
Social Networking Trends and Dynamics Detection
via a Cloud-based Framework Design

Athena Vakali
Department of Informatics

Aristotle University
54124 Thessaloniki, Greece

+30 2310998415

avakali@csd.auth.gr

Maria Giatsoglou
Department of Informatics

Aristotle University
54124 Thessaloniki, Greece

+30 2310998236

mgiatsog@csd.auth.gr

Stefanos Antaris
Department of Informatics

Aristotle University
54124 Thessaloniki, Greece

+30 2310991863

santaris@csd.auth.gr

ABSTRACT
Social networking media generate huge content streams, which
leverage, both academia and developers efforts in providing
unbiased, powerful indications of users’ opinion and interests.
Here, we present Cloud4Trends, a framework for collecting and
analyzing user generated content through microblogging and
blogging applications, both separately and jointly, focused on
certain geographical areas, towards the identification of the most
significant topics using trend analysis techniques. The cloud
computing paradigm appears to offer a significant benefit in order
to make such applications viable considering that the massive data
sizes produced daily impose the need of a scalable and powerful
infrastructure. Cloud4Trends constitutes an efficient Cloud-based
approach in order to solve the online trend tracking problem based
on Web 2.0 sources. A detailed system architecture model is also
proposed, which is largely based on a set of service modules
developed within the VENUS-C research project to facilitate the
deployment of research applications on Cloud infrastructures.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – clustering; H.3.4 [Information Storage and
Retrieval]: Systems and Software – distributed systems; H.3.5
[Information Storage and Retrieval]: Online Information
Services – Web-based services; I.7.5 [Document and Text
Processing]: Documents Capture – Document analysis

General Terms
Design, Algorithms, Performance, Experimentation

Keywords
Social networks, microblogs and blogosphere dynamics, social
Web data clustering, cloud service deployment.

1. INTRODUCTION
Social media applications have emerged as powerful means of
communication for people seeking to share and exchange
information on a wide variety of topics. These topics range from
popular, widely known ones (e.g., a concert by a popular music
band) to smaller scale, local (e.g., a local social gathering, a
protest, or an accident) and their popularity fluctuates with time.
User-contributed messages posted on social media sites can

typically reflect these topics in their actual dimension and for this
reason the content of social media sites is particularly useful for
real-time trends’ identification. Detecting topic-specific trends is
surely of significant interest primarily due to the fact that trends:

i. can be used to detect emergent or suspicious behaviour
in the network;

ii. can be viewed as a reflection of societal concerns or
even as a consensus of collective decision making.

Microblogging applications have become key actors in social
media and they have become mostly popular due to their abilities
for broadcasting information in a real-time fashion. In Twitter, for
example, tweets are generated by users in massive sizes, currently
reaching 200 million per day1. Twitter itself currently employs a
proprietary algorithm for displaying “trending” topics, consisting
of terms or phrases whose usage exhibits trending behaviour.
While Twitter's trending topics sometimes reflect current events
(e.g., “world cup”), they often include keywords for popular
conversation topics (e.g., “#bieberfever”, “getting ready”) without
distinguishing the different types of content. Raw information
from Twitter has been exploited in research for predicting the
revenue of forthcoming films and stock prices, as well as for the
real-time identification of earthquakes (in Japan) and the analysis
of users’ reaction towards certain events (political debates). It is
thus currently widely acknowledged that microblogging (as
practiced via tweets) forms a valuable source of latent information
about the dynamics involved in the public’s opinions, views, and
moods. This is further justified by the fact that such applications
capture the momentum and the pulse of a large public’s scale
(Twitter only has more than 300 million registered users [13]).

At the same time blogging platforms have been established as a
popular form of communication on the Web. The blogosphere is a
rich information source representing the dynamics and the “voice
of the public” which is useful for extracting and mining public
opinions on certain topics or events. Opposed to typical online
textual information applications, blogs are mainly characterized
by their “social pulsing” nature since in blogging:

i. information circulated is primarily opinion-oriented,
reflecting the author’s freely expressed point of view;

ii. there are threads of several articles covering a wide
range of topics.

1 http://blog.twitter.com/2011/06/200-million-tweets-per-day.html

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1213

Thus, microblogging/blogging activities can serve as major social
dynamics barometers since their parallel information flows embed
valuable and often hidden information about trending users’
interests and opinions. In such a context, it is also a fact that
microblogging and blogging share common data “bridges” since
users’ interests are influenced by both such social media. E.g.
users’ tendency to add hyperlinks in their tweets is a common
practice, as it appears from the around 25% rate of all created
tweets to contain at least one hyperlink2 (as of September 2010).

This position paper places emphasis on designing a real-time data
analysis system scenario with capabilities for localized trending
topics detection. Trends dynamics are harvested and analyzed
over user-contributed content from both microblogging (Twitter)
and blogosphere activities through a text clustering approach. To
support such a system, which is on high processing and data
management demands, a Cloud-based deployment has been
designed and is proposed here.

