
An XML-based Language for Access Control
Specifications in an RBAC Environment*

* 0-7803-7952-7/03/$17.00 ���� 2003 IEEE.

Konstantina E. Stoupa
kstoupa@acn.gr

Athena I. Vakali
avakali@csd.auth.gr

Department of Informatics,

Aristotle University of Thessaloniki, Greece

Abstract - Lately, Web-accessed resources have
superceded the resources accessed by local or wide-area
networks. Therefore, new mechanisms should be
implemented for protecting resources from unknown
clients. Attribute Certificates is a quite new technology
offering such functionality. Those certificates are issued
by Attribute Authorities validating the attributes of the
owner of the certificate. Based on this technology an
XML-based access control mechanism is introduced for
protecting any kind of resources (from both known and
unknown clients). The proposed model is ultimately role-
based since both clients and protected resources are
organized into roles. Moreover, an XML-based language
is introduced to express roles, authorizations, delegation
rules, hierarchies and certificates.

Keywords: Access control, Attribute Certificates, Role-
Based Access Control, XML-based language.

1 Introduction

Currently, a wide variety of services is available
through the Internet and they need protection from
unauthorized access. Access control and authentication are
highly related, since granting access to an authorized user
assumes the earlier authentication of his/her identity. For
years, public key infrastructures have been employed for
the authentication of users. The idea is quite simple: a few
trusted authorities (certification authorities-CAs)
authenticate the identity of a user signing with their private
key an identity certificate containing such information.

 Lately, this idea is also extended to the authorization
mechanism. New types of certificates containing
authorization information (known as attributes) have
already been proposed. Attributes are characteristics of the
requester related to the access control mechanism (e.g.
roles). Attribute certificates (ACs) are signed by trusted
Attribute Authorities (AAs) and they are bind to an
identity certificate. Thus, every access control system
should trust several AAs and accept the certificates they

issue. Those environments not willing to trust anybody
(except themselves), also have the responsibility of issuing
their own ACs (after a negotiation with the subject).
Unfortunately, there is not yet a standard governing the
format of such certificates or the responsibilities of such
authorities. Therefore, the whole idea is under
consideration and research and only some abstracts have
been made.

 In this paper we present an XML-based access
control environment for protecting any type of resource
(files, system resources, services, etc.) from known and
unknown clients. Each client is assigned with some roles
certified by an attribute certificate. According to those
roles, the access control mechanism decides whether it
will grant or deny access. The proposed mechanism is
ultimately role-based since both client and protected
resources are organized into roles. Furthermore, we define
an XML-based language for expressing roles
authorizations, delegation rules, hierarchies and
certificate.

1.1 Authorization Certificates

The most well-known proposals covering this
functionality are the X.509v3 certificates and the Attribute
Certificates (an overview is presented in [9]).

The public-key certificate X.509v3 is an ISO/IETF
standard which certifies both the identity and the attributes
of a client and they are digitally signed by a certificate
authority. An X.509v3 certificate except for the standard
fields, it also contains some extensions. The extensions
field can be used for the incorporation of any number of
additional fields and therefore attributes into the
certificate. Therefore, there is no need for independent
certificates leading to high protocol complexity and
certificate administration. On the other hand, the
integration of the two functions in one certificate is not
problem-free since the two types of certificates may have
different life durations, i.e. the clients authorized to
perform an action may vary every week or even day, while

identity certificates are designed to be valid for much
longer period of time. In case that attributes need
modification the whole certificate should be reissued.
Moreover, the authority verifying the identity of a person
may not be appropriate for certifying the corresponding
authorization information ([6]).

The drawbacks of X.509v3 certificates try to
overcome the Attributes Certificates which were developed
by U.S. financial industry through the ANSI X9
committee. Those certificates are totally separated from
identity certificates and bind attribute information to the
certificate’s subject. They are digitally signed by an
attribute authority. Since attribute certificates does not
contain a public key, they should be used in conjunction
with an identity certificate.

In [12] a conjunction of the two certificates is
proposed and it is called Smart Certificate. Those
certificates are based to the extension of X.509v3
certificates and they can be both short- and long-lived
eliminating the additional revocation mechanism.
Furthermore, they can contain attributes issued by several
authorities with various durations. Such a feature leads to
low protocol and certificate administration complexity.

