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ABSTRACT 
Social networking media generate huge content streams, which 
leverage, both academia and developers efforts in providing 
unbiased, powerful indications of users’ opinion and interests. 
Here, we present Cloud4Trends, a framework for collecting and 
analyzing user generated content through microblogging and 
blogging applications, both separately and jointly, focused on 
certain geographical areas, towards the identification of the most 
significant topics using trend analysis techniques. The cloud 
computing paradigm appears to offer a significant benefit in order 
to make such applications viable considering that the massive data 
sizes produced daily impose the need of a scalable and powerful 
infrastructure. Cloud4Trends constitutes an efficient Cloud-based 
approach in order to solve the online trend tracking problem based 
on Web 2.0 sources. A detailed system architecture model is also 
proposed, which is largely based on a set of service modules 
developed within the VENUS-C research project to facilitate the 
deployment of research applications on Cloud infrastructures. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – clustering; H.3.4 [Information Storage and 
Retrieval]: Systems and Software – distributed systems; H.3.5 
[Information Storage and Retrieval]: Online Information 
Services – Web-based services; I.7.5 [Document and Text 
Processing]: Documents Capture – Document analysis 

General Terms 
Design, Algorithms, Performance, Experimentation 

Keywords 
Social networks, microblogs and blogosphere dynamics, social 
Web data clustering, cloud service deployment. 

1. INTRODUCTION 
Social media applications have emerged as powerful means of 
communication for people seeking to share and exchange 
information on a wide variety of topics.  These topics range from 
popular, widely known ones (e.g., a concert by a popular music 
band) to smaller scale, local (e.g., a local social gathering, a 
protest, or an accident) and their popularity fluctuates with time. 
User-contributed messages posted on social media sites can 

typically reflect these topics in their actual dimension and for this 
reason the content of social media sites is particularly useful for 
real-time trends’ identification. Detecting topic-specific trends is 
surely of significant interest primarily due to the fact that trends: 

i. can be used to detect emergent or suspicious behaviour 
in the network; 

ii. can be viewed as a reflection of societal concerns or 
even as a consensus of collective decision making. 

Microblogging applications have become key actors in social 
media and they have become mostly popular due to their abilities 
for broadcasting information in a real-time fashion. In Twitter, for 
example, tweets are generated by users in massive sizes, currently 
reaching 200 million per day1. Twitter itself currently employs a 
proprietary algorithm for displaying “trending” topics, consisting 
of terms or phrases whose usage exhibits trending behaviour. 
While Twitter's trending topics sometimes reflect current events 
(e.g., “world cup”), they often include keywords for popular 
conversation topics (e.g., “#bieberfever”, “getting ready”) without 
distinguishing the  different types of content. Raw information 
from Twitter has been exploited in research for predicting the 
revenue of forthcoming films and stock prices, as well as for the 
real-time identification of earthquakes (in Japan) and the analysis 
of users’ reaction towards certain events (political debates). It is 
thus currently widely acknowledged that microblogging (as 
practiced via tweets) forms a valuable source of latent information 
about the dynamics involved in the public’s opinions, views, and 
moods. This is further justified by the fact that such applications 
capture the momentum and the pulse of a large public’s scale 
(Twitter only has more than 300 million registered users [13]).  

At the same time blogging platforms have been established as a 
popular form of communication on the Web. The blogosphere is a 
rich information source representing the dynamics and the “voice 
of the public” which is useful for extracting and mining public 
opinions on certain topics or events. Opposed to typical online 
textual information applications, blogs are mainly characterized 
by their “social pulsing” nature since in blogging: 

i. information circulated is primarily opinion-oriented, 
reflecting the author’s freely expressed point of view; 

ii. there are threads of several articles covering a wide 
range of topics.  

                                                                 

1 http://blog.twitter.com/2011/06/200-million-tweets-per-day.html 
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Thus, microblogging/blogging activities can serve as major social 
dynamics barometers since their parallel information flows embed 
valuable and often hidden information about trending users’ 
interests and opinions. In such a context, it is also a fact that 
microblogging and blogging share common data “bridges” since 
users’ interests are influenced by both such social media. E.g. 
users’ tendency to add hyperlinks in their tweets is a common 
practice, as it appears from the around 25% rate of all created 
tweets to contain at least one hyperlink2 (as of September 2010).  

This position paper places emphasis on designing a real-time data 
analysis system scenario with capabilities for localized trending 
topics detection. Trends dynamics are harvested and analyzed 
over user-contributed content from both microblogging (Twitter) 
and blogosphere activities through a text clustering approach. To 
support such a system, which is on high processing and data 
management demands, a Cloud-based deployment has been 
designed and is proposed here.  