The proposed framework’s contribution is summarized in its
following objectives:

 dealing with the large scale reality in the Web 2.0 scene
(with huge and rapidly evolving data) by developing
methods for handling efficiently such data in real time,
which can be used in real world application settings;

 supporting the analysis of text data from different web
sources which may be generated at various rates in a
unified way;

 proposing a methodology for unsupervised detection of
local trends by combining content from different web
sources to enrich the detected trends’ context;

 capturing the shaping and evolution of users’ interests
in time depending on the users’ broader geographical
location and the type of data source;

 designing a Cloud-based data processing methodology
to support a streaming web data clustering scenario
under a parallelized computation setting.

The rest of the paper is structured as follows. Section 2 reviews
the current state regarding trend detection approaches that
leverage microblogging and blogging data, discussing their
limitations. Section 3 presents an incremental social data analysis
and mining methodology for detecting trends, and discusses its
potential and advantages over existing approaches. In Section 4,
we discuss the limitations of deploying such an application on a
single computer and propose an architecture for porting and
operating such an application on a Cloud infrastructure. Finally,
Section 5 presents the implementation details of an early
deployment of the proposed trend detection application,
Cloud4Trends, on a Cloud infrastructure and concludes the paper.

2. MICROBLOGGING AND BLOGGING
TREND DETECTION: CURRENT STATUS
The massive sizes of user generated content (UGC) in
microblogging and blogging applications, sets the potential to
proceed with its consideration as a raw data source for real-time
localized trend detector and “public’s pulse” monitoring tool.
Such trend detection strongly dictates the need for efficient
scalable and/or summarizing methodologies. Current clustering

2 http://techcrunch.com/2010/09/14/twitter-seeing-90-million-

tweets-per-day/

approaches (based primarily on Twitter) focus on either finding:
(i) clusters of users densely associated via follower or message
(@message) links, or (ii) groups of tweets using text mining
techniques, such as exploiting common word co-occurrences.

A typical approach to trend analysis involves tracking users’
interests in different keywords across time. In this context,
traditional statistical methods based on the total number of
keyword occurrences are applied to identify temporal trends. Such
methods provide a general indication about how popular a
keyword is (or a sequence of keywords, e.g. bigrams) in some
timeframes but lack in identifying the different topics/interests.
Temporal trend analysis based on keyword frequency has
appeared in several commercial blog and Web search engines
such as: Google Hot Trends3 and BlogPulse4. Google Hot Trends
shows regularly trending search topics, referred to as Hot
Searches, which are phrases whose popularity is statistically
calculated by their frequency of appearance in what people are
searching for on Google search engine at the current date.
Although Google Hot Trends analyzes millions of web searches in
order to identify trends, it does not emphasize on the social data
analysis which is a collective source of intelligence that can be
used to obtain opinions, ideas, facts and sentiments. Moreover,
such trends are available only for the US. BlogPulse is an online
service that discovers trends from blogs on a daily basis. It
follows a composite approach [1] that combines a number of
statistical techniques for finding trending phrases based on their
frequency of appearance in relation to other phrases, and that also
exhibit a “bursty” trend line. Then, a merging clustering technique
is applied on the trending phrases with the resulting clusters
representing topics that are characterized by phrases that
frequently co-occur in blogs. Finally, there are many online
services that present statistically identified term frequency trends
focused on Twitter such as e.g. Trendistic5. Trendistic provides
“hot” terms or phrases (regardless of whether they are
semantically significant) that appear in tweets including their start
and peak time, the duration of their popularity, and their average
and peak popularity. Their popularity is represented as the
percentage of tweets including the term or phrase at a given
period. Twitter itself also presents local trends6 (for some
locations) as keywords that are popular at the current time and at a
particular city. However, its analysis seems to be based solely on
term frequency, without providing any additional context for the
trending keywords. Tweets that include a given keyword are
available to users, but without taking in account the location filter.

Clustering has been widely applied on content generated in web
social media to uncover latent associations, while recently the
feature of time [7] and the temporal evolution of clusters [9] have
been researched. Some web social data clustering approaches
have been applied for trend detection, as in [2] where associations
existing between blogs in relation to references from one blog to
the other are modeled with a graph structure, and then a
hierarchical graph clustering algorithm is applied. Each resulting
cluster includes blogs densely connected via trackback links,
while a number of trending topics is identified for each cluster
from the terms contained in its blog members via a TF-IDF-based
[10] method. This approach operates on a static dataset, as it is not
tailored for real-time online operation. Also, the clustering

3 http://www.google.com/trends
4 http://www.blogpulse.com/trends.html
5 http://trendistic.com/
6 https://support.twitter.com/articles/101125

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1214

approach followed does not allow grouping similar posts (in terms
of content) that are not connected through a reference.

In the same context, the BlogScope infrastructure [3] collects
information from the Blogosphere, news sources, social networks,
and other online forums automatically, and performs
spatiotemporal burst detection emphasizing on the algorithm’s
scalability. This approach is focused on event discovery based on
a given query and is motivated by: i) the fact that the volume of
posts that relate to an event rapidly increases (information burst)
when the event takes places, and ii) the fact that such events (and
thus information bursts) usually have a temporal and geographical
scope. Bursts are identified by determining the geographic
locations where documents related to the query keywords exhibit
a surge, using spatiotemporal statistics and heuristics. The part
that is more related to our work is the method followed for
describing the identified bursts that is based on the fact that when
a query term is bursty for a time interval, then the keywords that
occur frequently together with this term will probably exhibit a
burst themselves over the same time period. After identifying such
keywords, the method calculates their coexistence frequency with
the query terms and selects the ones with the highest frequency.

NewsStand [4] is an online news aggregator service that monitors
RSS feeds from several online news sources and retrieves articles
at the time of their publication. Afterwards, it extracts geographic
content that appears in the articles for detecting their geographical
focus based on the GeoNames Ontology7. The collected articles
are grouped into news story clusters with an online clustering
technique based on textual content and each story is attributed a
geographic context depending on its members geographical focus.
The clustering algorithm followed in NewsStand is also followed
in TwitterStand [5], a work by the same authors that focuses on
news detection from tweets. TwiterStand collects data online from
the Twitter’s GardenHose service (that provides a sample of
Twitter’s public timeline), and some handpicked (Seeders), or
identified by special algorithms during the service’s running time,
users that are known to publish tweets that relate to news. Manual
selection of users who will contribute the news content is used in
an effort to alleviate the noisy nature of Twitter. Such a selection
though, bears the danger of resulting in biased news, and to deal
with noise, TwitterStand also filters out tweets that are unrelated
to news via a classification method based on the Naïve Bayes
Classifier. After that, the tweets are clustered with an online
method that holds many similarities to the one followed in
Cloud4Trends application (which is presented here). In particular,
the TwitterStand’s algorithm extracts TF-IDF feature vectors for
the tweets and the clusters and performs clustering based on their
similarity, while it also incorporates the temporal dimension in the
clustering process in the same way as Cloud4Trends does.

TwitterMonitor [6] is another significant approach towards online
trend detection over Twitter, following an approach similar to
BlogScope [3]. The first step is the detection of some bursty
keywords based on their appearance frequency with an online
burst detection algorithm that operates on streaming data. Next,
for each bursty keyword its recent history of tweets is retrieved
and keywords are clustered based on their co-occurrences in the
retrieved tweets into a “trend”. Then, TwitterMonitor enriches the
description of a given trend by applying a context extraction
algorithm (such as PCA) on the recent trend history and finds
strongly correlated keywords. This approach does not seem to

7 http://www.geonames.org/ontology/documentation.html

exploit additional referenced content, since it occasionally
involves some news sites in the trend description.

3. A MULTI-ATTRIBUTE TRENDS AND
DYNAMICS DETECTION DESIGN
Here, we raise the fact that clustering tweets is more useful once
aiming at public trend and dynamics detection in a real-time
fashion. It should be highlighted here that brief information
streams are the very nature of microblogging (e.g. tweets are up to
140 characters), thus users express opinions (or post pieces of
information) in a very concrete and sharp way. Allowing users to
include hyperlinks to other sites opens microblogging window to
other types of information (webpages, articles, videos, etc). In
practice, the framework presented here, Cloud4Trends, enables
the online identification of trends dynamics, using Twitter and the
Blogosphere as data sources. To the authors knowledge, and
according to the state-of-the-art methods (discussed in the
previous section), this is among the very initial efforts which
combines clustering and analysis on both tweets and blog posts
towards trend identification.

The proposed approach applies text clustering in an incremental
fashion for detecting and maintaining a set of dynamic clusters
based on the assumption the analysis at a “document” instead of at
a “term” level is more promising for providing trending topics that
have a meaningful context for users. Our clustering approach is
inspired by and extends the earlier work in TwitterStand [5], since
here we focus on expanding the original tweet content by
additional information as well focusing on trend detection rather
than news detection. Moreover, in our approach clusters which are
active at a given time constitute active topics which are of users’
interest and can be ranked based on their observed activity for
indentifying the most popular (trending). By dynamically
observing the clusters’ updating rate, we can identify trends at
their peak and detect the topics that are no more trending, instead
of applying a fixed-threshold based method that sets as inactive
clusters after a predefined period of time, such as in TwitterStand.
Moreover, compared to the aforementioned system, the proposed
application separately collects and clusters tweets that pertain to a
desired geographical area, rather than examining the geographical
scope of the resulting clusters as a post-analysis process.

Our approach builds on the idea of extending a microblogging
tuple (as captured in a tweet) by replacing hyperlinks appearing in
tweets’ text. This replacement is made such that this process will
“enlarge” the initial tweet content by following the included
hyperlink, distinguishing between two cases: i) using the web
pages’ title and content to replace the hyperlink once the latter
leads to a blog post, or ii) using solely its title for any other type
of web page. We have chosen to promote hyperlinks leading to
blogs, as we want to leverage the opinion-directed information
published by individuals in a Web 2.0 platform to obtain a more
substantial opinion-oriented tweet. To our knowledge this is the
first work that performs simultaneous analysis of trending topics
in: i) tweets, ii) blogs posts, and iii) tweets with extended content
(referred to from now on as extended tweets), focused on certain
geographic areas and attempts to analyze and evaluate differences
in the way information is spread in the different media, depending
on their type and orientation.

Thus, we propose that microblogging analysis is performed on a
real-time streaming fashion in order to capture constantly
changing trending users’ interests. Moreover, the proposed
analysis is further extended by the following facts:

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1215

 it exploits associations based on the broadcasting time,
alleviating gaps in earlier efforts such as in [1], which
employs a clustering method after identifying a set of
trending phrases and focuses only on the latter, in an
offline fashion;

 it deals also with the respective user’s physical location
(exploiting the tweet geo-location feature).

This type of joint multi-feature analysis is expected to produce
more fine-grained high-quality clusters of tweets which will
correspond to actual topics that are popular at a given location and
time period. It is also expected to alleviate the generally
acknowledged problem of noisy microblogging data (i.e. data that
contain uninteresting or meaningless information, as the joint
consideration of location (even at filtering level above the
clustering operation) and time will generally improve the
clustering quality and contribute to filtering out noisy tweets.

The general trend detection task that the proposed approach
addresses is outlined below.

Trend Detection Problem Formulation: Given a time-ordered
stream of users’ posts Pt, t = [1,… ∞), arriving in real-time
(tweets) or at a given time granularity (blog posts), identify topics
and associated posts that are popular (“trending”) at any given
time, and monitor their evolution across time in terms of
popularity.

Figure 1. Microblogging and Blogging Trend Detection

Outline

The problem outlined above distinguishes between: i) streams of
content pushed to the application as soon as it is generated (e.g.
such as tweets due to the availability of a streaming API), and ii)
new content which needs to be pulled by the web source in which
it is generated at a given rate (e.g. such as Google Blogger posts
due to the availability of a REST API). In the latter case, the new
data’s pulling rate determines how much the identified trends
correspond to the real-time users trending topics.

The proposed application is outlined in Fig. 1 and it actually
involves a 3-tier design that deals with the: i) collection of data in
a streaming manner from Twitter as well as from a pool of
selected blogs focused on a number of geographic areas, ii)
application of an online clustering technique on the data to detect
recent trending topics, and iii) refinement and ranking of clusters

such that trends are detected and visualized. These three tiers are
summarized in the next subsections.

3.1 The Data Collection Tier
The Data collection tier involves special online data aggregators
for collecting recently published content from Twitter and the
Blogosphere. The content corresponds to some specific
geographic area (such as a city level), leveraging the Twitter
Streaming API8 and Google Blogger API9 (other possibilities in
blogging and microblogging platforms can also be considered).
While the first API provides a continuous stream of recently
generated posts the second one is based on REST requests. To this
end, based on a collection of identifiers of blogs owned by
Blogger users who have declared that they reside within the
monitored geographic area, we use the API for requesting new
posts for each blog at a fixed time interval (e.g. daily, which is
reasonable since we do not expect blogs to be updated as
frequently as content in Twitter).

Special parsers have been developed for extracting hyperlinks
from tweets, with a separate thread undertaking the task of
retrieving the associated content from the web page they lead to
(either simply its title or also additional information if it leads to a
blog post). In order to identify clusters in both tweets, blog posts,
and extended tweets, three separate representation models have
been built for each type of content and for the analysis scope. The
tweet data model includes the attributes of: unique identifier, text,
(hash-)tags, timestamp, while the blog post data model has an
additional “title” attribute. The extended tweet model simply
incorporates one (or more) blog post entities in a given tweet
entity. In order to verify whether the incorporation of the
referenced blog posts actually leads to more meaningful trending
clusters, all tweets need to be represented in both the simple and
the extended tweet model (if any references)10 leading to two
different evolving datasets.

3.2 The Data Analysis and Processing Tier
The retrieved posts (either tweets, blog posts, or extended tweets)
are processed in order to produce clusters which contain posts
pertaining to the same topic. Data are filtered to remove low
quality content with typical approaches including filtering out
tweets/blog posts with very few terms, etc. Text sanitization
techniques are applied on the resources’ text to filter out common
words (defined in a stop word lists) and to perform stemming.
Next, resources, regardless of their type, are represented with a
common model that includes: a unique identifier, a TF-IDF-based
key-value map, a timestamp, and the resource’s type (tweet, blog
post, or extended tweet). For a given resource the key-value map
structure includes as keys all the resource’s unique terms, taken
from the initial data model’s text, tags and title (for blogs only)
attributes. Using the Lucene Search Engine library11 separate
indexes are kept for each resource type and for each attribute.
Though these indexes, TF-IDF key-value maps are obtained for
each attribute. In order to represent the resource’s textual content
with a single attribute, and taking into account that a given key
may exist in more than one attributes while usually tags and title
attributes are more significant of the resource’s content compared

8 https://dev.twitter.com/docs/streaming-api
9 http://code.google.com/apis/blogger/
10 Obviously, tweets with no references can also be represented in

the extended tweet model with zero encapsulated blog post
entities.

11 http://lucene.apache.org/core/

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1216

to the main text, the TF-IDF values for each key are combined in a
single value under an appropriate weighting scheme that assigns
more weight to terms in titles and tags. E.g. a given term T in a
blog post resource R will be assigned a score value as follows:

)(*),(*),(TIDFRTTFwRTSC texttexttext

)(*),(*)(*),(* TIDFRTTFwTIDFRTTFw tagstagstagstitletitletitle

In the equation above, wi stand for the weight for attribute i, which
is assigned a value in the interval [0,1]. Moreover, there is the
possibility of zero TF-IDF values for the attributes of R in which
term T does not exist.

Having a common resource representation, the data processing tier
implements the resources clustering process addressing the
following problem.

Web Data Streams Clustering Problem Formulation: Given a
time-point t, a new resource Rt created at t, and a set of n clusters
Ci, [i= 1…n] that are active at t, assign Rt to the cluster Ck for
which the similarity Sim(Rt,Ci) is maximized. If Sim(Rt,Ci) <
sim_threshold for each i in [1,n], then start a new cluster with Rt.

From the previous problem formulation it is evident that in order
to perform the new resource’s assignment to a cluster, a suitable
representation format for the clusters is needed, as well as the
selection of a similarity function. In general the framework is
flexible allowing the use of any similarity function that can be
applied on a given resource and cluster representation. In
Cloud4trends the cluster representation model includes the
following attributes: a unique identifier, a mean key-value map, a
mean timestamp, and a list of its members. The mean mean key-
value map and mean timestamp constitute the cluster’s centroid
since the first includes as keys the union of the terms included in
all clusters’ members and as values the average of the member’s
score values for each given term, while the second is the average
of the timestamps of the cluster’s members. Regarding the
similarity function, we have selected a variation of the cosine
similarity function, which is in general widely used for vector-
wise similarity calculations. This function takes also the time
aspect into account for the clustering process, as the timestamps
are also included in the similarity calculation to bring resources
closer to the clusters which on average contain members with
similar timestamps, via a Gaussian attenuator. In particular,
Cloud4Trends uses the following similarity measure (as it
appeared in [5]), where Map and Time are the corresponding
attributes of a (mean key-value map) key-value map and (mean
timestamp) timestamp for the (cluster) resource.

2

2

2
)..(

*).,.CosineSim(),Sim(
TimeCTimeR

itit

it

eMapCMapRCR

It is worth highlighting here is that the selection of the parameter’s
sim_threshold value should be wisely taken, because it affects
significantly the diversity of the clusters in terms of topic, as well
as the new clusters' generation rate, since a resource initiates a
new cluster when all calculated similarities are below the
sim_threshold.

3.3 The Trend Detection and Visualization
Tier
This tier builds on the basis of the outcome of the data processing
tier which produces three sets of clusters for the tweets’, blog

posts’, and extended tweets’ datasets. A given cluster can be
characterized as active or inactive based on whether it is
corresponds to topics that are popular at the given time, or it
corresponds to topics that are no longer considered as trending.
Clusters update rates are monitored to determine when a cluster
should be made inactive due to limited activity. To this end,
additional information is maintained for each cluster: the
evolution of the temporal distance between the timestamps of the
last two resources assigned to the given cluster. By taking the
moving average of the aforementioned parameter to smoothen its
evolution, we can identify periods of time when the cluster is
increasingly rising in popularity due to users’ intense activity,
when it is at its peak, as well as when it should be made inactive
due to a steady rise in the parameter’s value. It should be
mentioned here that in order to improve clusters’ quality very
small clusters (very few members) are considered as noise and
thus are eliminated.

Active clusters are considered as representative of topics that
concern web users at a given times, however, in order to identify
the actual trends, clusters should be ranked in terms of an activity
measure. To this end, for each type of content (and for a given
monitored location) Cloud4Trends retrieves the active clusters
and ranks them based on: i) their members’ number, and ii) their
mean timestamp, under the assumption that the “hottest” topics
are those that are referred to in many resources, and that are
additionally being created on average close to the current time.

The topics that characterize each cluster are identified as the terms
with the highest scores in the cluster’s mean key-value map.
Cloud4Trends then generates a summary description for each
cluster comprising of few member terms or phrases based on their
scores and their significance (hashtags, title terms, etc), while the
high-ranked clusters shape the trending topics for the given time.

By leveraging the clusters’ members’ information additional
analytics can be extracted for each trend such as when it first
appeared and with which resource, the time-period it spanned, and
how it evolved.

In Cloud4Trends trends are therefore calculated based on the three
different data sources for each location into investigation, while
they can be visualized in a web-based user interface separately for
each location and type of resource. By leveraging the analysis
results, such an interface can also visualize the history of trending
topics and also compares the popularity of a given topic in given
different locations. Depending on the update rates of the
resources’ types (e.g. faster in Twitter while slower in blogs), one
can decide on how often the clusters’ “trending scale” will be
recalculated.

4. THE TREND DETECTION CLOUD-
BASED FRAMEWORK
Since the scope of the proposed application is concentrated on
Web social data mining and analysis, it is prerequisite to collect
and compute online large datasets from web social services. In
addition, the versatile nature of the analysis in the specific field (
i.e. different information is needed when mining tweets compared
to blogs) poses a requirement to collect data from different Web
2.0 application services based on certain criteria, and depending
on each use case scenario.

The problem addressed by Cloud4Trends is certainly data
intensive as it involves concurrent analysis of large sizes of web
social data in an online fashion. Since our approach handles both
tweets, with unexpectedly peaks, and blogs whose sizes may be

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1217

considerably large, problems referring to handling large and
fluctuating sizes of data arise, and feasible approaches have to be
followed in order to address them. In particular, parallel
programming techniques are required for many operations in our
application, as for example:

 data should be concurrently analyzed for the different
geographic areas and their analysis should be fast;

 blogs and Twitter data should be collected in parallel;

 since our data collection module should be constantly
available for receiving new data, data that have already
arrived should be analyzed in a different concurrent
process.

