
Measurements, Models, and Methods. Proceedings of
the International Conference on Combinatorics and
Computing, pp. 1-18, 1999.

[18] J. M. Kleinberg and St. Lawrence. The Structure of the
Web. Science Magazine, Vol. 294, pp. 1849-1850,
Nov. 2001.

[19] R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins.
Trawling emerging cyber-communities automatically.
Proceedings of 8th International World Wide Web
Conference (WWW8), Toronto, Canada, 1999.

[20] S. Lawrence and C. L. Giles. Searching the World
Wide Web. Science Magazine, Vol. 280, pp. 98-100,
1998.

[21] S. Lawrence and C. L. Giles. Searching the Web:
General and Scientific Information Access. IEEE
Internet Computing, Vol. 37, No. 1, pp. 116-122, 1999.

[22] S. Manley, M. Seltzer, M. Courage. A Self-scaling and
Self-configuring Benchmark for Web Servers.
Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS '98/PERFORMANCE '98), pp. 270-
271, Madison, WI, Jun. 1998.

[23] J.C. Mogul. Network Behaviour of a Busy Web Server
and its Clients. Technical Report WRL 95/5, DEC
Western Research Laboratory, Palo Alto, CA, 1995.

[24] B. Murray and A. Moore. Sizing the Internet. White
paper, Cyveillance, Jul. 2002.

[25] J. Naughton, D. DeWitt, D. Maier et al. The Niagara
Internet Query System. IEEE Data Engineering
Bulletin, Vol. 24, No. 2, pp. 27-33, 2001.

[26] M. Spiliopoulou and L. Faulstich. WUM: A Web
Utilization Miner. Proceedings of International

Workshop on the Web and Databases, pp. 184-203,
Valencia, 1998.

[27] J. Srivastava, R. Cooley, M. Deshpande, P. Tan. Web
Usage Mining: Discovery and Applications of Usage
Patterns from Web Data. SIGKDD Exploratios, Vol.1,
No. 2, Jan. 2000.

[28] Lucie Xyleme. A Dynamic Warehouse for XML Data
of the Web. IEEE Data Engineering Bulletin, Report
number 198, Mar. 2001.