The proposed framework’s contribution is summarized in its 
following objectives: 

 dealing with the large scale reality in the Web 2.0 scene 
(with huge and rapidly evolving data) by developing 
methods for handling efficiently such data in real time, 
which can be used in real world application settings; 

 supporting the analysis of text data from different web 
sources which may be generated at various rates in a 
unified way; 

 proposing a methodology for unsupervised detection of 
local trends by combining content from different web 
sources to enrich the detected trends’ context; 

 capturing the shaping and evolution of users’ interests 
in time depending on the users’ broader geographical 
location and the type of data source;   

 designing a Cloud-based data processing methodology 
to support a streaming web data clustering scenario 
under a parallelized computation setting. 

The rest of the paper is structured as follows. Section 2 reviews 
the current state regarding trend detection approaches that 
leverage microblogging and blogging data, discussing their 
limitations. Section 3 presents an incremental social data analysis 
and mining methodology for detecting trends, and discusses its 
potential and advantages over existing approaches. In Section 4, 
we discuss the limitations of deploying such an application on a 
single computer and propose an architecture for porting and 
operating such an application on a Cloud infrastructure. Finally, 
Section 5 presents the implementation details of an early 
deployment of the proposed trend detection application, 
Cloud4Trends, on a Cloud infrastructure and concludes the paper. 

2. MICROBLOGGING AND BLOGGING 
TREND DETECTION: CURRENT STATUS 
The massive sizes of user generated content (UGC) in 
microblogging and blogging applications, sets the potential to 
proceed with its consideration as a raw data source for real-time 
localized trend detector and “public’s pulse” monitoring tool. 
Such trend detection strongly dictates the need for efficient 
scalable and/or summarizing methodologies. Current clustering 

                                                                 
2  http://techcrunch.com/2010/09/14/twitter-seeing-90-million-

tweets-per-day/ 

approaches (based primarily on Twitter) focus on either finding: 
(i) clusters of users densely associated via follower or message 
(@message) links, or (ii) groups of tweets using text mining 
techniques, such as exploiting common word co-occurrences.  

A typical approach to trend analysis involves tracking users’ 
interests in different keywords across time. In this context, 
traditional statistical methods based on the total number of 
keyword occurrences are applied to identify temporal trends. Such 
methods provide a general indication about how popular a 
keyword is (or a sequence of keywords, e.g. bigrams) in some 
timeframes but lack in identifying the different topics/interests. 
Temporal trend analysis based on keyword frequency has 
appeared in several commercial blog and Web search engines 
such as: Google Hot Trends3 and BlogPulse4. Google Hot Trends 
shows regularly trending search topics, referred to as Hot 
Searches, which are phrases whose popularity is statistically 
calculated by their frequency of appearance in what people are 
searching for on Google search engine at the current date. 
Although Google Hot Trends analyzes millions of web searches in 
order to identify trends, it does not emphasize on the social data 
analysis which is a collective source of intelligence that can be 
used to obtain opinions, ideas, facts and sentiments. Moreover, 
such trends are available only for the US. BlogPulse is an online 
service that discovers trends from blogs on a daily basis. It 
follows a composite approach [1] that combines a number of 
statistical techniques for finding trending phrases based on their 
frequency of appearance in relation to other phrases, and that also 
exhibit a “bursty” trend line. Then, a merging clustering technique 
is applied on the trending phrases with the resulting clusters 
representing topics that are characterized by phrases that 
frequently co-occur in blogs. Finally, there are many online 
services that present statistically identified term frequency trends 
focused on Twitter such as e.g.  Trendistic5. Trendistic provides 
“hot” terms or phrases (regardless of whether they are 
semantically significant) that appear in tweets including their start 
and peak time, the duration of their popularity, and their average 
and peak popularity. Their popularity is represented as the 
percentage of tweets including the term or phrase at a given 
period. Twitter itself also presents local trends6 (for some 
locations) as keywords that are popular at the current time and at a 
particular city. However, its analysis seems to be based solely on 
term frequency, without providing any additional context for the 
trending keywords. Tweets that include a given keyword are 
available to users, but without taking in account the location filter.     

Clustering has been widely applied on content generated in web 
social media to uncover latent associations, while recently the 
feature of time [7] and the temporal evolution of clusters [9] have 
been researched. Some web social data clustering approaches 
have been applied for trend detection, as in [2] where associations 
existing between blogs in relation to references from one blog to 
the other are modeled with a graph structure, and then a 
hierarchical graph clustering algorithm is applied. Each resulting 
cluster includes blogs densely connected via trackback links, 
while a number of trending topics is identified for each cluster 
from the terms contained in its blog members via a TF-IDF-based 
[10] method. This approach operates on a static dataset, as it is not 
tailored for real-time online operation. Also, the clustering 

                                                                 
3 http://www.google.com/trends 
4 http://www.blogpulse.com/trends.html 
5 http://trendistic.com/ 
6  https://support.twitter.com/articles/101125 
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approach followed does not allow grouping similar posts (in terms 
of content) that are not connected through a reference.  