Thus, the suggested ideas can heavily utilize the Cloud computing
paradigm which offers a significant ground for such social streams
mining applications due to its support via scalable and powerful
infrastructures [8]. Our design requirements match well with the
MapReduce computing paradigm, which codifies a generic
“recipe” for processing large datasets when this processing
consists of more than one stage. The MapReduce technology
matches the needs of the Clou4Trends data analysis and
processing tier, given that in a cloud-based deployment the
mapping operations can be distributed into separate computer
nodes. Prior to being ported to the Cloud, Cloud4Trends ran into a
multi-core computer, designed over a serializable software
architecture which posed obstacles in aggregating and analyzing
data from both Twitter and blogs. We believe that parallel
approaches in cloud computing infrastructures constitute viable
solutions for real-time large-scale data mining applications.

One of Cloud4Trends research aims is to validate the quality of
the resulting web content clusters and observe and quantify the
differences in the trends resulting from the three data sources
which represent different user groups. Moreover, we envision
conducting this kind of analysis for several geographic areas. As
future extension we want to implement a visualization layer so
that it attracts a number of end-users who are interested and may
benefit from our identified trends and their history. These end
users should have the option of inputting a number of general
categories of their interest which will be matched by the
application, based on a tailored concept ontology, with the
corresponding topic clusters and their rank in the “trending scale”.
The aforementioned research and exploitation primary and
secondary priorities certainly impose extra demands on computing
resources. Since most researchers have difficulty in acquiring a
powerful datacenter, we believe that Cloud infrastructure can be
leveraged for efficiently handling both the data’s high scalability,
the requirement for real-time tweet processing and clusters’
update, as well as for ensuring quality of service for an increasing
number of end users.

4.1 The VENUS-C Infrastructure
The suggested system (as described in previous section) is
currently implemented in the context of the so called
“Cloud4Trends” experiment12 entitled “Leveraging the Cloud
infrastructure for localized real-time trend detection in social
media”, which runs over the VENUS-C infrastructure. VENUS-
C13 (Virtual Multidisciplinary EnviroNments USing Cloud
Infrastructures) is a pioneering project that develops and deploys
a Cloud computing service for research and industry communities

12 http://oswinds.csd.auth.gr/?page_id=1320
13 http://www.venus-c.eu/

in Europe by offering an industrial-quality, service-oriented
platform based on virtualization technologies and taking
advantage of previous experience on Grids and Supercomputing,
to facilitate a range of research fields through easy deployment of
end-user services.

VENUS-C offers several service components to allow a wide
range of end-user applications (targeting mainly research groups
and SMEs) to benefit from the advantages of a Cloud computing
platform, without having to develop custom Cloud-aware
solutions. It offers a selection of programming models that,
combined with appropriate data access mechanisms, constitute a
convenient abstraction for deploying scientific applications on top
of plain virtual machines. Each programming model is enacted
behind a job submission service, where researchers can submit
jobs and manage their workload [11]. VENUS-C programming
model enactment services expose their functionality via an Open
Grid Forums Basic Execution Service (OGF BES) [14] and Job
Submission Description Language (JSDL) [15] compliant web
service interface, and take care of the enactment of a job at a
given Cloud Provider. Currently, two programming models are
implemented in VENUS-C for the efficient execution of different
processes on the cloud based on complex patterns (such as
Map/Reduce or Workflows), namely COMPSs and a VENUS-C
tailored implementation of Microsoft’s Generic Worker [12].
Each enactment service deploys a specific application on a
number of either Windows Azure14 virtual machines or Unix
virtual resources from open source Cloud middlewares
(OpenNebula15 & EMOTIVE Cloud16). To run their applications,
end-users should first upload their executables at a Cloud-based
application repository so as to be accessed by the enactment
service depending on the description of an incoming job request.

A Cloud-based data management SDK is provided by VENUS-C
for handling all data transfer operations between the Cloud
infrastructure and the on-premises client applications, which
supports the Storage Networking Industry Association (SNIA)
Cloud Data Management Interface (CDMI) specification [16].
The CDMI interface is exposed by a separate web service
deployment, and enables unified access to different cloud
providers, thus promoting interoperability. Resource monitoring
has also been taken into account in VENUS-C so that each end-
user is to be able to identify its application’s resource
consumption via the VENUS-C Accounting Service.

4.2 The Cloud4Trends Cloud-based
Architecture
The suggested design is implemented in Cloud4Trends under the
previously described 3-tiered conceptual design structure.
Cloud4Trends is implemented as a hybrid application based on
the cooperation of: i) on-premises client interface components and
ii) multiple job execution components with different
functionalities on top of the VENUS-C Cloud services
infrastructure. In particular, Cloud4Trends uses VENUS-C
Generic Worker programming model for job submission and
application deployment on top of the Azure Cloud infrastructure.
The Generic Worker is best suited for data-driven task-based job
submissions, with each job description specifying a number of
input file dependencies and requirements for the generation of
some output files, in a command line-like execution format.

