
A. Levi et al. (Eds.): ISCIS 2006, LNCS 4263, pp. 603 – 612, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Credential-Based Policies Management in an Access
Control Framework Protecting XML Resources

Konstantina Stoupa, Zisis Simeoforidis, and Athena Vakali

Department of Informatics, Aristotle University of Thessaloniki, Greece
kstoupa@acn.gr, zsimaiof@csd.auth.gr, avakali@csd.auth.gr

Abstract. XML has been widely adopted for Web data representation under
various applications (such as DBMSs, Digital Libraries etc). Therefore, access
to XML data sources has become a crucial issue. In this paper we introduce a
credential-based access control framework for protecting XML resources. Un-
der this framework, we propose the use of access policy files containing poli-
cies concerning a specific credentials type. Moreover, we propose the reorgani-
zation of the policies in these files based on their frequency of use (the more
frequently it is used the higher in the file it is placed). Our main goal is to im-
prove request servicing times. Several experiments have been conducted which
are carried out either on single request or on multiple requests base. The pro-
posed framework is proven quite beneficial for protecting XML-based frame-
works such as digital libraries or any other data resources whose format is ex-
pressed in XML.

1 Introduction

Web large-scale adoption has resulted in massive amount of data exchanged daily,
and in this context, large scale access control mechanisms have been considered es-
sential in order to prevent unauthorized access to critical resources. Thus, several
research efforts and various access control models have been proposed (a description
of the most well-known access control models is given in [6], [8]). In an effort to
reduce the increasing number of policies required for protecting resources from the
wide and heterogeneous clients accessing modern Internet-based environments, mod-
ern access control models such as Credentials-based access control model [9] have
been proposed. In such models, each subject is associated with some properties (form-
ing credentials) and thus we express policies of the form: “clients under 18 years old
can gain access to documents belonging into the topic non-adult staff”.

Among the various languages proposed for expressing credentials and generally
protected resources over the Web, XML has become the most popular standard for
both modeling resources and expressing security policies. XACML is a standardized
framework using an XML-based language for expressing policies. In this paper, we
adopt XML to define and organize credentials and access control policies over sets of
XML-structured documents (typically stored in large-scale repositories).

604 K. Stoupa, Z. Simeoforidis, and A. Vakali

1.1 Related Work

Several credentials-based access control frameworks have been designed to protect
XML documents. Adam et. al. in [1] propose a credentials-based access control mod-
ule appropriate for high volume libraries. This model authorizes subjects with specific
properties (e.g. age>18) to gain access to protected resources related to a specific
concept. Access control authorizations are stored altogether in a policy base (as it is
called) which is a unique file containing policies and the servicing of a request de-
mand the scanning of the whole policy base leading to high response times.
 Author-X [2] is a CBAC framework able to control access to XML documents.
Again subjects are characterized by credentials and authorizations are assigned to
credentials and not to subject identities. Author-X specializes its protection mecha-
nisms on XML documents. It is an innovative system that introduces methods for
reducing the number of policies that have to be specified for a specific file such as the
positive and negative policies. Author-X defines as a policy base an XML file that
contains the access policies for a single file. Each file under system’s protection must
have a corresponding policy-base file.

Additionally the MaX mechanism proposed in [3] is a credentials-based system for
enforcing access control, specifically tailored to both Digital Libraries (DLs) and Web
environments. Key features of MaX are the support for credential and content-based
access control to DL and Web documents, and its full integration with standard Inter-
net rating systems. The access policies regard User Groups and the total of the poli-
cies is stored inside a policy base which is typically a file. MaX was also the first
framework that made use of the credential type hierarchy. This hierarchy is based
upon the idea that to make the task of credential specification easier, credentials with
similar structures are grouped into credential-types, organised into a credential-type
hierarchy.

1.2 Paper’s Contribution

Although several research efforts focus on introducing access control modules (adopt-
ing various models) protecting XML resources, few proposals have been made in
order to optimize the access request evaluation process. Murata et. al. [5] have intro-
duced the use of static analysis in improving access queries and thus decreasing time
delays in request servicing. Ferrari et. al. [4] propose the use of Access Control XML
(AC-XML) documents containing for each object (either XML document or DTD) the
associated policies.