In the same context, the BlogScope infrastructure [3] collects 
information from the Blogosphere, news sources, social networks, 
and other online forums automatically, and performs 
spatiotemporal burst detection emphasizing on the algorithm’s 
scalability. This approach is focused on event discovery based on 
a given query and is motivated by: i) the fact that the volume of 
posts that relate to an event rapidly increases (information burst) 
when the event takes places, and ii) the fact that such events (and 
thus information bursts) usually have a temporal and geographical 
scope. Bursts are identified by determining the geographic 
locations where documents related to the query keywords exhibit 
a surge, using spatiotemporal statistics and heuristics. The part 
that is more related to our work is the method followed for 
describing the identified bursts that is based on the fact that when 
a query term is bursty for a time interval, then the keywords that 
occur frequently together with this term will probably exhibit a 
burst themselves over the same time period. After identifying such 
keywords, the method calculates their coexistence frequency with 
the query terms and selects the ones with the highest frequency.   

NewsStand [4] is an online news aggregator service that monitors 
RSS feeds from several online news sources and retrieves articles 
at the time of their publication. Afterwards, it extracts geographic 
content that appears in the articles for detecting their geographical 
focus based on the GeoNames Ontology7. The collected articles 
are grouped into news story clusters with an online clustering 
technique based on textual content and each story is attributed a 
geographic context depending on its members geographical focus. 
The clustering algorithm followed in NewsStand is also followed 
in TwitterStand [5], a work by the same authors that focuses on 
news detection from tweets. TwiterStand collects data online from 
the Twitter’s GardenHose service (that provides a sample of 
Twitter’s public timeline), and some handpicked (Seeders), or 
identified by special algorithms during the service’s running time, 
users that are known to publish tweets that relate to news. Manual 
selection of users who will contribute the news content is used in 
an effort to alleviate the noisy nature of Twitter. Such a selection 
though, bears the danger of resulting in biased news, and to deal 
with noise, TwitterStand also filters out tweets that are unrelated 
to news via a classification method based on the Naïve Bayes 
Classifier. After that, the tweets are clustered with an online 
method that holds many similarities to the one followed in 
Cloud4Trends application (which is presented here). In particular, 
the TwitterStand’s algorithm extracts TF-IDF feature vectors for 
the tweets and the clusters and performs clustering based on their 
similarity, while it also incorporates the temporal dimension in the 
clustering process in the same way as Cloud4Trends does.  

TwitterMonitor [6] is another significant approach towards online 
trend detection over Twitter, following an approach similar to 
BlogScope [3]. The first step is the detection of some bursty 
keywords based on their appearance frequency with an online 
burst detection algorithm that operates on streaming data. Next, 
for each bursty keyword its recent history of tweets is retrieved 
and keywords are clustered based on their co-occurrences in the 
retrieved tweets into a “trend”. Then, TwitterMonitor enriches the 
description of a given trend by applying a context extraction 
algorithm (such as PCA) on the recent trend history and finds 
strongly correlated keywords. This approach does not seem to 

                                                                 
7 http://www.geonames.org/ontology/documentation.html 

exploit additional referenced content, since it occasionally 
involves some news sites in the trend description.  

3. A MULTI-ATTRIBUTE TRENDS AND 
DYNAMICS DETECTION DESIGN 
Here, we raise the fact that clustering tweets is more useful once 
aiming at public trend and dynamics detection in a real-time 
fashion. It should be highlighted here that brief information 
streams are the very nature of microblogging (e.g. tweets are up to 
140 characters), thus users express opinions (or post pieces of 
information) in a very concrete and sharp way. Allowing users to 
include hyperlinks to other sites opens microblogging window to 
other types of information (webpages, articles, videos, etc). In 
practice, the framework presented here, Cloud4Trends, enables 
the online identification of trends dynamics, using Twitter and the 
Blogosphere as data sources. To the authors knowledge, and 
according to the state-of-the-art methods (discussed in the 
previous section), this is among the very initial efforts which 
combines clustering and analysis on both tweets and blog posts 
towards trend identification.  

The proposed approach applies text clustering in an incremental 
fashion for detecting and maintaining a set of dynamic clusters 
based on the assumption the analysis at a “document” instead of at 
a “term” level is more promising for providing trending topics that 
have a meaningful context for users. Our clustering approach is 
inspired by and extends the earlier work in TwitterStand [5], since 
here we focus on expanding the original tweet content by 
additional information as well focusing on trend detection rather 
than news detection. Moreover, in our approach clusters which are 
active at a given time constitute active topics which are of users’ 
interest and can be ranked based on their observed activity for 
indentifying the most popular (trending). By dynamically 
observing the clusters’ updating rate, we can identify trends at 
their peak and detect the topics that are no more trending, instead 
of applying a fixed-threshold based method that sets as inactive 
clusters after a predefined period of time, such as in TwitterStand. 
Moreover, compared to the aforementioned system, the proposed 
application separately collects and clusters tweets that pertain to a 
desired geographical area, rather than examining the geographical 
scope of the resulting clusters as a post-analysis process. 

