
Web-based Delegation using XML*

Konstantina E. Stoupa
Computer Science

Department
Aristotle University
Thessaloniki, Greece

kstoupa@acn.gr

Athena I. Vakali
Computer Science

Department
Aristotle University
Thessaloniki, Greece
avakali@csd.auth.gr

Fang Li
Jiao Tong University

Shangai, China
li-fang@cs.sjtu.edu.cn

George Andreadis
School of Engineering

Aristotle University
Thessaloniki, Greece
andreadi@eng.auth.gr

* 0-7803-8566-7/04/$20.00 © 2004 IEEE.

Abstract - Existing access control mechanisms should be
extended in order to authorize external (and possibly
unknown) clients, when entering distributed
environments. This paper proposes the structure and
issuing of appropriate authorization certificate to support
the delegation process under a role-based access control
environment. The proposed processes aim to enhance
accessing automation and to avoid (central
administrator) bottlenecks (in cases of altering an
authorization or a policy). The delegation requests and
the certificates are expressed according to the XML
syntax for enhancing the interoperability of the
delegation processes, which is highlighted in a step-by-
step algorithmic fashion using flowcharts.

Keywords: Delegation, access control, XML.

1 Introduction
The purpose of our work is to introduce a distributed
delegation/revocation module (which is part of the access
control mechanism) able to serve an Internet-accessed
environment whose resources are stored into a distributed
fashion. Delegation is the passing over of ones
authorizations or roles to another. If all requested
delegations should be controlled by a single person, then
such a central administration point would become a
bottleneck in wide environments where such and other
requests arrive in large frequency. Those environments
demand self-administration mechanisms and one such
mechanism is the delegation of roles (or authorizations)
 The proposed distributed modules may be integrated
into the environment shown in Figure 1. The protected
environment consists of several subnetworks supported by
a local delegation module (DM). The function of the local
modules is supported by rules which have only local
effect. Moreover, every local server has access to some
global bases containing information recognizable by all
servers. Each client should send a delegation request and
his XML-based Authorization Certificate (AC) to the
connected server. Such a certificate contains access
control and delegation information concerning the owner.
Those certificates can be extensions of identity certificates

Here we use X.509v3 certificates. Servers are categorized
into master and slave ones. The master server receives the
requests originating from both internal and external users
(through Internet) while the slave ones support only the
connected internal users. In [7] we have described how an
external request can reach the protected environment.

Figure 1: The Distributed Delegation (DM)

Due to space limitations, only the delegation function is
analyzed. Thus, the main contribution of the paper is
summarized in the following:

Internal Client

Local
DM

Local
DM

Local
DM

Master server

XML-based AC +
request

Internal Client

Slave server

XML -based
AC + request

Slave server

XML-based AC +
request

Slave server

XML -based
AC + request

Internal Client

Global
bases

Local
DM

Internal Client

External request
and

XML-based AC

• Introduction of XML-based authorization
certificates.

• The function of the proposed distributed
delegation module able to be incorporated into
distributed Internet-accessed environments.

• The supporting of both user-to-user and role-to-
role delegation by employing the idea of
administrative roles which can modify the
features of regular roles.

• Extension of the idea of delegated object to
include both roles and authorizations.

• The format and the syntax of the delegation and
the revocation requests are identified and an
algorithm for the delegation process is given.
This algorithm identifies all the issues involved
in the delegation process and highlights all the
aspects emerged when controlling and
completing the delegation process.

 The remainder of the paper is structured as follows:
In Section 2 the basic issues governing the delegation
process are described while in Section 3 the function of
the delegation module is discussed. The structure of the
delegation request along with their XML-syntax
Document Type Definitions (DTD) is discussed in
Section 4. In Section 5 the ACs structure is given in
XML and in Section 6 the delegation procedure is
analyzed in a step-by-step fashion through flowcharts.
Finally conclusions are summarized in Section 7.