In this paper we propose an innovative CBAC access control utility protecting
XML documents and supporting credential type hierarchy where great concern is
given in adopting such policy organization in order to improve the request servicing
time. A wide range of Web-based non-CBAC security systems also exists which use
either embedded Operating System’s techniques, such as the NTFS or databases to
control the denial or granting of access to resources. These systems offer very small
response times but lack ease of administration as they use single file or directory

 Credential-Based Policies Management in an Access Control Framework 605

access control. We try to provide a framework with response times competitive to
those of non-CBAC systems, without abolishing the benefits of CBAC models at the
fields of administration and policy definition. The effectiveness of our proposal is
proved by experimental results. The proposed system can be used for the protection of
XML-based digital libraries accesses through Internet and generally in order to pro-
tect XML-defined resources. For example, web services, image files whose structure
is given in XML, etc.

The proposed CBAC framework uses XML to represent resources, credential types
(the properties that a subject belonging in this type should have, e.g. student, secre-
tary, etc.), credentials (instances of credential types, e.g. a specific student with spe-
cific values in the student properties) and policies but our main focus is to use such
policy organization in order to improve response time. The proposed improvements
concern the organization of the policy warehouse:

• Grouping of policies according to credential types they refer to: our policy
warehouse consists of so many XML access policy files (AP files) as the num-
ber of credentials types are. Each file contains only the policies that refer to the
specific type. Therefore, when a request is received, only the associated AP
file is scanned. The frameworks discussed in [1] and [3] do not use such an or-
ganization and all of the policies are stored into the same file. Thus, the policy
file can be extended endlessly and in order to service a request all of this huge
policy file should be scanned. On the other hand, Author-X builds one policy
file for each protected object. As the protection of files is directed on policies
regarding a single file and not a group of physical entities, the majority of the
CBAC model benefits is lost. As a result of this architecture, changing the
policies by the administrator becomes a very difficult task.

• Grouping policies according to the topic of the object they refer to: moreover
to the previous grouping, the policies inside an XML access policy file are
grouped according to the topic of objects they refer to. Therefore, by receiving
a request, the access control module should search only a specific part of the
associated policy file and not all of it.

• Adoption of credential type hierarchy: Each AP file also contains the policies
related to the super credential types. By this the credentials hierarchy parsing
does not take place during access request servicing phase (as it is in [3]) but
during idle times when the access policy files are built.

• Reorganization of policies in the AP file according to the frequency of their
use: since some policies are triggered more often than others, in intervals we
reorganize policies in each category of AP files according to the frequency of
their use. Thus, the policies that are more likely to be triggered again will be at
the beginning of the part of the AP file that should be scanned.

The rest of the paper is organized as follows: Section 2 introduces the basic con-
cepts and definitions involved in credential-based access control. Section 3 describes
the proposed framework and the functionality of each involved module is discussed.
Section 4 has the results of several experiments which have been carried out to prove
the effectiveness of our proposal for optimizing request evaluation time. Finally, Sec-
tion 5 has the conclusions and future work ideas.

606 K. Stoupa, Z. Simeoforidis, and A. Vakali

2 Credential Based Access Control: Basic Issues

In a typical Credentials Based Access Control System, the system controls which
users have access to resources based on their credentials. Access rights are grouped
by credential types names, and access to resources is restricted to users who have
been authorized to assume the associated role. Here, we formally define the basic
components on which our access control module relies. These components are: the
protected resources (objects), the subjects which are characterized by their credentials
and the access modes supported by the implemented system. Protected resources are
valid XML documents following a specific Document Type Definition (DTD).

Objects are the protected resources and they are XML documents and XML
Document Type Definitions (DTDs). Therefore, an object can be represented as a 2-
tuple (oid, t) where oid is the identity of the object and t is the topic where the object
belongs. Each object is associated with one topic. Moreover, a finer-grained access
control can be achieved if we also denote as objects specific parts of an XML docu-
ment. In the implemented framework we have not considered such a case but it is in
our future plans.

Since the proposed framework is a CBAC one, each subject is associated with a list
of properties building his credentials assigned during subscription. Each user is asso-
ciated with a credentials type which consists of definition of several properties. Cre-
dentials are instances of credential types, i.e. having specific values on the properties.
Credentials of a user are stored into XML files whose DTD depicts the credential type
they belong to.

In order to service a request, the system should scan an access policy file consist-
ing of several policies. Each policy is a 3-tuple of the form (subject, object, ac-
cess_mode) where subject can be a credentials identifier, a credentials type or a cre-
dentials expression, object can be a whole XML document, or a DTD or part of a
document and access_mode є {read, write} is the access privilege.