Our approach builds on the idea of extending a microblogging 
tuple (as captured in a tweet) by replacing hyperlinks appearing in 
tweets’ text. This replacement is made such that this process will 
“enlarge” the initial tweet content by following the included 
hyperlink, distinguishing between two cases: i) using the web 
pages’ title and content to replace the hyperlink once the latter 
leads to a blog post, or ii) using solely its title for any other type 
of web page. We have chosen to promote hyperlinks leading to 
blogs, as we want to leverage the opinion-directed information 
published by individuals in a Web 2.0 platform to obtain a more 
substantial opinion-oriented tweet. To our knowledge this is the 
first work that performs simultaneous analysis of trending topics 
in: i) tweets, ii) blogs posts, and iii) tweets with extended content 
(referred to from now on as extended tweets), focused on certain 
geographic areas and attempts to analyze and evaluate differences 
in the way information is spread in the different media, depending 
on their type and orientation.  

Thus, we propose that microblogging analysis is performed on a 
real-time streaming fashion in order to capture constantly 
changing trending users’ interests. Moreover, the proposed 
analysis is further extended by the following facts: 
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 it exploits associations based on the broadcasting time, 
alleviating gaps in earlier efforts such as in [1], which 
employs a clustering method after identifying a set of 
trending phrases and focuses only on the latter, in an 
offline fashion; 

 it deals also with the respective user’s physical location 
(exploiting the tweet geo-location feature).  

This type of joint multi-feature analysis is expected to produce 
more fine-grained high-quality clusters of tweets which will 
correspond to actual topics that are popular at a given location and 
time period. It is also expected to alleviate the generally 
acknowledged problem of noisy microblogging data (i.e. data that 
contain uninteresting or meaningless information, as the joint 
consideration of location (even at filtering level above the 
clustering operation) and time will generally improve the 
clustering quality and contribute to filtering out noisy tweets. 

The general trend detection task that the proposed approach 
addresses is outlined below. 

Trend Detection Problem Formulation: Given a time-ordered 
stream of users’ posts Pt, t = [1,… ∞), arriving in real-time 
(tweets) or at a given time granularity (blog posts), identify topics 
and associated posts that are popular (“trending”) at any given  
time, and monitor their evolution across time in terms of 
popularity.  

 
Figure 1. Microblogging and Blogging Trend Detection 

Outline 

The problem outlined above distinguishes between: i) streams of 
content pushed to the application as soon as it is generated (e.g. 
such as tweets due to the availability of a streaming API), and ii) 
new content which needs to be pulled by the web source in which 
it is generated at a given rate (e.g. such as Google Blogger posts 
due to the availability of a REST API). In the latter case, the new 
data’s pulling rate determines how much the identified trends 
correspond to the real-time users trending topics.   

The proposed application is outlined in Fig. 1 and it actually 
involves a 3-tier design that deals with the: i) collection of data in 
a streaming manner from Twitter as well as from a pool of 
selected blogs focused on a number of geographic areas, ii) 
application of an online clustering technique on the data to detect 
recent trending topics, and iii) refinement and ranking of clusters 

such that trends are detected and visualized. These three tiers are 
summarized in the next subsections.  

3.1 The Data Collection Tier 
The Data collection tier involves special online data aggregators 
for collecting recently published content from Twitter and the 
Blogosphere. The content corresponds to some specific 
geographic area (such as a city level), leveraging the Twitter 
Streaming API8 and Google Blogger API9 (other possibilities in 
blogging and microblogging platforms can also be considered). 
While the first API provides a continuous stream of recently 
generated posts the second one is based on REST requests. To this 
end, based on a collection of identifiers of blogs owned by 
Blogger users who have declared that they reside within the 
monitored geographic area, we use the API for requesting new 
posts for each blog at a fixed time interval (e.g. daily, which is 
reasonable since we do not expect blogs to be updated as 
frequently as content in Twitter). 

Special parsers have been developed for extracting hyperlinks 
from tweets, with a separate thread undertaking the task of 
retrieving the associated content from the web page they lead to 
(either simply its title or also additional information if it leads to a 
blog post). In order to identify clusters in both tweets, blog posts, 
and extended tweets, three separate representation models have 
been built for each type of content and for the analysis scope.  The 
tweet data model includes the attributes of: unique identifier, text, 
(hash-)tags, timestamp, while the blog post data model has an 
additional “title” attribute. The extended tweet model simply 
incorporates one (or more) blog post entities in a given tweet 
entity. In order to verify whether the incorporation of the 
referenced blog posts actually leads to more meaningful trending 
clusters, all tweets need to be represented in both the simple and 
the extended tweet model (if any references)10 leading to two 
different evolving datasets. 