1.1 State of the Art and Contribution
In the delegation context, RDM20001

 is a centralized role-
based delegation model supporting hierarchical and
multilevel delegation [6]. The main idea of this system is
that it allows users acting in a specific role to delegate
roles to other users. The series of PBDM2

 models extends
this idea [9]. PBDM0 also allows the user-to-user
delegation of permissions while PBDM1 and PBDM2
supports role-to-role delegation. In order to satisfy such a
need, PBDM uses a central security administrator
controlling the permission flow by defining separately
delegatable roles. All of the above models are centrally
administered and therefore, not adequate for large-scale
distributed environments.
 We believe that our contribution is significant since
there is little been done in distributed delegation of
authorizations or roles. Moreover, we have decided to use
XML to express the major entities of our models since
there are already standardized XML-based access control
languages, a feature that will help us in integrating our
module into existing access control frameworks. Our
work advances the current state of the art since we

1 Role-based Delegation Model 2000
2 Permission-based Delegation Model

introduce the idea of distributed delegation into Internet-
accessed distributed protected networks. Moreover, we
have tried to design a both user-to-user and role-to-role
delegation of authorizations or roles in order to complete
the functionality of such a module. Finally, we have tried
to improve our proposal made in [8] where besides the
local delegation modules there was also a global one. The
reason we have changed the topology is that we wanted to
exclude every central point which could become a
bottleneck.

2 Delegation Issues
Delegation and revocation are functions of the general
access control service. Therefore, we can adopt access
models to implement them. In the proposed environment,
each subject is associated with an AC which contains its
roles and authorizations. Each role has three attributes: (a)
type defining whether it is regular or administrative (i.e. it
is able to modify existing regular roles, or create others),
(b) origin whether it is global (recognizable by all
subnetworks) or local, and (c) scope defining the identity
of the role hierarchy it belongs to. Both regular and
administrative roles can be organized into hierarchies. In
regular roles hierarchies a role in an upper level has all of
the authorizations related with all roles in lower levels and
also some more, while in administrative ones a role can
modify the authorizations of roles below it in the
hierarchy. Therefore, when a certificate is newly issued
(both by the local and external authorization authorities)
should include the following information:

• Licensee: containing the name and the id of the
subject

• Issuer: containing the signature of the
Authorization Authority which has issued the
certificate.

• Valid period: This depicts the life duration of the
certificate.

• Regular roles: a list of the regular licensee’s
roles.

• Administrative roles: a list with the
administrative roles of the licensee. This field is
blank when the certificate is issued and it is
completed by the access control mechanism if
needed.

• Extension fields: these fields are filled later by the
access control mechanism and include delegation
information.

3 Delegation Procedure
Figure 2 depicts the format of the proposed delegation
module (DM). For the module to work, some information
is needed which is stored to the following databases:

Local bases (accessed only by the associated local DM):

• Local roles definition base: it contains the
definition of local roles (which have effect only
in the specific subnetwork)

• Local domain server: it contains the identities of
all users belonging to the specific subnetwork.

Global bases (accessed by all local DMs):
• Global domain server: it associates the identity of

each user with the subnetwork it belongs to.
• Global roles definition base: it contains the

definitions of all global roles (roles which are
identified by every local DM.

• Copies of ACs base

Figure 2 : Function of delegation module

 In case of user-to-user delegation, we need a
delegation request and the delegator’s AC (which are sent
to the local DM by the delegator), and the delegatee’s AC
(which is retrieved by the database with the copies of
ACs). Afterwards, the local delegation mechanism asks
the local domain server if the delegatee is a user supported
by the local subnetwork.

• In case, (s)he is a local one, the local delegation
mechanism satisfies the request and updates the
two parties authorizations certificates which are
sent back to their owners (black routes).

• If the local domain server cannot identify the
delegatee, the local DM scans the global domain
server to find out the domain of the delegatee. If
the delegatee is identified the local DM satisfies
the request, the delegator receives his updated
AC and the delegatee’s AC is passed over to the
local DM that supports him (black and blue
routes).

In each case a copy of the updated ACs is stored to the
appropriate base (green route).
In case of role-to-role delegation, after the delegation
takes place, if the delegatee is a:

• Local role: the associated entry in the local roles
definition base is updated (black and orange
routes).