1.2 Attribute-Based Access Control

Attribute-based Access Control is a quite new idea
which tends to extend the role-based access control. In [8]
RT framework is introduced which is a family of role-
based Trust-management languages for expressing policies
and attributes in distributed access control mechanisms.
RT covers almost all of the access control issues by using
BNF representation.

In [5], Trust Policy Language (TPL) is introduced. It
is about an XML-based language for mapping strangers to
predefined business roles based on certificates. An SQL-
based language for expressing mobile policies is defined in
[3]. This idea further extends attributes certificate
functionality, since they can not only transfer attributes of
the owner but also some access control policies governing
them.

Nereus is a trust-management framework where
attributes are assigned to clients through distinct
certificates ([10]). A format for both credential and
delegation certificates is proposed. Those certificates are
directed to access control mechanism which, according to
predefined policies, decides whether it will grant or deny
access privileges to the requester.

Finally, in [2] a Certificate-Based Authorization
Simulation System is introduced. It emulates some basic
functions of an operating system, such as machine, user

and file management using certificates instead of access
control lists.

2 Access Control Basics
The core issues governing an access control

mechanism function are: (a) the subject who is the client
willing to access the protected resources, (b) the object
which is the protected resource and (c) the access mode.
These issues are engaged in the definition of an
authorization rule which defines which subject may
conduct which type of operation over which object.

2.1 Ultimate Role-Based Access Control

 For reasons of unification, our model will be an
ultimately role-based access control tool. Sandhu et. al. in
[13] introduced the idea of roles in subjects. It is the most
appropriate identification method for wide heterogeneous
web-accessed repositories. Role is a named collection of
privileges needed to perform specific activities in the
system. The important benefit of role-based models is that
they organize the various requesters into categories
according to their characteristics. This feature allows the
access control administrators to define security policies
affecting a group of clients whose identities are of not
interest. Clients are assigned one or more roles and the
same holds between roles and permissions.

 Role-based models have a number of characteristics
that make them flexible and effective. Authorizations are
specified for a set of subjects, e.g. employees, managers,
etc. Thus, the number of rules to be defined is really
minimized. Each role defines a certain obligation and duty
in an organization. Thus, their use seems to fulfill exactly
the needs of modern distributed organizations. Finally,
roles can be naturally organized into hierarchies

Subjects are the clients willing to access the protected
resources. It has already been mentioned that both known
and unknown clients are allowed to enter a distributed
web-accessed environment. Therefore, the framework is
obliged in both cases to assign roles to subjects (through
attribute certificates). It is expected that in the latter case,
roles will be less privileged than those assigned to known
clients.

Based on the advantages offered by roles and by the
work in [11], we have extended the use of roles into
objects, too. Since protected objects form a huge and
heterogeneous set, their categorization into groups seems
mandatory. In case, there should be a different policy for
each protected object the access control mechanism would
become a bottleneck for the modern distributed systems
responsible for the protection of various resources (files,
system resources, services, etc.). Therefore, we may have

the following object roles related to subjects: video files,
audio files, data files, etc.

Another feature of role-based access control models
is the idea of role hierarchies. The role hierarchies
represent which roles have at least the authorizations of
their children. Therefore, a child node in a role-tree has
more authorizations than its parent.

2.2 Delegation

Since modern access control models are destined to
protect wide, distributed environments, they should be
self-administered in order to avoid becoming a bottleneck.
Such a functionality is achieved through delegation of
roles i.e. the ability of a role to pass (over its
authorizations) to another role. Roles are organized into a
delegation hierarchy where a role is allowed to delegate its
authorizations to a direct (or indirect) child role or to a role
in the same level.

 Delegation is related to the following features
(which we incorporate in our framework) ([1], [4]):

� Scope: It is not scarce that a role may be
involved in more than one delegation hierarchies
The scope of its power is given by the identity of
a hierarchy.

� Permanence: in case a delegation is permanent,
the delegator permanently passes on his(her)
authorizations to the delegatee.

� Monotonicity: this feature refers to the power
that the delegator possesses after the delegation.
In a monotonic delegation, the delegator
maintains his(her) authorizations

� Totality: this feature refers to how completely
the authorizations assigned to a role are
delegated to another. In case of a total
delegation the delegator passes over all of
his(her) authorizations.

� Levels of delegation: it defines whether a role
can be further delegated and for how many
times.