3.2 The Data Analysis and Processing Tier 
The retrieved posts (either tweets, blog posts, or extended tweets) 
are processed in order to produce clusters which contain posts 
pertaining to the same topic. Data are filtered to remove low 
quality content with typical approaches including filtering out 
tweets/blog posts with very few terms, etc. Text sanitization 
techniques are applied on the resources’ text to filter out common 
words (defined in a stop word lists) and to perform stemming. 
Next, resources, regardless of their type, are represented with a 
common model that includes: a unique identifier, a TF-IDF-based 
key-value map, a timestamp, and the resource’s type (tweet, blog 
post, or extended tweet). For a given resource the key-value map 
structure includes as keys all the resource’s unique terms, taken 
from the initial data model’s text, tags and title (for blogs only) 
attributes. Using the Lucene Search Engine library11 separate 
indexes are kept for each resource type and for each attribute. 
Though these indexes, TF-IDF key-value maps are obtained for 
each attribute. In order to represent the resource’s textual content 
with a single attribute, and taking into account that a given key 
may exist in more than one attributes while usually tags and title 
attributes are more significant of the resource’s content compared 

                                                                 
8 https://dev.twitter.com/docs/streaming-api 
9 http://code.google.com/apis/blogger/ 
10 Obviously, tweets with no references can also be represented in 

the extended tweet model with zero encapsulated blog post 
entities. 

11 http://lucene.apache.org/core/ 
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to the main text, the TF-IDF values for each key are combined in a 
single value under an appropriate weighting scheme that assigns 
more weight to terms in titles and tags. E.g. a given term T in a 
blog post resource R will be assigned a score value as follows: 

 )(*),(*),( TIDFRTTFwRTSC texttexttext  

)(*),(*)(*),(* TIDFRTTFwTIDFRTTFw tagstagstagstitletitletitle 

 
In the equation above, wi stand for the weight for attribute i, which 
is assigned a value in the interval [0,1]. Moreover, there is the 
possibility of zero TF-IDF values for the attributes of R in which 
term T does not exist. 

Having a common resource representation, the data processing tier 
implements the resources clustering process addressing the 
following problem. 

Web Data Streams Clustering Problem Formulation: Given a 
time-point t, a new resource Rt created at t, and a set of n clusters 
Ci, [i= 1…n] that are active at t, assign Rt to the cluster Ck for 
which the similarity Sim(Rt,Ci) is maximized. If Sim(Rt,Ci) < 
sim_threshold for each i in [1,n], then start a new cluster with Rt. 

From the previous problem formulation it is evident that in order 
to perform the new resource’s assignment to a cluster, a suitable 
representation format for the clusters is needed, as well as the 
selection of a similarity function. In general the framework is 
flexible allowing the use of any similarity function that can be 
applied on a given resource and cluster representation. In 
Cloud4trends the cluster representation model includes the 
following attributes: a unique identifier, a mean key-value map, a 
mean timestamp, and a list of its members. The mean mean key-
value map and mean timestamp constitute the cluster’s centroid 
since the first includes as keys the union of the terms included in 
all clusters’ members and as values the average of the member’s 
score values for each given term, while the second is the average 
of the timestamps of the cluster’s members. Regarding the 
similarity function, we have selected a variation of the cosine 
similarity function, which is in general widely used for vector-
wise similarity calculations. This function takes also the time 
aspect into account for the clustering process, as the timestamps 
are also included in the similarity calculation to bring resources 
closer to the clusters which on average contain members with 
similar timestamps, via a Gaussian attenuator. In particular, 
Cloud4Trends uses the following similarity measure (as it 
appeared in [5]), where Map and Time are the corresponding 
attributes of a (mean key-value map) key-value map and (mean 
timestamp) timestamp for the (cluster) resource. 

2

2

2
)..(

*).,.CosineSim(),Sim(
TimeCTimeR

itit

it

eMapCMapRCR



 
It is worth highlighting here is that the selection of the parameter’s 
sim_threshold value should be wisely taken, because it affects 
significantly the diversity of the clusters in terms of topic, as well 
as the new clusters' generation rate, since a resource initiates a 
new cluster when all calculated similarities are below the 
sim_threshold.  

3.3  The Trend Detection and Visualization 
Tier 
This tier builds on the basis of the outcome of the data processing 
tier which produces three sets of clusters for the tweets’, blog 

posts’, and extended tweets’ datasets. A given cluster can be 
characterized as active or inactive based on whether it is 
corresponds to topics that are popular at the given time, or it 
corresponds to topics that are no longer considered as trending. 
Clusters update rates are monitored to determine when a cluster 
should be made inactive due to limited activity. To this end, 
additional information is maintained for each cluster: the 
evolution of the temporal distance between the timestamps of the 
last two resources assigned to the given cluster. By taking the 
moving average of the aforementioned parameter to smoothen its 
evolution, we can identify periods of time when the cluster is 
increasingly rising in popularity due to users’ intense activity, 
when it is at its peak, as well as when it should be made inactive 
due to a steady rise in the parameter’s value. It should be 
mentioned here that in order to improve clusters’ quality very 
small clusters (very few members) are considered as noise and 
thus are eliminated. 