Policies are triggered by requests sent by the client. Requests can be of the form:
(subject, access_mode, object) where subject is a credentials identifier, access_mode
can be read or write and object is an object identifier.

X-Univ - A Case study Scenario : in the following of the paper we will refer to a sce-
nario simulating a university. A university consists of university members which can
be students, secretaries or professors. Moreover, the protected resources can be XML
files or DTDs which may be grouped into several topics, e.g. courses staff, payroll
documents, professors CVs etc. We assume that each object is associated with an
identifier known as object id. This identifier remains unchanged through life of the
document. Often objects belonging into the same topic have common protection re-
quirements. Therefore, XML documents are categorized according to their topic. As
an example consider the case of having to protect various documents related to the
courses, e.g. timetables, exercises, manuals, etc. It is quite sure that subjects sharing
similar credentials will have similar authorizations to every object belonging in this
topic. Each object is associated with a specific topic but every subject may be inter-
ested in various topics. The following is an example of credential type:

 Credential-Based Policies Management in an Access Control Framework 607

(student, {(name, string), (type, (postgraduate |
 undergraduate)), (semester, (1…8))}).

Fig.1 depicts a credential types hierarchy related to our scenario.

Fig. 1. A credential types hierarchy for the university scenario

According to the scenario described some examples of credentials are:

(student, 1, (name: Ntina, dept: computer science,
 semester: 5, type: undergraduate))
(professor, 10, (name: Athena, dept: physics, course:
 Nuclear Physics, type: postgraduate))

In our model only positive policies are defined and in case no policy is expressed ser-
vicing a specific request, access is denied. Some examples of policies are the following:

Policy1=(student/dept[.=”Physics”],
 physics_courses.xml,read)
Policy2=(professor,courses,read)

The first policy defines that every student belonging into the physics department is
allowed to read physics_courses.xml, while the second one defines that all
professors are allowed to read documents belonging into the courses topic.

3 The Proposed Framework

We propose a credentials-based framework which controls access to XML files and
whole groups of files belonging into the same topic, in a quick and secure way, by
assigning credentials to system’s clients (i.e subjects).

The proposed framework (Fig. 2) consists of several XML-based LDAP directo-
ries storing required information about the subject, the objects and the policies. In the
credential types LDAP, the XML-based definitions of all credential types are stored
(e.g in the X-Univ example, student, secretary, etc.). The credentials of each client
following one of those types are stored into credentials LDAP. Since our aim is the
improvement of response time, access control policies are organized into XML files
according to the credentials type they refer to. Each AP file is further organized ac-
cording to the topic of the object a policy refers to. The reason we have adopted
LDAP directories as storage model is due to the fact that in LDAP, data are organized
as a tree like XML documents. Therefore, the transformation from the XML data
model to the LDAP data model is not a complex task.

University member

student staff

professor secretary

608 K. Stoupa, Z. Simeoforidis, and A. Vakali

Fig. 2. The architecture of the optimized access control utility

Fig. 3 depicts the AP file related to the credential type “student”. The policies in

this file are organized according to the topic of object they refer to (in this example
one topic is shown: courses) and each category contains both specific and general
policies. The object in the specific policies is an object identifier, i.e. a specific XML
file, while in the general policies the object is a topic identifier. In order to avoid the
parsing of the credential type hierarchy during the access control phase (something
that is done in [3]), this file also contains the specific and general policies related to
the super credential types (in our example the type “university members”).
Thus, upon the receipt of a request originating from a subject belonging into a specific
credential type, the associated AP file is opened and the part associated with the re-
quested object topic is scanned.

Each policy has an attribute “frequency” which is increased by one every time a
policy is triggered. During idle times, an administrative module scans each policy file
and reorganizes policies according to the frequency of their use. Thus, the most fre-
quently used policies will be forwarded at the beginning of the file in order to opti-
mize the response time.

 Credential-Based Policies Management in an Access Control Framework 609

<policy_file type=”student”>
<topic value=”courses”>
 <policy frequency=”23”>
 <subject>…</subject> <object>…</object>
 <access_mode>…</access_mode>
 </policy>
 </topic>
</policy_file>

Fig. 3. An example of an Access Policy (AP) File

Using the previously defined resources, the function of our framework is divided

into two sections: (a) the subscription phase and (b) the access request servicing
phase. During the subscription phase the client communicates into the system in order
to define its credentials. According to the credential type the client follows, the
framework ask him to give values to the properties associated with this type. The
subject credentials are then stored into a separate XML file stored into the XML-
based credentials warehouse.