� Activation/de-activation condition: every
delegation should take place when a condition is
fulfilled and it should be cancelled according to
a de-activation condition.

3 The proposed access control
framework
We have implemented a language in our attempt to

support the topology shown in Figure 1. In the one end is a
repository of resources needing protection and at the other
end there is a client requesting to grant access to a
protected resource. For the request to be fulfilled, it should
first pass through the access control mechanism. This
mechanism needs two type of information: (a) a request
from the client containing under which operation mode the
client wants to access which object (arriving through route
A), and (b) an attribute certificate containing the
authorization information related to the client. Those
attributes may be received through two distinct routes: (a)
in case the client is unknown to the system, it asks a
trusted Attribute Authority (AA) to issue an Attribute
Certificate (AC). Due to the miss of a standard for those
certificates, their format may vary according to which
authority has issued them. Therefore, the certificate should
be interpreted in an XML-based attribute certificate
recognizable by the access control mechanism (red route).
(b) In case the client is known, a local attribute authority
issue directly the XML-based certificate which is passed
to the access control mechanism (blue route).

Figure 1 : The architecture of the proposed environment

3.1 Function of Access Control Mechanism

The access control mechanism requires the following
information to work (not always concurrently) which is
stored into encrypted separate base as shown in Figure 2:
(a) The certified roles of the subject acquired by the
attribute certificate, (b) the authorizations of the client
defining which resources (s)he is allowed to access and
under which mode, (c) the description of roles, (d) the role
hierarchies (in Role-Based Access Control models, roles
are organized into hierarchies. A role may participate into
many hierarchies defining different protection domains),
(e) the delegation certificates which are send to the access
control mechanism in order to verify the validity of
delegation, (f) the delegation rules in order to decide if the
required delegation will be accepted and (g) the
delegation hierarchy that defines the roles that a parent
role can delegate its rights to.

Figure 2: Co-operation between access control bases and
mechanism

4 An XML-based Language
An XML-based language has been designed for

supporting the proposed web-accessed environment. XML
has all of the characteristics servicing our goals, like
flexibility, extensibility and structure. Document Type
Definition (DTD) has been adopted for expressing the
format of all the access control issues. The reason for
using DTD instead of XML Schema is its brevity and
conciseness.

4.1 Specification of roles

The proposed model is an ultimately role-based
access control one, and thus both objects and subjects are
organized into roles. Subject roles are defined by the
following DTD:

<!ELEMENT subject_role(name, scope+,
 (activation_cond, deactivation_cond, qualifications)?) >
<!ATTLIST subject_role id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT scope (#PCDATA)>
<!ELEMENT activation_cond (ANY)>

<!ATTLIST activation_cond type
 (temproral | event_driven)>
<!ELEMENT deactivation_cond (ANY)>
<!ATTLIST deactivation_cond type
 (temproral | event_driven)>

where every role is identified by a unique id and name.
Moreover, each role has effect in a certain scope which is
defined by the identity of a role hierarchy. A role may
participate in various hierarchies. Furthermore, according
to [8] a role may be activated and deactivated according to
the satisfaction of certain conditions. Those conditions
may be temporal, e.g. a role is activated in July 4th, or
event-driven e.g. a role is deactivated in case another role
is activated. Finally, qualifications define the
characteristics that a subject should possess in order to be
assigned the role.

The definition of object roles is quite simple since it
is defined by the following DTD:

<!ELEMENT object_role (name, description)>
<!ATTLIST object_role id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>

where id and name uniquely identifies the role and
description may contain any information characterizing
the role.

Both subject and object roles are organized into
hierarchies where an authorization rule referring to a node
may propagate to lower levels. This functionality limits
the number of the needed authorization rules. Those
hierarchies are stored into XML files which are based on
the following DTD:

< !ELEMENT subject_hierarchy(node)>
< !ELEMENT node (node ?)>
< !ATTLIST node role_id IDREF>

A subject hierarchy is defined by a root node which
may contain no or more nodes. That way a tree is defined.
Delegation hierarchies are defined the same way and are
stored into appropriate XML files.