Active clusters are considered as representative of topics that 
concern web users at a given times, however, in order to identify 
the actual trends, clusters should be ranked in terms of an activity 
measure. To this end, for each type of content (and for a given 
monitored location) Cloud4Trends retrieves the active clusters 
and ranks them based on: i) their members’ number, and ii) their 
mean timestamp, under the assumption that the “hottest” topics 
are those that are referred to in many resources, and that are 
additionally being created on average close to the current time. 

The topics that characterize each cluster are identified as the terms 
with the highest scores in the cluster’s mean key-value map. 
Cloud4Trends then generates a summary description for each 
cluster comprising of few member terms or phrases based on their 
scores and their significance (hashtags, title terms, etc), while the 
high-ranked clusters shape the trending topics for the given time. 

By leveraging the clusters’ members’ information additional 
analytics can be extracted for each trend such as when it first 
appeared and with which resource, the time-period it spanned, and 
how it evolved.  

In Cloud4Trends trends are therefore calculated based on the three 
different data sources for each location into investigation, while 
they can be visualized in a web-based user interface separately for 
each location and type of resource. By leveraging the analysis 
results, such an interface can also visualize the history of trending 
topics and also compares the popularity of a given topic in given 
different locations. Depending on the update rates of the 
resources’ types (e.g. faster in Twitter while slower in blogs), one 
can decide on how often the clusters’ “trending scale” will be 
recalculated. 

4. THE TREND DETECTION CLOUD-
BASED FRAMEWORK 
Since the scope of the proposed application is concentrated on 
Web social data mining and analysis, it is prerequisite to collect 
and compute online large datasets from web social services. In 
addition, the versatile nature of the analysis in the specific field ( 
i.e. different information is needed when mining tweets compared 
to blogs) poses a requirement to collect data from different Web 
2.0 application services based on certain criteria, and depending 
on each use case scenario.  

The problem addressed by Cloud4Trends is certainly data 
intensive as it involves concurrent analysis of large sizes of web 
social data in an online fashion. Since our approach handles both 
tweets, with unexpectedly peaks, and blogs whose sizes may be 
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considerably large, problems referring to handling large and 
fluctuating sizes of data arise, and feasible approaches have to be 
followed in order to address them. In particular, parallel 
programming techniques are required for many operations in our 
application, as for example: 

 data should be concurrently analyzed for the different 
geographic areas and their analysis should be fast;  

 blogs and Twitter data should be collected in parallel; 

 since our data collection module should be constantly 
available for receiving new data, data that have already 
arrived should be analyzed in a different concurrent 
process. 

Thus, the suggested ideas can heavily utilize the Cloud computing 
paradigm which offers a significant ground for such social streams 
mining applications due to its support via scalable and powerful 
infrastructures [8]. Our design requirements match well with the 
MapReduce computing paradigm, which codifies a generic 
“recipe” for processing large datasets when this processing 
consists of more than one stage. The MapReduce technology 
matches the needs of the Clou4Trends data analysis and 
processing tier, given that in a cloud-based deployment the 
mapping operations can be distributed into separate computer 
nodes. Prior to being ported to the Cloud, Cloud4Trends ran into a 
multi-core computer, designed over a serializable software 
architecture which posed obstacles in aggregating and analyzing 
data from both Twitter and blogs. We believe that parallel 
approaches in cloud computing infrastructures constitute viable 
solutions for real-time large-scale data mining applications. 

One of Cloud4Trends research aims is to validate the quality of 
the resulting web content clusters and observe and quantify the 
differences in the trends resulting from the three data sources 
which represent different user groups. Moreover, we envision 
conducting this kind of analysis for several geographic areas. As 
future extension we want to implement a visualization layer so 
that it attracts a number of end-users who are interested and may 
benefit from our identified trends and their history. These end 
users should have the option of inputting a number of general 
categories of their interest which will be matched by the 
application, based on a tailored concept ontology, with the 
corresponding topic clusters and their rank in the “trending scale”. 
The aforementioned research and exploitation primary and 
secondary priorities certainly impose extra demands on computing 
resources. Since most researchers have difficulty in acquiring a 
powerful datacenter, we believe that Cloud infrastructure can be 
leveraged for efficiently handling both the data’s high scalability, 
the requirement for real-time tweet processing and clusters’ 
update, as well as for ensuring quality of service for an increasing 
number of end users. 

4.1 The VENUS-C Infrastructure 
The suggested system (as described in previous section) is 
currently implemented in the context of the so called 
“Cloud4Trends” experiment12 entitled “Leveraging the Cloud 
infrastructure for localized real-time trend detection in social 
media”, which runs over the VENUS-C infrastructure. VENUS-
C13 (Virtual Multidisciplinary EnviroNments USing Cloud 
Infrastructures) is a pioneering project that develops and deploys 
a Cloud computing service for research and industry communities 

                                                                 
12 http://oswinds.csd.auth.gr/?page_id=1320 
13 http://www.venus-c.eu/ 

in Europe by offering an industrial-quality, service-oriented 
platform based on virtualization technologies and taking 
advantage of previous experience on Grids and Supercomputing, 
to facilitate a range of research fields through easy deployment of 
end-user services.  

