
Caching Techniques for Parallel I�O Servicing

Athena Vakali

Department of Informatics

Aristotle University

����� Thessaloniki� Greece

email� favakalig�csd�auth�gr

Abstract Parallel and distributed systems archi�

tectures support parallel I�O components�Caching

has been applied to distributed I�O subsystems as a

standard solution to the problems of fastening data

accessibility and increasing data reliability� Cache

consistency mechanisms have been implemented in

order to in�uence the cache usefulness in a posi�

tive way� This paper presents a new caching tech�

nique based on the genetic algorithm idea and exam�

ines the e�ect of this technique on the parallel I�O

cache consistency and updating process� Cached

data blocks on parallel disks are considered as a

population evolving over simulated time and are

updated at regular intervals towards an improved

cache content� The proposed cache update scheme

is compared with the LRU caching scheme which

has been widely adopted� The proposed technique

shows improved performance compared to conven�

tional caching under simulation runs for various

workloads�

Keywords� parallel and distributed I�O subsys�

tems� distributed caching� I�O bottleneck� genetic

algorithm applications�

� Introduction

Performance in parallel and distributed sys�
tems has been related to the I�O processing
since the drastic increase in processors speeds
has been followed by a much slower increase
rate in I�O servicing� As it is expected� I�O re�
quirements will keep increasing in parallel and
distributed applications and operating systems

should be designed to deal directly with the
I�O problems ��� ��� I�O bottleneck is a ma�
jor research subject for parallel and distributed
systems since it demands attention and man�
agement at all levels of system design� The
most widely adopted solution to the I�O bot�
tleneck problem is the use of storage subsys�
tems with parallel functionality and capabil�
ities� Multiple disks are used in parallel in
order to icrease data availiability and access
parallelism� Data redundant storage has been
implemented by several multiple disk schemes
attached to one or more controllers and sup�
ported by identical or various disk drive con�
�gurations�

Caching is a powerful and transparent tech�
nique used in order to optimize performance
in parallel and distributed systems� It has
been applied in a client � server model in or�
der to facilitate and fasten the necessary sys�
tem interactions� Caching is implemented in
the client environment� by retaining copy of
server	s data for a later use� avoiding the need
to re�contact the server	s environment� The
usefuleness of caching depends upon the idea
of accesing again soon the data having been
accessed most recently �
� �� ��� Cache e�
ciency depends on its content update frequency
as well as on the algorithmic approach used
to retain the cache content reliable and consis�
tent� Several approaches have been suggested
for more e�ective cache management and the
problem of maintaining an updated cache has
gained a lot of attention recently� due to the
fact that many distributed system caches of�

ten fail to maintain a consistent cache� Several
techniques and frameworks have been proposed
towards a more reliable and consistent cache
infrastructure ����

Genetic Algorithms�GA� belong to the evo�
lutionary methods� used to solve many com�
putational problems demanding optimization
and adaptation to changing environments� GA
are search algorithms based on the mechanics
of natural selection and natural genetics� The
innovation of GAs is that they work with a
coding of the parameter set� not the parame�
ters themselves� they search from a population
of points and they use probabilistic transition
rules� The main idea in the GA approache is
to evolve a population of candidate solutions
to a given problem� using operations inspired
by natural genetic variation and natural se�
lection �expressed as �survival of the �ttest���
GAs have been applied in various research ar�
eas such as scienti�c modeling� machine learn�
ing as well as network infrastructure ���
�� ���

This paper deals with the problem of main�
taining consistent and updated caches in a par�
allel I�O subsystem� The caches are updated
by adapting the evolutionary computation idea
to preserve a consistent cache 	population	 of
data blocks� Each cache is modeled as a pop�
ulation of server	s data blocks and cache con�
tent is updated at regular intervals by a GA
approach� The model is experimented under
simulation runs and the results are compared
with the corresponding cache hit rates under
conventional LRU caching mechanism�

The remainder of the paper is organized as
follows� The next section describes caching
in parallel I�O subsystems and presents the
GA technique introduced for these caching
schemes� Sections � presents the experimen�
tation results produced by the simulator de�
veloped for the GA caching� Section � points
some conclusions and discusses potential future
work�

Disk N

Disk 2

.

.

.

Disk 1

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

CACHE

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

CACHE

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

CACHE
Multi-drive
CONROLLER

.

.

.

Request 1

Request k

Request 2

Figure
� The parallel I�O subsystem�

� Caching for Parallel I�O

Several parallel I�O subsystems have been sug�
gested in modern parallel and distributed sys�
tems� Most of these assumes the hierarchical
memory model proposed in �

� where an ab�
stract machine consists of a set of processors
interconnected via a high�speed network and
each processor access an appropriate I�O con�
troller� Furthermore� modern I�O subsystems
are reinforced with quite ecient mechanisms
implemented as policies that perform schedul�
ing� reordering of I�O requests or read�ahead�
The current complicated storage systems in�
frastructure hardens the development of ana�
lytic as well as simulation models� Disk con�
troller has been considered as the most suitable
component for hosting storage systems policies
and current technology provides ecient con�
trollers with respect to the disk drive	s func�
tionality� Most disk controllers are reinforced
with self�managing techniques through stan�
dard interfaces used on standard systems with�
out software modi�cations ����

Each of these controllers manages a set of
disk drives� The controller is responsible for
managing and directing read�write requests to
the queues of the disk drives� Each disk has an
associated cache with server	s data blocks be�

ing updated frequently by cache management
algorithms �Figure
��

��� Conventional Caching

Caching is a powerful and transparent tech�
nique used in order to optimize performance
in parallel and distributed systems� Caching
was initially introduced to provide an interme�
diate storage space between the main memory
and the processor by relying on locality of ref�
erence i�e�� assume that the most recently ac�
cessed data has the highest potential of being
accessed again soon� Caching has been applied
in a client�server model in order to facilitate
and fasten the necessary system interactions�

The caching principle was extended to par�
allel and distributed systems When servicing
an I�O request from the storage device queue
the cache is searched �rst� A request is said to
be a cache hit when all of the requested data
blocks are found in cache� The hit rate is the
percentage of all I�O requests being served by
the cache� The Least Recently Used �LRU�
algorithm is the most popular for the cache
updating process and has been used in many
caching applications� The cache update is per�
fomed by replacement of the data blocks used
least in the recent past� LRU is quite easily
implemented since it takes into account only
the time since last access of the cache blocks
���� Variations of LRU have also been used and
implemented in many parallel and distributed
caching schemes�

��� A Genetic algorithm for Caching

A GA is an iterative procedure that consists of
a constant�size population of individuals each
one represented by a �nite string of symbols�
encoding a possible solution in a given prob�
lem space� The standard GA generates an
initial population of individuals� which is up�
dated at each evolutionary step resulting in a
new �generation�� The basic idea of the model
presented here is to support caching under a
scheme which is evolved over simulated time

�����

������

������������	�

�
����	�

�����������������
��������� � �	
�
��

����������

���������

�����		��

Figure �� The Genetic Algorithm process�

�

� � � � � � � � � � � � � � � �

� � � � � � � �� � � � �� � �

���������

� � � � � � � �

���	�
��

� � � � � � �

Figure �� operators� crossover and mutation�

by an iterative approach resembling the GA
process�

The individuals in the current population
are decoded and evaluated according to some
prede�ned quality criterion� called �tness func�
tion� Each individual	s �tness is an important
parameter� usually given as part of the prob�
lem	s description� Two genetically�inspired op�
erations� known as crossover and mutation are
applied to selected individuals in order to suc�
cessively create stronger generations� Figure �
depicts these two operations in a ��bit string
individual� Crossover is performed between
two individuals �parents� with some probabil�
ity� in order to identify two new individuals re�
sulting by exchanging parts of parents	 strings�
The exchanging of parents parts are performed
by cutting each individual at a speci�c bit po�

sition and produce two �head� and two �tail�
segments� The tail segments are then swapped
over to produce two new full length individ�
ual strings� Mutation is introduced in order
to prevent premature convergence to local op�
tima by randomly sampling new points in the
search space� Mutation randomly alters each
individual under a �usually� small probability
�e�g� ����
��

Provided that GA has been correctly imple�
mented� the population will evolve over suc�
cessive generations such that the �tness of the
best and the average individual in each gener�
ation is improved towards the global optimum�

In the presented model a cache is main�
tained on each disk device of the parallel I�O
subsystem and cache entries are server	s data
blocks being requested previously� The pro�
posed model attempts to improve the cache
content on each device by applying a GA�based
update scheme in order to result in an im�
proved and �stronger� cache content �Figure
��� A string representation was used to identify
each cached data block� Each cached object is
assigned with a ��tness� value derived by a
function used to characterize its �strength� in
order to drive the evolution of the cache pop�
ulation eciently� Therefore� the access fre�
quency of each data block is used as its �tness
value� Access frequency has been chosen as the
�tness value since it is the most indicative cri�
terion for the decision of data blocks remaining
or leaving the cache� Therefore� in the pre�
sented model the cache update will result by
the cache blocks �re�generation� performed in
each disk drive	s cache�

� Experiments � Results

The proposed GA model follows the Simple
GA proposed in ��� with a modest crossover
probability ����� and a low mutation proba�
bility ��������� The simulator used arti�cial
workload of parallel I�O requests randomly
distributed among the disk drives� The GA
cache update scheme is implemented in order
to perform cache reform and re��generation�

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100

c
a
c
h
e
_
h
it
 r

a
te

of generations

Cache hit_rate ; generations

LRU
GA

Figure �� avg�max �tness over generations

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

20 40 60 80 100

b
y
te

s
 l
e
n
g
th

 (
K

B
y
te

s
)

of generations

Bytes hit length

LRU
GA

Figure �� bytes hit� over generations

at regular time intervals� At these regural in�
tervals both LRU and GA schemes have been
implemented and tested� Under LRU the
cache update is performed by the removal of
cache blocks least recently used� whereas un�
der GA the cache is updated by favoring the
�ttest cache blocks i�e�� the data blocks that
have been accessed most frequently� The GA
scheme has been tested for di�erent number of
generations and the corresponding LRU is also
evaluated�

The e�ectiveness of caching is measured by
the hit ratio� i�e� the ratio of cache hits to
all requests and by the byte hit ratio� i�e� the

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100

c
a
c
h
e
_
h
it
 r

a
te

of generations

Cache hit_rate ; generations

LRU
GA

Figure �� avg�max �tness over generations

1000

1500

2000

2500

3000

3500

20 40 60 80 100

b
y
te

s
 l
e
n
g
th

 (
K

B
y
te

s
)

of generations

Bytes hit length

LRU
GA

Figure �� bytes hit� over generations

size of the I�O requests served by the cache�
The byte hit ratio is considered as a bet�
ter metric since it representes the actual vol�
ume of the cache served requests� Figures ��
�� depict the e�ect of the number of genera�
tions to the cache and bytes hit rates respec�
tively� for a cache population being reproduced
over
�� ��� � � � �
�� generations� As shown in
these �gures GA caching is shown to be quite
bene�cial when compared with a conventional
caching strategy as LRU algorithm� The im�
provement is greater as the generation number
increases� More speci�cally� GA is almost ���
better than the corresponding LRU concerning

cache hit rates �e�g� cache hit rates for
�� gen�
erations run�� The GA is also improved con�
siderably �rates of almost ���� in the bytes
hit rate compared to the corresponding LRU
scheme�

The crossover operation is crucial with re�
spect to the e�ectiveness of the GA scheme�
Therefore the model is experimented for var�
ious crossover probability values� in order to
result in a more reliable GA model� Figures
� and �� depict the e�ect of the number of
generations to the cache and bytes hit rates
respectively� under crossover probability equal
to ��� and for a cache population being re�
produced over
�� ��� � � � �
�� generations� The
mutation probability remains as in the previ�
ous simulation run �Figures � and ��� The high
crossover probability in the GA will result in
a major cache reform and the cache content
will be updated more drastically� As shown in
these �gures� GA caching is shown to be not
as bene�cial as the similar GA scheme with
the lower crossover probability of ���� The
GA still shows a better performance compared
with a conventional caching strategy as LRU
algorithm� Again� the improvement is greater
as the generation number increases� There�
fore� it is quite important for the GA model
to run under a �realistic� crossover probabil�
ity� as suggested by the standard Genetic algo�
rithm model�

� Conclusions � Future Work

Caching in a I�O subsystem is studied under a
Genetic algorithm in order to improve system	s
responsiveness for parallel I�O request servic�
ing� The simulation process included almost
all of the necessary parameters to implement
the cache content and the LRU caching pol�
icy has been used as a comparative technique�
The proposed scheme has been proven quite
e�ective since cache population evolved over
the simulation time for an increasing number
of parallel I�O requests�

Further research should expand the present
scheme under di�erent �tness selection poli�

cies� Other evolving computation schemes
�e�g� simulated annealing� threshold accep�
tance�� could be adopted in caching on parallel
I�O systems� in order to study their e�ect on
cache consistency and hit rates�

References

�
� M� A� Blaze� �Caching in Large�Scale Dis�
tributed File Systems�� Princeton Univer�
sity� PhD thesis� Jan
����

��� G� Coulouris� J� Dollimore� T� Kindberg�
Distributed Systems� Concept and Design�
�nd ed�� Addison�Wesley�
����

��� P� Danzig� NetCache Architecture and
Deployment� Proceedings of the �rd In�
ternational WWW Caching Workshop�
Manchester� England� Jun
����

��� B� Dengiz� F� Atiparmak� A� E� Smith �
�Local Search Genetic Algorithm for Op�
timization of Highly Reliable Communi�
cations Networks�� IEEE Transactions on
Evolutionary Computation� Vol�
� No� ��
pp�
���
��� Aug
����

��� R� English and A� Stepanov� �Loge � A
Self�Organizing Disk Controller�� HPL�
������� HP Labs� Technical Report� Dec�

��
�

��� G�A� Gibson� J�S� Vitter� J� Wilkes et al��
�Strategic directions in Storage I�O Issues
in Large�Scale Computing�� ACM Com�
puting Surveys� Vol���� No��� pp���������

����

��� D� Goldberg� Genetic
Algorithms in Search� Optimization� and
Machine Learning� Addison�Wesley�
����

��� R� Jain� J� Werth� J� C� Browne �edi�
tors�� Input�Output in Parallel and Dis�
tributed Computer Systems� Kluwer Aca�
demic Publishers�
����

��� R� Karedla� J� S� Love and B� G�
Wherry� �Caching Strategies to Improve

Disk System Performance�� IEEE Com�
puter� Vol���� No� �� pp� ������ Mar
����

�
�� T� Starkweather� D� Whitley and K�
Mathias� �Optimization Using Dis�
tributed Genetic Algorithms�� Parallel
Problem Solving� Springer Verlag�
��
�

�

� J� Vitter and E� Shriver� �Algorithms
for Parallel Memory I�II�� Department
of Computer Science� Brown University�
Technical Report CS�����
� Sep�
����

