
Summarization meets Visualization on Online Social Networks

Hans-Henning Gabriel∗, Myra Spiliopoulou∗, Emmanouela Stachtiari †, Athina Vakali†
∗Faculty of Computer Science Otto-von-Guericke-University Magdeburg, Germany

Email: {hgabriel, myra}@iti.cs.uni-magdeburg.de
†Faculty of Computer Science Aristotle University Thessaloniki, Greece

Email: {emmastac, avakali}@csd.auth.gr

Abstract—Getting an overview of a large online social net-
work and deciding which communities to join is a challenging
task for a new user. We propose a method that maps a large
network into a smaller graph with two kinds of nodes: a node
of the first kind is representative of a community; a node of
the second kind is neighbor to a representative and reflects
the semantics of that community. Our approach encompasses
a learning and ranking algorithm that derives this smaller
graph from the original one, and a visualization algorithm
that returns a graph layout to the observer. We report on our
results on inspecting the network of a folksonomy.

Keywords-social network visualization, social network sum-
marization, community representatives, social networks, com-
munities, clustering, visualization

I. INTRODUCTION

A newcomer in a social network needs an overview of
the network that answers questions like: what communities
are there, what are their representative actors and activities?
Building such an overview is challenging: (a) communities
overlap – prominent objects may belong to more than one;
(b) communities are too rich to be represented by a single
object, but (c) displaying all objects overpopulates the graph
layout, so a summarization is necessary that (d) takes the
information contributed by each graph object into account.

We propose an solution for these issues: we map a social
network into a smaller yet informative graph, taking into
account that some objects (like texts) yield more information
than others (like tags). We then visualize this graph. Our
graph summarization method appears in section III, after
discussing related work in section II. Section IV contains our
visualization method. We have evaluated our approach on a
social tagging system, and report on the results in section
V. We conclude in section VI with a summary and outlook.

II. RELATED WORK

The problem of mapping a graph into a smaller one is
studied with graph compression methods [1]. Such algo-
rithms replace multiple nodes of the original graph with
a smaller number of virtual nodes. Our intention is rather
to build a smaller graph of original, representative nodes.
The discovery of such nodes is pursued by graph cluster-
ing algorithms [2], [3] that learn core nodes (which have
many neighbors) and then use them as seeds of clusters.
However, a core object is not adequate for describing a

whole community (issue b in Section I). ContexTour [4]
extracts and displays representative objects and a selection
of their neighbors (issues b, c), but this selection is intended
to visualize community evolution, rather than inform about
the community semantics (issue d). This holds also for
CrossSense [5], which depicts representative objects and
objects frequently linked to them. CrossSense takes account
of issue (a) on overlapping communities when selecting
objects, but does not consider the information content of
the objects. Our graph summarizer builds upon CrossSense.

III. IDENTIFYING REPRESENTATIVES AND THEIR PEERS

Our graph summarization method builds upon CrossSense
[5], which models the social graph as a tensor. Each com-
bination of tensor modes (users+tags, resources+users etc)
constitutes a perspective. As in [9], CrossSense applies a
generalization of PCA for higher order tensors and then
uses the projection matrices and the core tensor to derive
a clustering: each column of a projection matrix stands
for a cluster, whose members are the objects with high
absolute energy values in this column. CrossSense builds
one clustering per perspective: a pivot object is then a top-
(absolute-)energy object appearing in clusters of more than
one perspective; its world consists of (high energy) objects
that co-occur with it in more than one cluster [5]. We use
the pivots and their worlds to summarize the network into
an even smaller set of objects1 which, taken together, are
maximally informative of the network’s clusters.

A. Modeling network nodes as information bearers

The social network has different types of nodes (users,
tags, documents etc) - these are the modes of the tensor. Let
x be an object of some mode having schema S, as ordered
list of attributes. For a ∈ S, x.a denotes the value of x for
a. The data content of x is the concatenation of bytes of the
attribute values of x, while the schema content of x is the
concatenation of bytes of the attribute names in S:

data(x) = concata∈S(bytes(x.a)) (1)
schema(x) = concata∈S(bytes(a)) (2)

1We use the terms node of the network, object in a community, and
element of a set corresponding to a community interchangeably

where the order of attributes in the schema determines the
sequencing of attributes and values.

We model the joint information content delivered by an
ordered list of nodes X as the result of compression:

i(X) = zip(zipx∈X(schema(x)), zipx∈X(data(x))) (3)

We use Eq. 3 to find the most informative peers of a pivot
x, choosing nodes from its world returned by CrossSense.
We sort worldx on absolute energy value, then build peersx
iteratively: we first choose the top-element of worldx; at
each further iteration, we add the node that maximizes
the joint information content with respect to the elements
already in peersx. The node chosen at iteration i is:

z ≡ yi = arg max
y∈worldx−peersx

(i(< peersx, y >)

We call this iterative process SelectPeers. To terminate it,
we can set an upper limit to the number of peers per pivot,
τpeers, or a threshold to the size difference of the compressed
outputs of two consecutive iterations. We use the former: it
is easier for an observer to specify how many objects s/he
is willing to inspect, than a compression threshold.

B. Selecting representatives with their peers

SelectPeers chooses neighbors of a pivot in such a way
that the joint information content (cf. Eq. 3) contributed by
the pivot and its peers is maximized. However, two pivots
may have common neighbors, and add no further informa-
tion. Hence, we choose from the pivots a set of representa-
tives for the network’s communities, while maximizing joint
information content. Algorithm 1 (Representatives&Peers)
takes as input all pivots and their worlds from CrossSense,
and the numbers of peers τpeers and representatives τr
that the observer is willing to inspect. If the number of
communities is known, τr should be no less than that.

Representatives&Peers first invokes SelectPeers to choose
the peers of each pivot (lines 2-4). Then, the pivot with
highest energy is added (together with its peers) to the output
(line 5). A further pivot x is selected as representative, iff
the joint information content contributed by the pivot and
its peers (i.e. by the set allx, line 4) is maximal (lines 7-
9). The algorithm terminates after choosing τr pivots. The
output consists of pairs – each representative with its peers –
that summarize the original graph. Each such pair constitutes
a star for a community with the representative as center.

IV. VISUALIZATION

The input to our visualizer consists of the representatives,
their interestingness scores for the original graph, and their
peers. Interestingness is computed during the pivot identifi-
cation process [5]: CrossSense partitions the network across
each perspective into a clustering, counts the clusterings to
which each pivot candidate x belongs (nx), computes the
largest number of clusters containing x within a clustering

Algorithm 1: Representatives&Peers
Input : social network G, number of pivots np, size of a world sw,

number of representatives τr , number of peers τpeers

Output: set of representatives R, each x ∈ R associated with peersx
1 CrossSense(np, sw, P) // Returns pivots P with their worlds
2 foreach x ∈ P do
3 peersx = SelectPeers(x,worldx, τpeers)
4 allx ← {x} ∪ peersx)

5 x← top object in P ; R← {x}; Output ← {x, peersx}
6 Q← allx
7 while |R| < τr do
8 y ← argmaxx∈P\R (i(< Q, allx >))
9 add y to R; add ally to Q; add (y, peersy) to Output

10 return Output

(Nx), and sets the interestingness score to nx

Nx
. x is inter-

esting if nx is large and Nx is small, i.e. x is prominent in
many or all perspectives but appears in few clusters, i.e. has
an unambiguous role inside each perspective.

A. Graph generation

If our visualizer considered only (representative,peer)-
pairs as edges, it would place all peers in a circle around
the representative. To draw a more compact layout, we
propagate the interestingness score of each representative
to its peers, also considering that a peer may be associated
with many representatives. Hence, let R = {xk|k = 1 . . . τr}
be the set of representatives, with peersk ≡ peersxk

. We
associate each peer vi ∈ ∪τr

k=1peersk with the inverse of
the interestingness score of the representatives that have vi
among their peers: we compute for vi a vector of weights
mi, where mi

k = 1
ink

if vi ∈ peersk, and mi
k = 0 otherwise.

Then, we compute the cosine similarity of the vectors and
draw additional edges among similar vectors 2.

After computing the weight vectors for all peers, we gen-
erate the graph G < V,E >. We first add the representatives
and their peers to V and the edges between a representative
and each of its peers. Next, we generate artificial edges
between vertices (peers) that have similar vectors: we sort
pairs of vertices on descending similarity, and iteratively
add into E the pair (an edge is a pair of vertices) with
the highest similarity. This iterative process stops when E
contains p

100 ×
|V |×(|V |−1)

2 edges for a threshold p, i.e. p%
of the edges G would have if it were dense.

B. Computing the graph layout

To compute the layout L, we use a modified version of
the Fruchterman-Reingold algorithm (FR) [6]. FR computes
attractive forces to draw proximal nodes closely, and re-
pulsive forces to prevent them from being drawn at the
same location, iteratively recomputing the nodes’ positions.
Our modified FR also considers the similarity of the nodes’
vectors when computing the forces.

