
GRANULAR GRAPH CLUSTERING IN THE WEB

VASSILIS G. KABURLASOS, LEFTERIS MOUSSIADES,
Dept. of Industrial Informatics, Technological Educational Institution of Kavala

GR-65404 Kavala, Greece

AND ATHENA VAKALI
Dept. of Informatics, Aristotle University of Thessaloniki

GR-54124 Thessaloniki, Greece

We investigate the partition of a weighted graph, representing traffic, to a number of
subgraphs such that both inter(external)-subgraph traffic is minimized and intra(internal)-
subgraph traffic is maximized. The long-term objective is Web-navigation support. We
pursue a solution by applying a simple agglomerative clustering algorithm, or ACA for
short, to a metric space emerging from a weighted graph. An enabling technology is
inspired from mathematical lattice theory. The proposed techniques compare favorably
with other techniques in an application to a graph stemming from a University Web-site.

1. Introduction

In this work we investigate the partition of a weighted graph, representing
traffic in the Web, to subgraphs such that “much” of the traffic remains internal
within a subgraph. In other words, there is “little” external traffic between
subgraphs in the partition. The long-term objective is to use the produced
subgraph partition for Web-navigation support.

A number of data management tasks in the Web employ successfully
“clustering” techniques in order to facilitate Web user access [16],[18]. There
exists an abundance of graph clustering algorithms in various application
domains including pattern recognition [5],[9], structure comparison [10],[11],
multivariate data processing [1],[8]. Note that the literature is dominated by
divisive type clustering [2],[6],[19] where clusters are computed “top-down” by
successively splitting a master graph. A different type of clustering, namely
agglomerative clustering, proceeds “bottom-up” by incrementally augmenting
graphs. However, agglomerative clustering is not usually pursued in practice
mainly due to a shortage of enabling mathematical tools.

Inspired from mathematical lattice theory, this work considers a
straightforward agglomerative clustering algorithm (ACA) extension to a metric

space. The latter (space) emerges here from a weighted graph representing
traffic in a University Web-site. The proposed techniques compare favourably
with alternative clustering techniques from the literature.

The layout is as follows. Section 2 summarizes the mathematical
background. Section 3 presents ACA clustering algorithm. Section 4 formulates
a real-world problem regarding clustering of Web pages. Section 5 describes
data preprocessing as well as experimental results, comparatively. Section 6
summarizes the contribution of this work including also a discussion.

2. Mathematical Background

This section summarizes tools. Mathematical proofs will be detailed elsewhere.
Consider a metric space (S,d). Given xi,xf∈S, a shortest path from xi to xf is

a sequence xi,x1,…,xn,xf of “neighboring” set S elements from xi to xf such that
d(xi,x1)+…+d(xn,xf) = d(xi,xf).

Definition 1: A set X⊆S in a metric space (S,d) is called convex if and only
if xi,xf∈X implies that a shortest path from xi to xf is also included in X.

Proposition 2. Let C be the set of convex sets in metric space (S,d). Then
(C,≤) is a mathematical lattice, where ≤ denotes set inclusion.

Our interest here focuses on a metric space (S,d) of finite cardinality |S|.
Useful tools were transferred from lattice theory as shown next.

Let the unary operation “∨S” return the supremum of a set S of real
numbers; likewise, let the unary operation “∧S” return the infimum of set S.
Note that ∨S and ∧S are simplifications for

x S
S
∈
∨ and

x S
S
∈
∧ , respectively.

Obviously, for finite |S|, ∧S and ∨S equal, respectively, the min and max of set S.
Let dV: V×V→R be a metric. Furthermore, let P0

+
V be the power-set of the

(finite) set V. The following four propositions present four metrics in PV.

Proposition 3: Function da(V1,V2)=
i, j1 2

1 (,)
| || | V i jd v v
V V ∑ is a metric.