The main functionality of the environment is presented during the access request
servicing. After the subject has logged into the system, it sends an HTTP access re-
quest to Access Control Server. Each HTTP request has to comply with the following
schema: http:// ServerIPAddress : ActivePort / RequestedDocumentName. From the
time a request is received until the time the subject will receive an answer (positive or
negative) the following modules are triggered:

• Credential mining: according the subject identity, the appropriate file containing
its credentials is opened.

• Topic search: this module finds the topic that the requested object belongs to.
• Access control: this module opens the access policy file associated with the cre-

dential type the subject owns and goes to that part of this file containing policies
related to the topic the requested object belongs to. Of course the policies are or-
ganized according to the frequency of their use and therefore it is very possible to
find the appropriate policy at the beginning of the scanned part. If a policy is trig-
gered, a positive answer will be returned to the subject otherwise access will not
be allowed. The object retrieval module will be triggered only if a positive answer
is returned by the access control module.

4 Experimentation

In order to check the effectiveness of the proposed framework we have implemented
it using Java. The parsing of XML files depicting credentials and policies has been
done using Xerxes and SAX. The experiments were conducted using both synthetic
and real access requests. Synthetic requests were stored into a single file from where
they were retrieved while real requests were received through http port. According to
the X-Univ scenario we have built three access policy files (AP files) (one for every
credential type, student, secretary, professor). Each access policy file contained 100
policies of the form discussed in section 2. The AP files followed the format shown in

610 K. Stoupa, Z. Simeoforidis, and A. Vakali

Fig. 3. Moreover, we have also built a separate unified policy file containing all of the
policies totally unorganized, as they were the policy bases in [3] and [1]. We have
conducted experiments using both synthetic workload consisting of 100 requests
stored into a file and real workload consisting of requests coming to the server
through http messages. In this section we will refer to our proposal as “AP Files Ap-
proach” and to the generally used method were only one policy file is used as “Uni-
fied Policy File Approach”.

0

200

400

600

800

1000

10 30 50 70 90
Position of triggered policy

R
es

p
o

n
se

 t
im

e
(m

se
c)

100% granted 80% granted

20% granted

0

1000

2000

3000

4000

5000

10 30 50 70 90
Position of triggered policy

R
es

p
o

n
se

 t
im

e
(m

se
c)

100% granted 80% granted

20% granted

Fig. 4. Response times against the position of the policy that is triggered. In both cases three
lines are depicted, when 100% of the requests were granted, 80% were granted and 20% were
granted. (a) For AP Files Approach, (b) For Unified Policy File Approach.

Synthetic workload
Since the response time depends on the position in the policy file of the policy that is
triggered, the experiments depicted in Fig. 4(a) and (b) show the response times of
both approaches when the triggered policy is found at the 10% first policies, at 50%,
70% and 90%. Moreover, we have depicted the response times when all of the re-
quests were granted, when 20% of them were granted or 80%. Comparing Fig. 4(a)
and (b) we realize that the AP Files Approach achieves much better response times.
(e.g. if all requests are granted and the triggered policies are found at the middle of
the total of policies that are to be scanned, the AP Files Approach response time is
701 msec while in the other approach we have 2163 ms.). In all cases our proposal is
three times faster.

Fig.5(a) depicts the response times for servicing one request for both approaches.
Again the x-axis contains the position of the triggered policy. In case of the AP File
approach the response time remains unchanged independently of the policy position
and it is at least two times lower than that of the Unified Policy File Approach.

Real workload
We have also tested the behaviour of the two approaches in case or receiving real
requests. Fig. 5(b) depicts the behavior of the AP file approach in case it receives one
request through http message and the triggered policy is at beginning of the policies
that should be scanned, 20% after the beginning, 40%, 60%, 80% and at the end. It is
obvious that when using synthetic workload we achieve lower response times.

(a)
(b)

 Credential-Based Policies Management in an Access Control Framework 611

20 20 20 20 20
30

40 41
50

60

0
10
20
30
40
50
60
70

10 30 50 70 90

Position of triggered policy

R
es

p
o

n
se

 t
im

e
(m

se
c)

AP File Unified Policy File 0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120

Position of triggered policy

R
es

p
o

n
se

 t
im

e
(m

se
c)

Fig. 5. Response time for servicing one request in both approaches against the position in the
file of the triggered policy (a) when request originates from synthetic workload, (b)when the
request is received through http.

