Caching Techniques for Parallel I/O Servicing

Athena Vakali
Department of Informatics
Aristotle University
54006 Thessaloniki, Greece
email: {avakali}@csd.auth.gr

Abstract Parallel and distributed systems archi-
tectures support parallel I/O components.Caching
has been applied to distributed I/0 subsystems as a
standard solution to the problems of fastening data
accessibility and increasing data reliability. Cache
consistency mechanisms have been implemented in
order to influence the cache usefulness in a posi-
tive way. This paper presents a new caching tech-
nique based on the genetic algorithm idea and exam-
ines the effect of this technique on the parallel I/0
cache consistency and updating process. Cached
data blocks on parallel disks are considered as a
population evolving over simulated time and are
updated at regular intervals towards an improved
cache content. The proposed cache update scheme
is compared with the LRU caching scheme which
has been widely adopted. The proposed technique
shows improved performance compared to conven-
tional caching under simulation runs for various
workloads.

Keywords: parallel and distributed I/O subsys-
tems, distributed caching, I/O bottleneck, genetic
algorithm applications.

1 Introduction

Performance in parallel and distributed sys-
tems has been related to the I/O processing
since the drastic increase in processors speeds
has been followed by a much slower increase
rate in I/O servicing. As it is expected, I/O re-
quirements will keep increasing in parallel and
distributed applications and operating systems

should be designed to deal directly with the
I/O problems [8, 6]. I/O bottleneck is a ma-
jor research subject for parallel and distributed
systems since it demands attention and man-
agement at all levels of system design. The
most widely adopted solution to the I/O bot-
tleneck problem is the use of storage subsys-
tems with parallel functionality and capabil-
ities. Multiple disks are used in parallel in
order to icrease data availiability and access
parallelism. Data redundant storage has been
implemented by several multiple disk schemes
attached to one or more controllers and sup-
ported by identical or various disk drive con-
figurations.

Caching is a powerful and transparent tech-
nique used in order to optimize performance
in parallel and distributed systems. It has
been applied in a client - server model in or-
der to facilitate and fasten the necessary sys-
tem interactions. Caching is implemented in
the client environment, by retaining copy of
server’s data for a later use, avoiding the need
to re-contact the server’s environment. The
usefuleness of caching depends upon the idea
of accesing again soon the data having been
accessed most recently [1, 2, 9]. Cache effi-
ciency depends on its content update frequency
as well as on the algorithmic approach used
to retain the cache content reliable and consis-
tent. Several approaches have been suggested
for more effective cache management and the
problem of maintaining an updated cache has
gained a lot of attention recently, due to the
fact that many distributed system caches of-

ten fail to maintain a consistent cache. Several
techniques and frameworks have been proposed
towards a more reliable and consistent cache
infrastructure [3].

Genetic Algorithms(GA) belong to the evo-
lutionary methods, used to solve many com-
putational problems demanding optimization
and adaptation to changing environments. GA
are search algorithms based on the mechanics
of natural selection and natural genetics. The
innovation of GAs is that they work with a
coding of the parameter set, not the parame-
ters themselves, they search from a population
of points and they use probabilistic transition
rules. The main idea in the GA approache is
to evolve a population of candidate solutions
to a given problem, using operations inspired
by natural genetic variation and natural se-
lection (expressed as “survival of the fittest”).
GAs have been applied in various research ar-
eas such as scientific modeling, machine learn-
ing as well as network infrastructure [7, 10, 4].

This paper deals with the problem of main-
taining consistent and updated caches in a par-
allel I/O subsystem. The caches are updated
by adapting the evolutionary computation idea
to preserve a consistent cache ’population’ of
data blocks. Each cache is modeled as a pop-
ulation of server’s data blocks and cache con-
tent is updated at regular intervals by a GA
approach. The model is experimented under
simulation runs and the results are compared
with the corresponding cache hit rates under
conventional LRU caching mechanism.