VENUS-C offers several service components to allow a wide 
range of end-user applications (targeting mainly research groups 
and SMEs) to benefit from the advantages of a Cloud computing 
platform, without having to develop custom Cloud-aware 
solutions. It offers a selection of programming models that, 
combined with appropriate data access mechanisms, constitute a 
convenient abstraction for deploying scientific applications on top 
of plain virtual machines. Each programming model is enacted 
behind a job submission service, where researchers can submit 
jobs and manage their workload [11]. VENUS-C programming 
model enactment services expose their functionality via an Open 
Grid Forums Basic Execution Service (OGF BES) [14] and Job 
Submission Description Language (JSDL) [15] compliant web 
service interface, and take care of the enactment of a job at a 
given Cloud Provider. Currently, two programming models are 
implemented in VENUS-C for the efficient execution of different 
processes on the cloud based on complex patterns (such as 
Map/Reduce or Workflows), namely COMPSs and a VENUS-C 
tailored implementation of Microsoft’s Generic Worker [12]. 
Each enactment service deploys a specific application on a 
number of either Windows Azure14 virtual machines or Unix 
virtual resources from open source Cloud middlewares 
(OpenNebula15 & EMOTIVE Cloud16). To run their applications, 
end-users should first upload their executables at a Cloud-based 
application repository so as to be accessed by the enactment 
service depending on the description of an incoming job request.  

A Cloud-based data management SDK is provided by VENUS-C 
for handling all data transfer operations between the Cloud 
infrastructure and the on-premises client applications, which 
supports the Storage Networking Industry Association (SNIA) 
Cloud Data Management Interface (CDMI) specification [16]. 
The CDMI interface is exposed by a separate web service 
deployment, and enables unified access to different cloud 
providers, thus promoting interoperability. Resource monitoring 
has also been taken into account in VENUS-C so that each end-
user is to be able to identify its application’s resource 
consumption via the VENUS-C Accounting Service.  

4.2 The Cloud4Trends Cloud-based 
Architecture 
The suggested design is implemented in Cloud4Trends under the 
previously described 3-tiered conceptual design structure. 
Cloud4Trends is implemented as a hybrid application based on 
the cooperation of: i) on-premises client interface components and 
ii) multiple job execution components with different 
functionalities on top of the VENUS-C Cloud services 
infrastructure. In particular, Cloud4Trends uses VENUS-C 
Generic Worker programming model for job submission and 
application deployment on top of the Azure Cloud infrastructure. 
The Generic Worker is best suited for data-driven task-based job 
submissions, with each job description specifying a number of 
input file dependencies and requirements for the generation of 
some output files, in a command line-like execution format. 

                                                                 
14 http://www.windowsazure.com/ 
15 http://opennebula.org 
16 http://www.emotivecloud.net/ 
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Fig. 2 illustrates the three Cloud4Trends modules, namely: the 
Collect module, the on-the-Cloud module, and the Cloud services 
module. These modules support the proposed 3-tier design 
(described above) such that the Client module implements the 
Data Collection and Visualization tiers, whereas the Cloud-based 
module implements the Data Processing and knowledge 
/extraction tier. 

 
Figure  1. The Trend Detection Cloud-based framework 

More specifically, the proposed framework involves three 
modules as discussed next:  

 collect module: it operates as a client module and involves 
the required blogging and microblogging data collectors and 
their interfaces required for the communication with the 
VENUS-C infrastructure (and its services). These refer to the 
interfaces needed for supporting the experiment’s setting and 
monitoring, as attached to the on-premises server. The client 
module facilitates new experiments’ submission and progress 
monitoring for the ones currently running. The web interface is 
needed to communicate the Cloud4Trends results to end users, 
as well as to implement the Twitter and Blog Data Collectors, 
receiving stream data in real time or at specified time intervals;  

 “on the cloud” module: involves the Cloud4Trends Data 
analysis and Processing Tier, which has been ported to the 
Cloud. In particular, data Parsing and Clustering modules have 
been deployed via the VENUS-C Services, i.e. the related 
operations are submitted as jobs via the enactment service 
under the Generic Worker programming model. The clustering 
modules are realized by the Splitter, Similarity Calculation 
(Mapper), and Aggregation (Reducer) modules, under the 
Map-Reduce paradigm. The Indexing Services module is 
implemented independently as a separate set of Cloud services 
that are responsible for creating indexes for each type of input 
data (tweets, blog posts, extended tweets); 

 cloud services module: it involves the specific VENUS-C 
components used for assisting and simplifying the 
application’s porting to the Cloud. More specifically, the 
VENUS-C Data Access SDK is used for accessing the Cloud 
Storage (Blobs and Tables) when retrieving or uploading data 
via a Client, while the VENUS-C Execution (enactment) 
Service is used for submitting, distributing, and setting up new 
processing jobs to the Cloud.  