• Global role: the associated entry in the global
roles definition base is updated (black and red
routes).

4 The Delegation Requests
The delegation request specifies who wants

(delegator) to delegate what (delegation object), to whom
(delegatee) under which constraints (delegation
constraints). Thus, each delegation request involves the :

• Delegation structure: defining the delegator and
the delegatee, as well as the roles (or
authorizations) that are to be delegated (i.e the
delegation object).

• Delegation constraints: describing the features of
the delegation.

4.1 Delegation structure
The delegation_structure element is depicted by the
following tuple.

(delegator, delegator_role, delegatee, delegated_object,
rh_identity, ah_identity)

According to the values that those elements may take, the
following cases arise in a delegation request:

• User-to-user delegation: when a user acting
under a regular role r1 delegates his regular role r2
or an authorization to another user (of course r2 is
below r1 in the role hierarchy).

• Role-to-role delegation: when a user acting in
administrative role r1 delegates a regular role or
an authorization to regular role r2 (of course r1
and r2 should belong to the same administrative
hierarchy).

 Since an organization may contain many regular
roles and administrative roles hierarchies, we should
define the scope of the delegation, i.e. to which
hierarchies it refers. Thus, rh_identity defines the unique
identity of the role hierarchy where the regular roles
participating in the request belong to, and ah_identity
defines the identity of the administrative hierarchy where
the administrative role belongs to. Of course, this last
field may be blank.

4.2 Delegation Constraints
Delegation constraints are related to :

• Scope: the scope of its validity which is given by
the identity of a role hierarchy.

• Permanence: in case a delegation is permanent,
the delegator permanently passes on his(her)
authorizations to the delegatee.

• Monotonicity: this feature refers to the “power”
that the delegator possesses after the delegation.
In a monotonic delegation, the delegator
maintains his(her) authorizations

• Totality: this feature refers to the extent with
which authorizations assigned to a role are
delegated to another. In case of a total delegation
the delegator passes over all of his/her
authorizations.

• Levels of delegation: it defines whether a role
can be further delegated and for how many times.

• Activation/de-activation condition: every
delegation should take place when a condition is
fulfilled and it should be cancelled according to a
de-activation condition.

A delegation request may or may not contain constraints,
or it may contain a part of them. Therefore, the final
format of the delegation request tuple is:

(delegator, delegator_role, delegatee+, delegated_object+,
srh_identity, arh_identity?, (permanence, monotonicity,

delegation_levels, activation_condition,
deactivation_condition)?)

 The delegation requests (described above) are
structured according to the XML syntax which is given in
[7].

5 Authorization Certificates and
Delegation Procedure

We consider both delegation and revocation (of
authorizations and roles) when conducted by both clients
and roles. For that purpose, the extension fields of the AC
are used, which will now include the following data:

• Denied authorizations: this list is expanded every
time the licensee acting in a role delegates
monotonically an authorization.

• Delegated objects: this is a list consisting of the
roles and authorizations that have been delegated
to the licensee. It consists of tuples of the form:

(delegator, delegator_role,
delegated_object_type, object_id, scope, levels)

• Revocable objects: a list containing the roles and
authorizations that the licensee has delegated but
(s)he has the right to revoke at some time. Of
course, this list contains only those subjects that

have been temporarily delegated. It consists of
tuples of the form:

revocator _role, revocable_object_type,
object_id, scope, levels

According to the authors knowledge there is no unified
AC standard defined yet, so we consider ACs to be
defined in a syntax which will facilitate their adoption to
Internet-accessed data resources. For this reason, the
XML standard is used in order to increase the ACs
interoperability and flexibility of use in different (and
often heterogeneous) protected resources frameworks.
 An example of the syntax of our considered ACs is
given in Figure 3 which highlights the definition of an AC
tailored for the considered delegation process.