Proposition 4: Function dM(V1,V2)= is a metric. (,)V i ji j
d v v∨∨

Proposition 5: Function dH: PV×PV→ 0
+R given by dH(V1,V2)=

 is a metric. max{ (,), (,)}V i j V j ii j j i
d v v d v v∨∧ ∨∧

Proposition 6: Function dK: PV×PV→ 0
+R given by dK(V1,V2)=

 is a metric. 0.5*[(,) (,)]V i j V j ii j j i
d v v d v v∨∧ + ∨∧

The reason for the multiplicative coefficient “0.5” in proposition 6 is in
order to produce the “intuitive” equality dK({a},{b}) = dV(a,b).

The metrics above are different than other ones between graphs [10],[11] in
that the latter quantify structural dissimilarity between graphs, whereas the
metrics here quantify the distance between graphs. Metrics dH(.,.) and dK(.,.)
above are extensions of the “Hausdorf” and the “Kaburlasos” metric,
respectively, between intervals of real numbers [12],[13],[14]. A metric can be
used for implying a similarity measure function.

Definition 7: A similarity measure is a function µ: S×S→(0,1] that satisfies
(S1) µ(a,b) = 1 ⇔ a = b.
(S2) µ(a,b) = µ(b,a).

(S3) 1 1 1 1
(,) (,) (,) (,)a b x x a x x b

+ ≤ +
µ µ µ µ

.

A similarity space (S,µ) includes both a set S and a similarity measure µ:
S×S→(0,1]. A similarity measure can be implied from a metric as follows.

Proposition 8: A metric function d: S×S→ 0
+R implies a similarity measure

function µd: S×S→(0,1] given by µd(a,b) = 1/(1+d(a,b)).

3. A Simple Clustering Algorithm

The Agglomerative Clustering Algorithm, or ACA for short, shown next, is
inspired from a general agglomerative clustering algorithm [3].

Algorithm 1 Agglomerative Clustering Algorithm (ACA)
1: Consider a similarity space (S,µ).
2: Consider a well-defined terminating condition TC.
3: Consider n clusters G1,…,Gn, that is one cluster per metric space element.
4: while condition TC is not satisfied do

a. Most similar clusters GI and GJ: () ()I J i ji, j {1,.., },i j
µ , max µ ,

n∈ ≠
=G G G G ;

b. Merge GI and GJ into a single cluster GI∨GJ;
c. n←n-1.

5: end while
6: Return Clusters.

ACA is a hierarchical algorithm with complexity is O(n3), where “n” is the

cardinality of the training data set. Terminating condition “TC” may include a
user-defined number of clusters, a user-defined (threshold) similarity measure
value µ0, the disappearance of trivial clusters, etc.

A cluster is interpreted here as an (information) granule [15]. This work
considers two types of granules, namely connected- and convex- subgraphs.

4. A Real-World Problem

Consider a Web-site including V Web-pages with hyperlinks among them. Let a
number of users browse the pages. By “traffic” we mean the total number of
user traversals from a Web-page to another one in V.

Consider a set S0⊆V of Web-pages. By internal traffic (regarding S0) we
mean the total traffic among Web-pages in S0. By external traffic (regarding S0)
we mean the total traffic between Web-pages belonging to S0, on the one hand,
and Web-pages belonging to (V \ S0), on the other hand.

4.1. Motivation and Formulation

Based on evidence (i.e. measurements), our objective is to partition the set V in
subsets, namely clusters, characterized by both “high” internal traffic and “low”
external traffic. Note that between two different partitions with similar
internal/external- traffic, preferable is a “finer” one characterized by a larger
number of clusters. A “good”, in the aforementioned sense, partition can be
valuable for supplying Web-navigation support to users.

A Web-site was represented by a “weighted graph” such that a graph-vertex
corresponded to a Web-page, a graph-link corresponded to a hyperlink (from a
Web-page to another one); furthermore, the weight of a graph-link was a
function of the corresponding number of user traversals.

5. Experiments and Results

We collected data from the Web-site of the Informatics Department of Aristotle
University of Thessaloniki, Greece during a period of four months from March
to June 2005. A master-graph was synthesized from 3,354,452 user requests
recorded in the server’s “log file” as described next.