2The computation of additional edges among similar vectors is also used
in [4], but ContexTour vectors have different semantics.

The original FR uses simulated annealing, but is known
to get easily trapped into local minima. To mitigate this, we
start with a layout generated by the Kamada-Kawai (KK)
algorithm [7] and containing nodes with low forces. From
this initial layout, we expect that the modified FR will move
towards local minima that are close to the global one [6].

For layout computation we use the implementation of
KK algorithm, and a modified implementation of the grid
variant of the FR algorithm in the JUNG 2.0 lib rary. First,
we compute an initial layout L0 using the KK algorithm
and then apply FR on L0. At each subsequent iteration,
we measure the repulsion on an edge < vi, vj > as
Fr ← f2 × distance(vi,vj)

sim(vi,vj)
, and the attraction as Fa ←

distance(vi,vj)×sim(vi,vj)
f2 , where f is the force constant. The

settings of the parameters f , T (number of iterations for
KK), t0 (initial temperature for FR), and maxIt (maximum
number of iterations for FR) are as suggested in [7], [6].

The complexity for an iteration of the grid variant of FR
is O(|V |+|E|), for KK it is O((1+T)|V |) and for similarity
computation O(τr

|V |(|V |−1)
2).

V. EVALUATION

We evaluated our method on the quality of the graph G
it builds: ideally, G should consist of disconnected stars.
Our quality function returns the averaged portion of non-
overlapping peers among the stars (larger values are better):

q(G) =

∑
x

∑
y 6=x

|peersx∪peersy\peersx∩peersy|
|peersx∪peersy|

τr×(τr−1)
2

(4)

We evaluated on data from Bibsonomy3, where users
upload bibtex entries and tag them. A posting has the form
(userId, tagId, resourceId), i.e. uploads are not observable,
but tag assignments are. We used the dataset of [8], as
prepared in [5]: from the 335,789 postings of 2007, the
authors removed documents or tags with less than 4 postings,
and postings with tags that occur more than 100 times.

A. Summarizing a Graph around Representative Users

We derive a graph of documents and tags around repre-
sentative users. We invoke CrossSense, varying the number
of pivots np for fixed max world size sw = 30. We then
invoke Representatives&Peers, varying τr and τpeers. The
baseline is CrossSense, instructed to return τr pivot users
and extract the top-energy τpeers objects from their worlds.

Table I depicts quality and execution time for CrossSense
and for our algorithm. The improvement in quality is sub-
stantial (column 4 vs 6), and increases with the number of
pivots (column 3). The overhead is one order of magnitude
lower than CrossSense execution time and thus negligible 4.

3htt://www.bibsonomy.org
4Execution times are not comparable, because CrossSense is imple-

mented in MATLABR and our algorithm in Java. If the code were
optimized, the overhead would have been even lower.

τr τpeers np CrossSense Representatives &Peers
q() Time q() Time

10 10 15 vs 20 0.77 11.3 0.85 vs 0.95 0.96 vs 0.58
10 15 15 vs 20 0.71 9.9 0.84 vs 0.93 1.33 vs 0.9
15 10 20 0.71 7.2 0.95 0.62
15 15 20 0.74 10.7 0.94 0.87

Table I: Performance results for each method as the number of
representatives and the set of their peers grow for different np
values and for sw = 30; larger quality values are better

B. Summarizing a Graph of Already Identified Communities

In this experiment, we apply our method on OTA (Of-
fline Tensor Analysis) [9], which returns communities. We
instruct OTA to return τr communities and the sw = 30+1
objects of highest absolute energy per community. The top-
energy object becomes the representative of the community.
Our method then selects peers from the remaining sw ones;
we denote this variant as ”PeersONLY”.

We compare PeersONLY to OTA and to ”TensClust”,
a reference method that selects per community the τpeers
top-energy objects among the sw objects returned by OTA.
TensClust is expected to achieve best separation among
the communities. In Table II, we see that PeersONLY is
superior to OTA and even comparable or slighlty better than
TensClust (cf. rightmost two columns).