4.2 Authorizations

The function of every access control system is based
on the definition of authorizations. An authorization is a
rule that generally defines which subject can access which
object and under which action mode. Therefore, in our
grammar authorizations are defined according to the
following DTD:

<!ELEMENT authorization (subject_role, object,
 access_mode, provisional_action,

 environment_condition,)>
<!ATTLIST authorization id ID #REQUIRED>
<!ATTLIST authorization isdelegated (yes | no)>
<!ELEMENT subject_role (#PCDATA)>
<!ATTLIST subject_role role_id ID>
<!ELEMENT object (object_name|object_role)>
<!ELEMENT object_name (#PCDATA)>
<!ELEMENT object_role (#PCDATA)>
<!ELEMENT access_mode (#PCDATA)>
<!ELEMENT provisional_action (ANY)>
<!ELEMENT environment_condition (ANY)>

The first three elements (subject_role, object and
access_mode) are the basic parts of an authorization rule.
Subject role is identified by its name and its id which is
taken by the XML files containing the definitions of roles.
Object may be an independent resource or an object role.
Thus, the tool can protect objects both independently and
in groups. Since, metadata of protected resources are
stored into XML files, in case of the independent
protection, an XPath expression is used in order to identify
the protected part of such a file. The access mode defines
the operation the subject is allowed to perform over an
object, e.g. execution, write, etc. The provisional_action
element defines the action that should be performed before
or after access is granted. The idea of provisional actions is
described in detail in [7]. Examples of such actions may be
log of session, sending an email to administrator,
encrypting the protected target, etc. Finally, an
authorization rule contains an environmental condition that
should be satisfied for the rule to take effect. Those
conditions may be temporal, events, etc. Our language is
quite flexible since it can be extended and support the
needs of various environments.

4.3 XML-based Attribute Certificates

The proposed framework is an XML-based access
control tool, where the attributes certificates should be
interpreted into XML-based ones in order to be
comprehended by the access control mechanism. Those
certificates contain the roles of a client. The DTD of those
certificates will be the following :

<!ELEMENT attribute_certificate (issuer, licensee,
 attribute+, valid_period)>
<!ELEMENT issuer (#PCDATA)>
<!ELEMENT licensee (#PCDATA)>
<!ELEMENT attribute (name, value)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT valid_period (not_before, not_after)>
<!ELEMENT not_before (date, time?)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT time (#PCDATA)>
<!ELEMENT not_after (date, time?)>

The components of an attribute certificate are: (a) the
issuer, which contains the public key of the attribute
authority, (b) the licencee who is the client possessing the
certificate and (s)he is identified by his(her) public key, (c)
the attributes, which may be multiple and they are
characterized by their names and their values, and (e) the
valid period, i.e. the element defining the life of the
certificate. The valid period is limited by a not_before and
not_after element which define the date and optionally the
time that the life of the certificate begins and terminates.

4.4 Delegation Certificate and Delegation Rules

The environment, before accepting a delegation, it
should be certain that the delegator truly delegated his(her)
rights to the delegatee. Such an issue is satisfied through
the use of delegation certificates. Therefore, a delegation
certificate will have the following format (in a DTD):

<!ELEMENT delegation_certificate (delegator,
 delegatee+, scope+, permanence, monotonicity,
 totality, delegation_levels, activation, deactivation)>
<!ELEMENT delegator (#PCDATA)>
<!ELEMENT delegatee (#PCDATA)>
<!ELEMENT scope (#PCDATA)>
<!ELEMENT permanence empty>
<!ATTLIST permanence value (yes|no)>
<!ELEMENT monotonicity empty>
<!ATTLIST monotonicity value
 (monotonic/non_monotonic)>
<!ELEMENT totality (delegated_authorization?)>
<!ELEMENT delegated_authorization empty>
<!ATTLIST delegated_authorization id ID>
<!ELEMENT delegation_level empty>
<!ELEMENT delegation_leve times CDATA>
<!ELEMENT activation (ANY)>
<!ELEMENT deactivation (ANY)>

The delegator and the delegatee are identified by
their role ids. The delegation may be multiple, i.e.
delegator’s authorizations may be inherited by various
delegatees. Since the delegator role may participate into
many hierarchies, the element scope defines the delegation
hierarchies that this delegation takes effect. Element
permanence may take two values, yes or no. In case of a
permanent delegation the delegator cannot recall his(her)
authorizations. In case monotonicity element has a value of
monotonic in its attribute, both delegator and delegatee
possess the delegated authorizations. The totality element
contains the delegated authorizations which are identified
by their unique id. The delegation level element defines if
the authorizations can be further delegated and for how
many times. Thus, attribute times may have a value of 0, in
case further delegation is not accepted, or more. Finally,
activation and deactivation elements may contain any
condition that should be fulfilled for the delegation to take
place or to be terminated respectively.