5.1. Data Preprocessing

The server’s “log file” is a text file, which records every user request [4]. The
format of the aforementioned file, typically employed by a HTTP server, is the
common logfile format (CLF). Data preprocessing was carried out in three steps
including (1) Data cleaning, (2) Organization of requests into user sessions, and
(3) Identification of site structure.

In conclusion, a weighted master-graph was produced including 785
vertices and 4,582 links in 17 disconnected subgraphs. We defined the weight
wi,j of a link from vertex “i” to vertex “j” as the inverse of the number of all user

traversals from “i” to “j”. In other words, the number of all user traversals from
vertex “i” to vertex “j” equals 1/wi,j.

Definition 9: The inner-transactions ratio (ITR) index of a master-graph
partition is the ratio of the sum of weights (of links having both their endpoints)
in the same cluster over the sum of all link weights in the master-graph.

We remark that ITR is a straightforward extension for weighted graphs of
the Coverage index [2]. Like the Coverage index, the ITR should be used for the
evaluation of a clustering together with additional indices including the
number/size of clusters.

5.2. Experiments

We carried out a large number of experiments, comparatively.
We used Floyd’s algorithm [7] to compute the distance between two

vertices in a graph. We applied ACA using the four metrics da, dM, dH, and dK.
For comparison, we applied another (non-metric) distance, that is dS(V1,V2)=

i j
. We also applied algorithm RandClust, which merged clusters at

random. The latter algorithm was meant to investigate empirically how much
“better than random” our proposed ACA algorithms may perform.

(,)V i jd v v∧∧

Figure 1 plots the corresponding ITR values as agglomeration proceeds, i.e.
the no. of clusters reduces. Apparently, the proposed ACA algorithms clearly
provide high ITR values (near 1) for fewer than 500 no. of clusters. In
particular, metrics dH and dK have demonstrated a marginal advantage.

Random clustering performed poorly. More specifically, high ITR values
were recorded for algorithm RandClust only for less than 100 no. of clusters
(Figure 1). For the reader’s interest Figure 2 shows how cluster population
statistics (including mean and standard deviation) change for an ACA algorithm
as the agglomeration proceeds. Figure 2 also shows that a no. of clusters
between 200 and 100 corresponds to both “desirably high ITR values” (near
one) and a “desirable cluster size” (around 40). The latter size is considered
appropriate for Web navigation user support in the context of this work.

Table 1 displays statistics for various clustering methods for both 200 and
100 no. of clusters. For comparison we applied an extension of the divisive
MajorClust algorithm [19] for graph clustering, namely WMajorClust [17].

Table 1 confirms the poor performance of random clustering (RandClust)
characterized by small ITR values near zero. Table 1 also demonstrates that
divisive algorithm WMajorClust produced an ITR value of 0.90, clearly inferior
to the corresponding ITR values near 0.99 supplied by the agglomerative
clustering (ACA) algorithms.

1.2 200

IT
R

 in
de

x

40
0

0.

0.

0.

0.

2

4

6

8

1.0

1.2

80
0

70
0

60
0

50
0

30
0

20
0

10
0

no. of clusters

0.

0.

0.

0.

0.

Figure 1. The ITR values of five ACA clusteri
methods based on dS, dH, dK, da, and d
respectively, asymptotically approach 1 for few
than 700 no. of clusters. To the contrary, the IT
values by method RandClust (shown by the cur
to the lower-right) increase fast to 1 only
fewer than 100 no. of clusters.