0

100

200

300

400

500

600

R
es

p
o

n
se

 t
im

e
(m

se
c)

200 260 310 360 480 650 800 930 970

Time between requests

AP File Unified Policy File

0

50

100

150

200

250

300

350

400

450

200 260 310 360 480 650 800 930 970

Time between requests (msec)

R
es

p
on

se
 t

im
e

50% granted 80% granted

Fig. 6. (a) Response time for both approaches according to the time interval between two
requests (real workload), (b) Response time for the AP File approach against the time interval
between two incoming requests. Each line refers to a different percentage of granted requests.

Commenting Fig. 6(a) we shall notice that in the AP File approach shows much
better response time than the Unified Policy File approach. It is quite obvious that in
the AP file approach there is an almost linear increase of the response time as the time
interval increases. Nevertheless, that is of minor importance because the increase is of
a few milliseconds, which is an amount of time that could be barely noticed by a hu-
man user. So we conclude, that this slight time increase is very satisfactory, compared
to the large intervals.

Studying the behaviour of the AP File Approach when requests are received
through http, Fig. 6(b) depicts the framework’s average response time compared with
the time interval between two requests, in three different situations. The purple col-
umn represents the framework’s behavior when 50% of the received requests are
serviced by a policy at the end of the scanned area and the white one when 80% are
serviced by a policy in this part of the area. Satisfactory times are achieved even
in the third situation, where the 80% of the requests trigger policies at the end of a
policy file.

(a) (b)

(a) (b)

612 K. Stoupa, Z. Simeoforidis, and A. Vakali

5 Conclusions

In this paper we have introduced a credentials-based access control framework focus-
ing on an optimized organization of access policy base in order to improve request
servicing time. By presenting the results of several experiments we have proven that
by changing the organization of the access policy base and by reorganizing access
policy files according to the frequency that policies are triggered, we can achieve
improved response times, either on a single request or multiple requests base.

Our future plans include the extension of our model in order to protect even parts
of specific XML documents and generally protect any type of resource whose format
can be expressed in an XML file. Moreover, we will experiment on several schedul-
ing algorithms to find which is the most appropriate for reorganizing access policy
files according to the frequencies of the triggered policies. Finally, we plan to modify
this framework to support Internet-accessed environments where users are unknown
and their credentials are sent along with their request signed by a trusted authority.

References

1. R. Adam, N. R., Atluri, V., Bertino, E., Ferrari, E.: A Content-based Authorization Model
for Digital Libraries. IEEE Transactions on Knowledge and Data Engineering, 14(2) (2002),
296-315

2. Bertino, E., Castano, S., Ferrari, E.: Securing XML Documents with Author-X. IEEE Inter-
net Computing, May-June (2001), 21-31

3. Bertino, E., Ferrari, E., Perego, A.: “MaX: An Access Control System for Digital Libraries
and the Web”, Proceedings of IEEE Int. Computer Software and Applications Conference,
Oxford, England, (2002)

4. Carminati, B., Ferrari, E.: AC-XML Documents: Improving the Performance of a Web Ac-
cess Control Module. Proceedings of the 10th ACM Symposium of Access Control Models
and Technologies, Stockholm, Sweden, (2005)

5. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML Access Control Using Static Analysis.
Proceedings of the 10th ACM Conference on Computer and Communications Security,
Washington D.C., U.S.A., (2003)

6. Pallis, G., Stoupa, K., Vakali, A.: Storage and Access Control Issues for XML Documents.
In: Taniar, D., Rahayu, J. W. (eds.): Web Information Systems. Idea Group Publishing,
(2004), 104-140

7. Sandhu, R. S., Coyne, E. J., Feinstein H. L.: Role-Based Access Control Models. IEEE
Computer (1996) 38-47.

8. Stoupa, K., Vakali, A.: Policies for Web Security Services. In Ferrari, E., Thuraisingham, B.
(eds.): Web and Information Security, Idea Group Publishing (2006), 52-72

9. Winslett, M., Ching, N., Jones, V., Slepchin, I.: Using Digital Credentials on the World-
Wide Web. Journal on Computer Security, 5 (1997), 255-267

	Introduction
	Related Work
	Paper’s Contribution

	Credential Based Access Control: Basic Issues
	The Proposed Framework
	Experimentation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