<!ELEMENT authorization_certificate (licensee, issuer,
 valid_period, regular_roles, administrative_roles,
 extension_fields?)>
<!ELEMENT licensee (name)>
<!ATTLIST licensee id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT issuer (#PCDATA)>
<!ELEMENT valid_period (not_before,not_after)>
<!ELEMENT not_before (date, time?)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT time (#PCDATA)>
<!ELEMENT not_after (date, time?)>
<!ELEMENT regular_roles(role+)>
<!ELEMENT role (name, scope)>
<!ATTLIST role type (regular | administrative)>
<!ATTLIST role origin (local | global)>
<!ELEMENT scope (#PCDATA)>
<!ELEMENT administrative_roles(role?)>
<!ELEMENT extension_fields (denied_authorization?,
 delegated_object?, revocable_object?)>
<!ELEMENT denied_authorizations EMPTY>
<!ATTLIST denied_authorizations id ID #REQUIRED>
<!ELEMENT delegated_object (delegator, delegator_role,
 scope, levels)>
<!ATTLIST delegated_object type (authorization|role)>
<!ATTLIST delegated_object id ID>
<!ELEMENT delegator (#PCDATA)>
<!ELEMENT delegator_role (role)>
<!ELEMENT scope (#PCDATA)>
<!ELEMENT levels (#PCDATA))>
<!ELEMENT revocable_objects(revocator_role,
 revoked_object, scope, levels)>
<!ATTLIST revoked_object type (authorization | role)>
<!ATTLIST revoked_object id ID>
<!ELEMENT revoked_object empty>
<!ELEMENT revocator_role (role)>

Figure 3 : DTD for the Authorization Certificate

 Moreover, Figure 4 depicts an extended AC. Thus,
according to the denied authorizations list, Konstantina
Stoupa acting in a role has delegated monotonically
authorization with identity a1. Moreover, this delegation

was permanent since the delegated object is not included
in the revocable objects list. It is interesting to focus on
the revocable object which is the accounting manager
role. Since this role is also present in the regular roles list,
it is obvious that the subject has delegated this role non-
monotonically.

Figure 4: An example of an extended AC

6 The Delegation Algorithm
In this section the two types of delegation are analyzed
through the use of flowcharts depicting their functions.

6.1 User-to-user delegation
This type of delegation involves request where the
delegator is a user acting under a regular role and the
delegatee is also a user. In order to follow the flowchart of
this procedure shown in Figure 5, we should define the
following processes:

• Local check domain: it takes as input the
delegation request and asks the local domain
server whether the delegatee belongs to the local
subnetwork or not.

• Global check domain: it takes as input the
delegation request and asks the global domain
server whether the delegatee belongs to one of
the supported subnetworks.

• Update request: it takes as input the original
request and adds the domain of the user.

• Check validity: it takes as input the request and
checks whether the scope is valid and whether

the delegator owns the delegated object (either
role or authorization).

• Completion for users: it takes as input the
updated request and the ACs of the two parties
and takes the following actions:
o Adds a record in the delegated objects part

of the delegatee’s AC.
o If delegation is temporary, it adds a record

in the revocable objects part of the
delegator’s AC.

o If the delegation is monotonic and the
delegated object is (a) a regular role, it
deletes the object from the regular roles list
of the delegator AC, (b) an authorization, it
adds a record in the denied authorizations
list of the delegator’s AC.

Figure 5 : User-to-user delegation flowchart

After the delegation is completed successfully both
delegator’s and delegatee’s certificates are send back to
their owners and a copy of them is stored in the copies of
ACs base.

6.2 Role-to-role delegation
This type of delegation involves requests where the
delegator is (a user acting under) an administrative role
and the delegatee is a regular role. In order to follow the

Local check
domain

domain?

local

not known

Update
request

Updated
request

Check
validity

Completion
for users

Updated ACs

Global check
domain

domain?

end

valid?