The previous experiments com

granules. We repeated the experimen
subgraph granules. In a series of e
number of computed subgraphs reduc
the ITR index consistently improved
digit. Hence, we conclude that convex

6. Discussion and Conclusion

We introduced four different metric
similarity measures, between sets of
measures were employed by an aggl
computing a subgraph partition in a w

We demonstrated an applicatio
weighted master-graph representing
achieved a good partition to subgr
subgraph traffic was minimized and
maximized. Our algorithms could be
solution to the “minimum cut” problem

20

0.0
0.2

0.4
0.6
0.8

1.0

80
0

70
0

60
0

50
0

40
0

30
0

20
0

10
0

no. of clusters
IT

R
 in

de
x

0

40

80

120

160

00

05

10

15

ng
M,
er
R

ve
for

 Figure 2. Cluster statistics including mean
(dark line: lower-right down) and standard
deviation (light line: lower-right up) are
shown for ACA by da. The corresponding
ITR curve is also shown to the upper-left.
Similar curves were also obtained by the
other ACA clustering methods used here.

puted, in general, non-convex subgraph
ts again, this time computing only convex
xperiments we confirmed that the total
ed consistently by 5% to 10%. Moreover,
(i.e. increased) in the second- or the third-
 clustering improved performance here.

s, i.e. da, dM, dH, dK, which implied four
points in a metric space. Those similarity
omerative clustering algorithm (ACA) for
eighted master-graph.
n to a metric space stemming from a
 traffic in a University Web-site. We
aphs such that both the inter(external)-
 the intra(internal)-subgraph traffic was
 used for fast computing an approximate

 [6] as it will be shown in a future work.

Table 1. Indices of performance for various clustering methods (M).

 no. of Cluster statistics

M clusters min max mean std ITP

da 200 1 366 3.92 26.15 0.99
 100 1 380 7.85 38.53 0.99
dH 200 1 313 3.92 22.66 0.98
 100 1 313 7.85 32.51 0.99
dM 200 1 274 3.92 20.42 0.99
 100 1 274 7.85 29.38 0.99
dK 200 1 345 3.92 24.71 0.99
 100 1 345 7.85 35.48 0.99
dS 200 1 451 3.92 32.00 0.99
 100 1 451 7.85 45.70 0.99
RandClust 200 1 42 3.92 5.58 0.00
 100 1 96 7.85 12.66 0.01
WMajorClust (statistics in 100 runs) 55.94 2 215. 14.0 30.54 0.90

References

1. F.B. Baker and L.J. Hubert, J. Amer. Statist. Assoc. 71, 870 (1976).
2. U. Brandes, M. Gaertler, D. Wagner, LNCS 2832, 568. Springer (2003).
3. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, 2nd ed. New

York, NY: Wiley & Sons (2001).
4. F.M. Facca and P.L. Lanzi, Data & Knowl. Eng. 53, 225 (2005).
5. M. Fernandez and G. Valiente, Pat. Recog. Let. 22, 753 (2001).
6. G.W. Flake, R.E. Tarjan, K. Tsioutsiouliklis, Internet Math. 1, 385 (2004).
7. R.W. Floyd, Communications 5, 345 (1962).
8. J.C. Gower and G.J. Ross, Appl. Stat. 18, 54 (1969).
9. S. Gunter and H. Bunke, Pat. Recog. Let. 23, 405 (2002).
10. S. Gunter and H. Bunke, Pat. Recog. Let. 24, 1107 (2003).
11. D. Justice, A. Hero, IEEE Trans. Pat. Anal. Mach. Intel. 28, 1200 (2006).
12. V.G. Kaburlasos, Studies in Computational Intelligence 27. Heidelberg,

Springer (2006).
13. V.G. Kaburlasos and A. Kehagias, IEEE Trans. Fuzzy Syst. 15, 243 (2007).
14. V.G. Kaburlasos and S.E. Papadakis, Neural Netw. 19, 623 (2006).
15. T.Y. Lin, Intl. J. Approx. Reas. 40, 1 (2005).
16. M. Perkowitz and O. Etzioni, Artif. Intel. 118, 245 (2000).
17. L. Moussiades and A. Vakali, The Computer Journal 48, 651 (2005).
18. K.A. Smith and A. Ng, Dec. Sup. Syst. 35, 245 (2003).
19. B. Stein and O. Niggemann, LNCS 1665, 122. Heidelberg, Springer (1999).