14 http://www.windowsazure.com/
15 http://opennebula.org
16 http://www.emotivecloud.net/

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1218

Fig. 2 illustrates the three Cloud4Trends modules, namely: the
Collect module, the on-the-Cloud module, and the Cloud services
module. These modules support the proposed 3-tier design
(described above) such that the Client module implements the
Data Collection and Visualization tiers, whereas the Cloud-based
module implements the Data Processing and knowledge
/extraction tier.

Figure 1. The Trend Detection Cloud-based framework

More specifically, the proposed framework involves three
modules as discussed next:

 collect module: it operates as a client module and involves
the required blogging and microblogging data collectors and
their interfaces required for the communication with the
VENUS-C infrastructure (and its services). These refer to the
interfaces needed for supporting the experiment’s setting and
monitoring, as attached to the on-premises server. The client
module facilitates new experiments’ submission and progress
monitoring for the ones currently running. The web interface is
needed to communicate the Cloud4Trends results to end users,
as well as to implement the Twitter and Blog Data Collectors,
receiving stream data in real time or at specified time intervals;

 “on the cloud” module: involves the Cloud4Trends Data
analysis and Processing Tier, which has been ported to the
Cloud. In particular, data Parsing and Clustering modules have
been deployed via the VENUS-C Services, i.e. the related
operations are submitted as jobs via the enactment service
under the Generic Worker programming model. The clustering
modules are realized by the Splitter, Similarity Calculation
(Mapper), and Aggregation (Reducer) modules, under the
Map-Reduce paradigm. The Indexing Services module is
implemented independently as a separate set of Cloud services
that are responsible for creating indexes for each type of input
data (tweets, blog posts, extended tweets);

 cloud services module: it involves the specific VENUS-C
components used for assisting and simplifying the
application’s porting to the Cloud. More specifically, the
VENUS-C Data Access SDK is used for accessing the Cloud
Storage (Blobs and Tables) when retrieving or uploading data
via a Client, while the VENUS-C Execution (enactment)
Service is used for submitting, distributing, and setting up new
processing jobs to the Cloud.

An indicative workflow is orchestrated as follows. The collect
module, which is responsible for collecting data from the Web
(Twitter and the Blogosphere) and initializing new experiments
when required by the researchers, submits new Parsing jobs
(executed by Twitter or Blog Parsers) to the cloud via the Job
Submission Client of Generic Worker, which is hosted at the
Execution Service, when new data are available. The required
data for each given job are uploaded, as a batch, using the Data
Access Service to Azure Blobs. Cloud4Trends’ Indexing Service
Module consists of three separate Azure services (for indexing
tweets, blog posts, and extended tweets) that are responsible for
the Full Text Indexing of the parsed data using the a Lucene
library for Azure17. These services are notified that new (parsed)
data are available for indexing by polling three dedicated Azure
queues, respectively. When an Indexing service completes its
execution it initiates a Splitter Job using the Generic worker’s
Job Submission Client, which receives as input data the new
resources’ representations under the model described in Section
3.2. Such representation (including the combined TF-IDF map
structures are emitted by the Indexing services). The Splitter
application also downloads the appropriate currently active
clusters from the corresponding Azure Table. As long as our
system handles the concurrent analysis of several new data
batches, different jobs should be instantiated and executed in
parallel to effectively process all data. According to that, different
Similarity Calculation Workers (Mapper jobs) are submitted by
each Splitter job, via the Execution Service module, and in
particular using the Generic Worker Local Job Submission
service, which calculate the similarity scores between the new
resource and the respective active clusters. An Aggregation
Worker (Reducer job) is also submitted by the Splitter Job via
the Local Job Submission service, to collect all similarity score
combinations emitted by the corresponding Mapper jobs, and
identify the best match to an existing cluster for each resource, or
initiate a new cluster for any item whose similarity with each
existing cluster is below a specific threshold.

5. IMPLEMENTATION DETAILS AND
FUTURE OUTLOOK
The Cloud4Trends pilot project was initiated in June 2011 and is
now at an Alpha Prototype state. So far, the following steps have
been taken.

 the on-premises data (tweet and blog post) collection
applications have been seamlessly integrated with the
job submission client into a real-time text parsing job
submission system.

 the Generic Worker’s suitability for frequent successive
job submissions has been verified.

 the data indexing services have been deployed in Azure
using the Azure Library for Lucene.NET.

 communication between the Cloud-based data parsers
and the indexing services has been achieved via queues.

17 http://code.msdn.microsoft.com/windowsazure/Azure-Library-

for-83562538

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1219

 the whole job submission workflow (including the
submission of parsing and distributed clustering jobs)
has been deployed in the Cloud. This was accomplished
with use of the VENUS-C enactment service and the
Generic Worker, which allowed the implementation of
the workflow via the submission and “cooperation” of
data-dependent jobs, as well as through the queue-based
communication between Generic Worker computing
instances and the Indexing Cloud-based services.

 scalability issues are addressed by a special component
that pulls the status and time duration of submitted jobs
using the VENUS-C Accounting Service, and increases
the number of virtual machine instances when delays are
observed for a representative number of submitted jobs.

 a separate component has been developed that
communicates with the dedicated Cloud Tables for
monitoring the clusters’ “activity” and for updating their
states.

 clusters’ representations are downloaded to the (local)
client-side component at a parameterized time interval,
and then ranked for “hottest” trends identification.

Future work is focused around the following axes: i) the fine-
tuning of the clustering and trend detection algorithm and the
experimental evaluation of results, ii) the implementation of a
shard-based distributed Indexing service since for the time being
the service for each type of resource is deployed on a single
instance, iii) measuring the system’s performance for different
design parameters, and iv) creating a web-based user interface
(hosted either on Cloud or on premises) for visualization of the
detected real-time trends and trends’ analytics.

The benefit that Cloud4Trends offers is that it verifies that Cloud-
based architectures constitute a viable solution for online web data
mining applications which can be beneficial for both researchers
and entrepreneurs. In particular, the proposed framework enables
massive data analysis at a distributed setting, thus reducing the
prerequisite for real-time applications data processing time. At the
same time is allows easier testing of new algorithms/use-case
scenarios, achieving high-quality results with lesser cost, allowing
developers/scientists to focus on applications’ refinement/testing,
rather than on how to setup and operate the underlying
infrastructures. Moreover, Cloud-based solutions can improve
application capability sharing, by easily exposing research results
to other research groups or interested end-users.

In summary the proposed framework (as realized by the
Cloud4Trends experiment), demonstrates that porting trend
detection into the Cloud is a very suitable solution considering the
challenges posed by the data and time intensive processes
involved in online collection and analysis of large and evolving
Web 2.0 datasets.

6. ACKNOWLEDGMENTS
This work is partly funded and realized within the Cloud4Trends
pilot project of the VENUS-C project. VENUS-C (Virtual
multidisciplinary EnviroNments USing Cloud infrastructures) is
co-funded by the GÉANT and e-Infrastructures Unit, DG
Information Society and Media, European Commission. VENUS-
C brings together 14 partners from Europe. Microsoft invests in
Azure resources and manpower through Redmond and its
European research centres.

7. REFERENCES
[1] N. S. Glance, M. Hurst, and T. Tomokiyo: BlogPulse:

Automated Trend Discovery for Weblogs. In WWW
Conference. 2004.

[2] M. Uchida, N. Shibata, and S. Shirayama: Identification and
Visualization of Emerging Trend from Blogosphere, in
proceedings of International Conference on Weblogs and
Social Media (ICWSM), pp. 305-306, 2007.

[3] M. Mathioudakis, N. Bansal, and N. Koudas: Identifying,
attributing and describing spatial bursts. Proc. VLDB
Endow. 3, 1-2 (September 2010), 1091-1102. 2010.

[4] B. E. Teitler, M. D. Lieberman, D. Panozzo, J.
Sankaranarayanan, H. Samet, and J. Sperling: NewsStand: a
new view on news. In GIS '08. ACM, Article 18, 10 pages.
2008.

[5] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D.
Lieberman, and J. Sperling: TwitterStand: news in tweets.
In Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems (GIS '09). ACM, 42-51. 2009.

[6] M. Mathioudakis and N. Koudas: TwitterMonitor: trend
detection over the twitter stream. In Proceedings of the 2010
international conference on Management of data (SIGMOD
'10). ACM, 1155-1158. 2010.

[7] V. Koutsonikola, A. Vakali, E. Giannakidou, I.
Kompatsiaris: Clustering Users of a Social Tagging System:
A Topic and Time Based Approach. WISE 2009: 75-86.
2009.

[8] I. Livenson and E. Laure: Towards transparent integration of
heterogeneous cloud storage platforms. In DIDC '11. ACM,
27-34. 2011.

[9] M. Giatsoglou and A. Vakali: Capturing Social Data
Evolution via Graph Clustering. IEEE Internet Computing.
2012. Preprint. DOI: 10.1109/MIC.2012.24.

[10] Spärck Jones, Karen: A statistical interpretation of term
specificity and its application in retrieval. Journal of
Documentation 28 (1): 11–21. 1972. DOI:10.1108/eb026526.

[11] D. Lezzi, R. Rafanell, F. Lordan, E. Tejedor, R.M. Badia:
COMPSs in the VENUS-C Platform: enabling e-Science
applications on the Cloud. In Proceedings of 4th Iberian
Grid Infrastructure Conference, Santander, 2011, 73-84.

[12] Yogesh Simmhan, Catharine van Ingen, Girish Subramanian,
and Jie Li: Bridging the Gap between Desktop and the Cloud
for eScience Applications. In Proceedings of the 2010 IEEE
3rd International Conference on Cloud Computing (CLOUD
'10). IEEE Computer Society, 474-481. 2010.

C. Taylor, (June 27, 2011): Social networking 'utopia' isn't
coming. CNN. http://articles.cnn.com/2011-06-
27/tech/limits.social.networking.taylor_1_twitter-users-
facebook-friends-connections?_s=PM:TECH.

[13] Foster I. et. al:OGSA Basic Execution Service Version 1.0.
Grid Forum Document GFD-RP. 108. 8 August 2007.

[14] Savva A (Editor). Job Submission Description Language
(JSDL) Specification, Version 1.0. Grid Forum Document
GFD-R.056. 7 November 2005.

[15] SNIA CDMI: http://www.snia.org/cdmi

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1220