Roles
definition

no
yes

ACs

Arrival of request

Licensee
Name: Konstantina Stoupa
Id: a11

Issuer: asgf5673f
Valid period
 Not before: July 23rd 2003
 Not after: July 31st 2003
Simple roles
1. name: financial_manager, scope: rh1
2. name: accounting_manager, scope: rh2
Administrative roles
-
Denied authorizations
1. id: a1
Delegated objects
1. delegator: Athena Vakali,
 delegator_role: (manager, regular, global),
 delegated_object_type: role,
object_id::manufacturing_manager,
 scope: rh1, levels: 1
2. delegator: George Pappas, delegator_role: (manager, regular,
 global), delegated_object_type: authorization, object_id: a23,
 scope: rh2, levels: 0
Revocable objects
1. revocator_role: (accounting_manager, regular, local)
 revoked_object_type:role, object_id: accounting_manager,
 scope: rh2, levels: 0

flowchart of this procedure shown in Figure 6, we can use
some of the processes defined in Section 6.1 but we
should also define the following one:

• Completion for roles: it takes as input the request
and the delegator’s AC and updates the
delegatee’s definition. According to the origin of
the delegatee (local or global) the appropriate
database is accessed.

After the delegation is completed successfully the both
delegator’s certificate is send back to him and its updated
copy is stored in the copies of ACs base.

Figure 6 : Role-to-role delegation flowchart

7 Conclusions
Currently, there is a trend in integrating

authentication and authorization in one certificate and it is
expected that the use of authorization certificates will be
adopted by most access control mechanisms. Since there is
not yet a uniform standard format of such certificates,
there is a need of appropriate mechanisms able to
transform the incoming certificates into the ones
recognizable by the underlying system. XML is a quite
flexible and effective language in expressing such data
and here it is used for defining and authorization
certificates. This paper’s aim is to present the delegation
procedure tailored for an Internet-accessed role-based
authorization certificates-issuing access control
environment supporting distributed resources.
 Our work elaborated more on the delegation
process which are part of the overall access control
mechanism. The syntax used to define delegation requests
is given in order to define the appropriate structure to
support delegation. The function of both user-to-user and
role-to-role delegation is analyzed through flowcharts.
The future goal is to implement the proposed structures
and algorithms in a prototype authorization-certificates-
issuing environment in order to evaluate its usage mainly
over the Internet-accessed resources.

References
[1] E. Barka, and R. Sandhu, “Framework for Role-
Based Delegation Models”, Proc. 16th Annual Computer
Security Applications Conference, pp. 168-176,
December 2000.

[2] J. Dai and J. Alves-Foss, “Certificate Based
Authorization Simulation System”, Proc. 25th Annual
International Computer Software and Applications
Conference, pp. 190-195, October 2001.

[3] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor and Y.
Ravid, “Access Control Meets Public Key Infrastructure,
Or: Assigning Roles to Strangers”, Proc. Symposium on
Security and Privacy, pp. 2-14, May 2000.

[4] N. Li, B. N. Grosof and J. Feigenbaum, “Delegation
Logic: A Logic-based Approach to Distributed
Authorization”, ACM Trans. On Information and System
Security, Vol. 6, Issue 1, pp. 128-171, 2003.

[5] M. J. Moyer and M. Ahamad, “Generalized Role-
Based Access Control”, Proc. IEEE 21st Int. Conference
on Distributed Computing Systems, pp. 391-398, April
2001.

[6] S. Na, S. Cheon, “Role Delegation in Role-Based
Access Control”, 5th ACM Workshop on Role-Based
Access Control, pp. 39-44, July 2000.

[7] K. Stoupa, A. Vakali, “An XML-based Language for
Access Control Specifications in an RBAC Environment”,
IEEE 2003 Conference in Systems, Man & Cybernetics,
Washington, D. C., 2003.

[8] K. Stoupa, A. Vakali, F. Li, I. Tsoukalas, “XML-
based Revocation and Delegation in a Distributed
Environment”, Proc. of the International Workshop on
Database Tecchnologies for Handling XML Information
on the Web, Heraklion, Greece, 2004.

[9] X. Zhang, S. Oh, R. Sandhu, “PBDM: A Flexible
Delegation Model in RBAC”, Proc. of ACM SACMAT,
pp. 149-157, June 2003.

Check
validity

Completion
for roles

end

valid?

Roles
definitio

no
yes

Arrival of request

Updated
delegator’s AC

delegator’s
AC

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 5189
	02: 5190
	03: 5191
	04: 5192
	05: 5193
	06: 5194