An indicative workflow is orchestrated as follows. The collect 
module, which is responsible for collecting data from the Web 
(Twitter and the Blogosphere) and initializing new experiments 
when required by the researchers, submits new Parsing jobs 
(executed by Twitter or Blog Parsers) to the cloud via the Job 
Submission Client of Generic Worker, which is hosted at the 
Execution Service, when new data are available. The required 
data for each given job are uploaded, as a batch, using the Data 
Access Service to Azure Blobs. Cloud4Trends’ Indexing Service 
Module consists of three separate Azure services (for indexing 
tweets, blog posts, and extended tweets) that are responsible for 
the Full Text Indexing of the parsed data using the a Lucene 
library for Azure17. These services are notified that new (parsed) 
data are available for indexing by polling three dedicated Azure 
queues, respectively. When an Indexing service completes its 
execution it initiates a Splitter Job using the Generic worker’s 
Job Submission Client, which receives as input data the new 
resources’ representations under the model described in Section 
3.2. Such representation (including the combined TF-IDF map 
structures are emitted by the Indexing services). The Splitter 
application also downloads the appropriate currently active 
clusters from the corresponding Azure Table. As long as our 
system handles the concurrent analysis of several new data 
batches, different jobs should be instantiated and executed in 
parallel to effectively process all data. According to that, different 
Similarity Calculation Workers (Mapper jobs) are submitted by 
each Splitter job, via the Execution Service module, and in 
particular using the Generic Worker Local Job Submission 
service, which calculate the similarity scores between the new 
resource and the respective active clusters. An Aggregation 
Worker (Reducer job) is also submitted by the Splitter Job via 
the Local Job Submission service, to collect all similarity score 
combinations emitted by the corresponding Mapper jobs, and 
identify the best match to an existing cluster for each resource, or 
initiate a new cluster for any item whose similarity with each 
existing cluster is below a specific threshold. 

5. IMPLEMENTATION DETAILS AND 
FUTURE OUTLOOK 
The Cloud4Trends pilot project was initiated in June 2011 and is 
now at an Alpha Prototype state. So far, the following steps have 
been taken. 

 the on-premises data (tweet and blog post) collection 
applications have been seamlessly integrated with the 
job submission client into a real-time text parsing job 
submission system. 

 the Generic Worker’s suitability for frequent successive 
job submissions has been verified.   

 the data indexing services have been deployed in Azure 
using the Azure Library for Lucene.NET. 

 communication between the Cloud-based data parsers 
and the indexing services has been achieved via queues. 

                                                                 
17  http://code.msdn.microsoft.com/windowsazure/Azure-Library-

for-83562538 
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 the whole job submission workflow (including the 
submission of parsing and distributed clustering jobs) 
has been deployed in the Cloud. This was accomplished 
with use of the VENUS-C enactment service and the 
Generic Worker, which allowed the implementation of 
the workflow via the submission and “cooperation” of 
data-dependent jobs, as well as through the queue-based 
communication between Generic Worker computing 
instances and the Indexing Cloud-based services.  

 scalability issues are addressed by a special component 
that pulls the status and time duration of submitted jobs 
using the VENUS-C Accounting Service, and increases 
the number of virtual machine instances when delays are 
observed for a representative number of submitted jobs.  

 a separate component has been developed that 
communicates with the dedicated Cloud Tables for 
monitoring the clusters’ “activity” and for updating their 
states. 

 clusters’ representations are downloaded to the (local) 
client-side component at a parameterized time interval, 
and then ranked for “hottest” trends identification. 

Future work is focused around the following axes: i) the fine-
tuning of the clustering and trend detection algorithm and the 
experimental evaluation of results, ii) the implementation of a 
shard-based distributed Indexing service since for the time being 
the service for each type of resource is deployed on a single 
instance, iii) measuring the system’s performance for different 
design parameters, and iv) creating a web-based user interface 
(hosted either on Cloud or on premises) for visualization of the 
detected real-time trends and trends’ analytics. 

The benefit that Cloud4Trends offers is that it verifies that Cloud-
based architectures constitute a viable solution for online web data 
mining applications which can be beneficial for both researchers 
and entrepreneurs. In particular, the proposed framework enables 
massive data analysis at a distributed setting, thus reducing the 
prerequisite for real-time applications data processing time. At the 
same time is allows easier testing of new algorithms/use-case 
scenarios, achieving high-quality results with lesser cost, allowing 
developers/scientists to focus on applications’ refinement/testing, 
rather than on how to setup and operate the underlying  
infrastructures. Moreover, Cloud-based solutions can improve 
application capability sharing, by easily exposing research results 
to other research groups or interested end-users. 

In summary the proposed framework (as realized by the 
Cloud4Trends experiment), demonstrates that porting trend 
detection into the Cloud is a very suitable solution considering the 
challenges posed by the data and time intensive processes 
involved in online collection and analysis of large and evolving 
Web 2.0 datasets.  
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