The remainder of the paper is organized as
follows. The next section describes caching
in parallel I/O subsystems and presents the
GA technique introduced for these caching
schemes. Sections 3 presents the experimen-
tation results produced by the simulator de-
veloped for the GA caching. Section 4 points
some conclusions and discusses potential future
work.

=
=]
- -

T

Request 1

Disk 1

=
=]
-

T

Request2

0t
IH\HJ\‘H
10

Multi-drive EDI
CONROLLER

(LI

Disk 2
TN
N

Disk N

Figure 1: The parallel I/O subsystem.

2 Caching for Parallel I/O

Several parallel I/O subsystems have been sug-
gested in modern parallel and distributed sys-
tems. Most of these assumes the hierarchical
memory model proposed in [11] where an ab-
stract machine consists of a set of processors
interconnected via a high-speed network and
each processor access an appropriate I/O con-
troller. Furthermore, modern I/O subsystems
are reinforced with quite efficient mechanisms
implemented as policies that perform schedul-
ing, reordering of I/O requests or read-ahead.
The current complicated storage systems in-
frastructure hardens the development of ana-
lytic as well as simulation models. Disk con-
troller has been considered as the most suitable
component for hosting storage systems policies
and current technology provides efficient con-
trollers with respect to the disk drive’s func-
tionality. Most disk controllers are reinforced
with self-managing techniques through stan-
dard interfaces used on standard systems with-
out software modifications [5].

Each of these controllers manages a set of
disk drives. The controller is responsible for
managing and directing read/write requests to
the queues of the disk drives. Each disk has an
associated cache with server’s data blocks be-

ing updated frequently by cache management
algorithms (Figure 1).

2.1 Conventional Caching

Caching is a powerful and transparent tech-
nique used in order to optimize performance
in parallel and distributed systems. Caching
was initially introduced to provide an interme-
diate storage space between the main memory
and the processor by relying on locality of ref-
erence i.e., assume that the most recently ac-
cessed data has the highest potential of being
accessed again soon. Caching has been applied
in a client-server model in order to facilitate
and fasten the necessary system interactions.

The caching principle was extended to par-
allel and distributed systems When servicing
an I/O request from the storage device queue
the cache is searched first. A request is said to
be a cache hit when all of the requested data
blocks are found in cache. The hit rate is the
percentage of all I/O requests being served by
the cache. The Least Recently Used (LRU)
algorithm is the most popular for the cache
updating process and has been used in many
caching applications. The cache update is per-
fomed by replacement of the data blocks used
least in the recent past. LRU is quite easily
implemented since it takes into account only
the time since last access of the cache blocks
[9]. Variations of LRU have also been used and
implemented in many parallel and distributed
caching schemes.

2.2 A Genetic algorithm for Caching

A GA is an iterative procedure that consists of
a constant-size population of individuals each
one represented by a finite string of symbols,
encoding a possible solution in a given prob-
lem space. The standard GA generates an
initial population of individuals, which is up-
dated at each evolutionary step resulting in a
new “generation”. The basic idea of the model
presented here is to support caching under a
scheme which is evolved over simulated time

CACHE

/’ BLOCKS

- Evaluate
New cache
Fitness -

Select fittest
blocks

=

New cache content
Crossover / Mutation

Figure 2: The Genetic Algorithm process.

ot iotob] e fofof el 1[0 1]

@CROSSOVER

Lol 1 [ol i ull1]o]1]

il 1ol o] 1folol1]

Lol 1 o[1[1] olo] 1H|E>H0\1\0\n\ 1 olo[1]

MUTATION

Figure 3: operators: crossover and mutation.

by an iterative approach resembling the GA
process.