The access control mechanism has access to
delegation rules stored in a separate base which have the
same format as the certificate. Therefore, for a delegation
to take place, there should be a rule consenting to the
delegation certificate in all its parts. For example, if the
certificate says that a delegation will take place in June
26th and the delegation rule defines that such delegations
should not take place before July 1st the certificate will be
declared.

5 Conclusions
We have introduced an attribute-based access control

environment able to protect resources from known and
unknown users. Since an access control mechanism needs
some information about the subject, attribute certificates
have been employed. Attribute Certificates contain the
roles of a client and moreover verify their validity. Such
certificates can be issued both by local and external
Attribute Authorities. In the later case the system should
interpret them into a format understandable by the access
control mechanism. We have not yet implemented the
interpreter but the completion of this task is among our
future goals. The use of a standard for attribute certificates
will help a lot our work.

XML is used for expressing roles, authorizations,
rules, etc. Therefore, the access control mechanism
cooperates with XML-bases containing all of the needed
information in order to grant or deny access. Our goal is to
build a functional and friendly environment implementing
the proposed mechanism able to protect distributed web-
accessed resources belonging to one organization.

6 Acknowledgments
The studies of the graduate student Konstantina E. Stoupa
are funded by the State Scholarship’s Foundation of
Greece.

References
[1] E. Barka, and R. Sandhu, “Framework for Role-
Based Delegation Models”, Proc. 16th Annual Computer
Security Applications Conference, pp. 168-176, December
2000.

[2] J. Dai and J. Alves-Foss, “Certificate Based
Authorization Simulation System”, Proc. 25th Annual
International Computer Software and Applications
Conference, pp. 190-195, October 2001.

[3] V. Doshi, A. Fayad, S. Jajodia and R. MacLean, “
Using Attribute Certificates with Mobile Policies in
Electronic Commerce Applications”, Proc. 16th IEEE
Annual Computer Security Applications Conference, pp.
298-307 , December 2000.

[4] C. Goh and A. Baldwin, “ Towards a more Complete
Model of Role”, Proc. 3rd ACM Workshop on Role-Based
Access, pp. 55-61, October 1998.

[5] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor and Y.
Ravid, “Access Control Meets Public Key Infrastructure,
Or: Assigning Roles to Strangers”, Proc. Symposium on
Security and Privacy, pp. 2-14, May 2000.

[6] ISO/IEC 9594-8:2001: Information Technology –
Open Systems Interconnection – The Directory: Public-
key and attribute certificate frameworks”. Available at:
http://www.iso.org

[7] M. Kudo and S. Hada, “ XML Document Security
based on Provisional Authorization”, Proc. of the 7th ACM
Conf. on Computer and Communications Security, pp. 87-
96, 2000.

[8] N. Li, B. N. Grosof and J. Feigenbaum, “Delegation
Logic: A Logic-based Approach to Distributed
Authorization”, ACM Trans. On Information and System
Security, Vol. 6, Issue 1, pp. 128-171, 2003.

[9] J. Linn and M. Nystrom "Attribute Certification: An
Enabling Technology for Delegation and Role-Based
Control in Distributed Environments", Proc. 4th ACM
Workshop on Role-based access control, pp. 121-130,
October 1999.

[10] Z. Mikl�s, “A Decentralized Authorization
Mechanism for E-Business Applications”, Proc. IEEE
International Workshop on Trust and Privacy in Digital
Business, pp. N/A, September 2002.

[11] M. J. Moyer and M. Ahamad, “Generalized Role-
Based Access Control”, Proc. IEEE 21st Int. Conference
on Distributed Computing Systems, pp. 391-398, April
2001.

[12] J. S. Park and R. Sandhu, “Smart Certificates:
Extending X.509 for Secure Attribute Services on the
Web”, Proc. 22nd National Information Systems Security
Conference, pp. N/A, October 1999.

[13] Sandhu R. S., Coyne E. J. and Feinstein H. L., "Role-
Based Access Control Models", IEEE Computer, pp.38-
47, Feb. 1996.