τr τpeers OTA on TensClust PeersONLY
sw = 30 peers

10 10 vs 15 0.753 0.95 vs 0.94 0.95 vs 0.95
15 10 vs 15 0.751 0.93 vs 0.91 0.96 vs 0.95
15 15 0.91 0.95

Table II: Quality of PeersONLY and TensClust for varying τr and
τpeers; the quality of OTA is measured on the input it delivers to
PeersONLY and TensClust; larger quality values are better

C. Testing the Visualization Algorithm

We study the layout produced by our visualizer and
check for overlapping nodes. We visualize the output of
CrossSense directly, because the summarized graph of
CrossSense is more challenging: it has more overlaps. We
set np = 6 pivots and max world size sw = 30. We compare
with the layouts of Kamada-Kawai for T = 3000 (Figure
1a) and Fruchtermann-Reingold for t0 = 100 (Figure 1b).
Our algorithm (Figure 1c) converged after 233 iterations
and produced a more comprehensible layout: on Figure
1(a), we see many dissimilar nodes close to each other; on
Figure 1(b), there is less overlap but there are still similar
objects put apart (like 4707, 4704), and dissimilar objects
put together (like 4711,150). On Figure 1(c), our algorithm
draws similar objects closer and lets groups become visible,
including the pairs misplaced by FR.

Finally, we verified that our method does draw similar
objects together: we coupled it to a classifier and predicted

Figure 1: Visualization using (a) Kamada-Kawai, (b) Fruchterman-Reingold and (c) our new method that builds upon them

the worlds. We used the coordinates in the generated layout
as features of the nodes, and the worlds as class labels. We
used a k-NN classifier with k=1 to classify all nodes. The
average accuracy for sw = 6, 10, 15 was 92.8%, 92.6%
and 90.6%, respectively, i.e. more than 90% of the nodes
belonged to the same worlds as the nodes drawn near them.

VI. CONCLUSIONS

Getting an overview of a large social network involves
reducing the original graph to a smaller one that still reflects
the original social constellations, depicts representatives and
highlights the semantics of existing communities. Our so-
lution encompasses graph summarization and visualization.
Our graph summarization method returns groups of objects
that jointly contain maximal information. These groups con-
stitute stars around representative objects. Our visualization
method strives to build a comprehensible layout for them.

We have run experiments on the folksonomy Bibsonomy.
We have shown that our graph summarization performs
well, both when applied upon many fine-grained groups and
when applied upon conventional communities. We have also
shown that the visualization method returns more compre-
hensible graphs than the baselines. Next, we want to extend
our approach to capture evolving networks.

ACKNOWLEDGMENT

We are indebted to Andre Gohr for giving us the Bibson-
omy data collected for [8].

The work of Emmanuela Stachtiari took place during
her stay at the Otto-von-Guericke-University Magdeburg, on
Erasmus student mobility grant.

REFERENCES

[1] G. Buehrer and K. Chellapilla, “A scalable pattern mining
approach to web graph compression with communities,” in
Proc. of Int. Conf. on Web Search and Web Data Mining
(WSDM’08). Palo Alto, CA: ACM, 2008, pp. 95–106.

[2] X. Xu, N. Yuruk, Z. Feng, and T. A. Schweiger, “SCAN: A
structural clustering algorithm for networks,” in Proc. of 13th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD’07), New York, NY, Aug. 2007, pp. 824–833.

[3] L. V. Thang, C. A. Kulikowski, and I. B. Muchnik, “Coring
method for clustering a graph,” in Proc. of 19th IAPR Int. Conf.
on Pattern Recognition (ICPR’08), Tampa, FL, 2008.

[4] Y.-R. Lin, J. Sun, N. Cao, and S. Liu, “ContexTour: Contextual
contour visual analysis on dynamic multi-relational clustering,”
in Proc. of SIAM Data Mining Conf., Apr. 2010, pp. 418–429.

[5] H.-H. Gabriel, M. Spiliopoulou, and A. Nanopoulos,
“Crosssense: Sensemaking in a folksonomy with cross-modal
clustering over content and user activities,” in Int. Conf. on
Knowledge Discovery and Information Retrieval (KDIR’10),
Valencia, Spain, Oct. 2010.

[6] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by
force-directed placement,” Softw. Pract. Exper., vol. 21, no. 11,
pp. 1129–1164, Nov. 1991.

[7] T. Kamada and S. Kawai, “An algorithm for drawing general
undirected graphs,” Inf. Process. Lett., vol. 31, no. 1, pp. 7–15,
April 1989.

[8] A. Gohr, A. Hinneburg, R. Schult, and M. Spiliopoulou, “Topic
evolution in a stream of documents,” in SIAM Data Mining
Conf., Reno, CA, Apr.-May 2009, pp. 378–385.

[9] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs:
dynamic tensor analysis,” in Proc. of 12th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining (KDD’06).
Philadelphia, PA, USA: ACM, 2006, pp. 374–383.