The individuals in the current population
are decoded and evaluated according to some
predefined quality criterion, called fitness func-
tion. Each individual’s fitness is an important
parameter, usually given as part of the prob-
lem’s description. Two genetically-inspired op-
erations, known as crossover and mutation are
applied to selected individuals in order to suc-
cessively create stronger generations. Figure 3
depicts these two operations in a 8-bit string
individual. Crossover is performed between
two individuals (parents) with some probabil-
ity, in order to identify two new individuals re-
sulting by exchanging parts of parents’ strings.
The exchanging of parents parts are performed
by cutting each individual at a specific bit po-

sition and produce two “head” and two “tail”
segments. The tail segments are then swapped
over to produce two new full length individ-
ual strings. Mutation is introduced in order
to prevent premature convergence to local op-
tima by randomly sampling new points in the
search space. Mutation randomly alters each
individual under a (usually) small probability
(e.g. 0.001).

Provided that GA has been correctly imple-
mented, the population will evolve over suc-
cessive generations such that the fitness of the
best and the average individual in each gener-
ation is improved towards the global optimum.

In the presented model a cache is main-
tained on each disk device of the parallel I/O
subsystem and cache entries are server’s data
blocks being requested previously. The pro-
posed model attempts to improve the cache
content on each device by applying a GA-based
update scheme in order to result in an im-
proved and “stronger” cache content (Figure
2). A string representation was used to identify
each cached data block. Each cached object is
assigned with a “fitness” value derived by a
function used to characterize its “strength” in
order to drive the evolution of the cache pop-
ulation efficiently. Therefore, the access fre-
quency of each data block is used as its fitness
value. Access frequency has been chosen as the
fitness value since it is the most indicative cri-
terion for the decision of data blocks remaining
or leaving the cache. Therefore, in the pre-
sented model the cache update will result by
the cache blocks “re-generation” performed in
each disk drive’s cache.

3 Experiments - Results

The proposed GA model follows the Simple
GA proposed in [7] with a modest crossover
probability (0.6) and a low mutation proba-
bility (0.0333). The simulator used artificial
workload of parallel I/O requests randomly
distributed among the disk drives. The GA
cache update scheme is implemented in order
to perform cache reform and re-“generation”

Cache hit_rate ; generations
06 T T

LRU -—
GA —+—

05|

04

cache_hit rate
o
&
.

L L L

02|

01

st

| | | |
20 40 60 80 10
of generations

Figure 4: avg/max fitness over generations

Bytes hit length
5500 T

5000 LRU <—

GA —+—

4500 -

4000

3500

3000

bytes length (KBytes)

n n n n n n n

2500

2000 -

1500

1000

st

| | | |
20 40 60 80 10
of generations

Figure 5: bytes hit; over generations

at regular time intervals. At these regural in-
tervals both LRU and GA schemes have been
implemented and tested. Under LRU the
cache update is performed by the removal of
cache blocks least recently used, whereas un-
der GA the cache is updated by favoring the
fittest cache blocks i.e., the data blocks that
have been accessed most frequently. The GA
scheme has been tested for different number of
generations and the corresponding LRU is also
evaluated.

The effectiveness of caching is measured by
the hit ratio, i.e. the ratio of cache hits to
all requests and by the byte hit ratio, i.e. the

Cache hit_rate ; generations
06 T T

LRU -—
GA —+—

05|

o
=
T

cache_hit rate

o
w

02|

01

| | | | |
20 40 60 80 100
of generations

Figure 6: avg/max fitness over generations

Bytes hit length
3500 T

3000 - LRU ~—
GA —+—

2500

bytes length (KBytes)

2000

1500 -

1000

| | | | |
20 40 60 80 100
of generations

Figure 7: bytes hit; over generations

size of the I/O requests served by the cache.
The byte hit ratio is considered as a bet-
ter metric since it representes the actual vol-
ume of the cache served requests. Figures 4,
5, depict the effect of the number of genera-
tions to the cache and bytes hit rates respec-
tively, for a cache population being reproduced
over 10,20, ---,100 generations. As shown in
these figures GA caching is shown to be quite
beneficial when compared with a conventional
caching strategy as LRU algorithm. The im-
provement is greater as the generation number
increases. More specifically, GA is almost 20%
better than the corresponding LRU concerning

cache hit rates (e.g. cache hit rates for 100 gen-
erations run). The GA is also improved con-
siderably (rates of almost 50%) in the bytes
hit rate compared to the corresponding LRU
scheme.

The crossover operation is crucial with re-
spect to the effectiveness of the GA scheme.
Therefore the model is experimented for var-
ious crossover probability values, in order to
result in a more reliable GA model. Figures
6 and 7, depict the effect of the number of
generations to the cache and bytes hit rates
respectively, under crossover probability equal
to 0.8 and for a cache population being re-
produced over 10,20, - - -, 100 generations. The
mutation probability remains as in the previ-
ous simulation run (Figures 4 and 5). The high
crossover probability in the GA will result in
a major cache reform and the cache content
will be updated more drastically. As shown in
these figures, GA caching is shown to be not
as beneficial as the similar GA scheme with
the lower crossover probability of 0.6. The
GA still shows a better performance compared
with a conventional caching strategy as LRU
algorithm. Again, the improvement is greater
as the generation number increases. There-
fore, it is quite important for the GA model
to run under a “realistic” crossover probabil-
ity, as suggested by the standard Genetic algo-
rithm model.

4 Conclusions - Future Work

Caching in a I/O subsystem is studied under a
Genetic algorithm in order to improve system’s
responsiveness for parallel I/O request servic-
ing. The simulation process included almost
all of the necessary parameters to implement
the cache content and the LRU caching pol-
icy has been used as a comparative technique.
The proposed scheme has been proven quite
effective since cache population evolved over
the simulation time for an increasing number
of parallel I/O requests.

Further research should expand the present
scheme under different fitness selection poli-

cies.

(e.g.

Other evolving computation schemes
simulated annealing, threshold accep-

tance), could be adopted in caching on parallel
I/O systems, in order to study their effect on
cache consistency and hit rates.

References

[1]

M. A. Blaze: “Caching in Large-Scale Dis-
tributed File Systems”, Princeton Univer-
sity, PhD thesis, Jan 1993.

G. Coulouris, J. Dollimore, T. Kindberg:
Distributed Systems, Concept and Design,
2nd ed., Addison-Wesley, 1994.

P. Danzig: NetCache Architecture and
Deployment, Proceedings of the 3rd In-
ternational WWW Caching Workshop,
Manchester, England, Jun 1998.

B. Dengiz, F. Atiparmak, A. E. Smith :
“Local Search Genetic Algorithm for Op-
timization of Highly Reliable Communi-
cations Networks”, IEEE Transactions on
Evolutionary Computation, Vol.1, No. 3,
pp. 179-188, Aug 1997.

R. English and A. Stepanov: “Loge : A
Self-Organizing Disk Controller”, HPL-
91-179, HP Labs, Technical Report, Dec.
1991.

G.A. Gibson, J.S. Vitter, J. Wilkes et al.:
“Strategic directions in Storage I/O Issues
in Large-Scale Computing”, ACM Com-
puting Surveys, Vol.28, No.4, pp.779-763,
1996.

D. Goldberg: Genetic
Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.

R. Jain, J. Werth, J. C. Browne (edi-
tors): Input/Output in Parallel and Dis-
tributed Computer Systems, Kluwer Aca-
demic Publishers, 1996.

R. Karedla, J. S. Love and B. G.
Wherry: “Caching Strategies to Improve

[10]

[11]

Disk System Performance”, IEEE Com-
puter, Vol.27, No. 3, pp. 38-46, Mar 1994.

T. Starkweather, D. Whitley and K.
Mathias: “Optimization Using Dis-
tributed Genetic Algorithms”, Parallel
Problem Solving, Springer Verlag, 1991.

J. Vitter and E. Shriver: “Algorithms
for Parallel Memory LII”, Department
of Computer Science, Brown University,

Technical Report CS-90-21, Sep. 1990.

