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Time Aware Web Users Clustering
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Abstract—Web users clustering is a crucial task for mining
information related to users needs and preferences. Up to now,
popular clustering approaches build clusters based on usage
patterns derived from users’ page preferences. This paper empha-
sizes the need to discover similarities in users’ accessing behavior
with respect to the time locality of their navigational acts. In
this context, we present two time aware clustering approaches
for tuning and binding the page and time visiting criteria. The
two tracks of the proposed algorithms define clusters with users
that show similar visiting behavior at the same time period, by
varying the priority given to page or time visiting. The proposed
algorithms are evaluated using both synthetic and real datasets
and the experimentation has shown that the new clustering
schemes result in enriched clusters compared to those created
by the conventional non-time aware users clustering approaches.
These clusters contain users exhibiting similar access behavior
not only in terms of their page preferences but also of their access
time.

Index Terms—Web mining, Web users clustering, Navigation,
Access time.

I. INTRODUCTION

DESPITE Web’s remarkable adoption, Web users often

experience problems of low precision or irrelevance in

their searching, low accessing speeds (due to information

overload) and outdated or out of their interests personalized

information. Thus, from the Web information providers per-

spective, it is important to organize their data and to address

their users according to their preferences and needs. Web

users clustering so far has proposed techniques to organize

users into clusters based on their navigational behavior, i.e.

visiting patterns are identified and compared in order to

assign users to the same or different clusters. The task of

Web users’ clustering is crucial and has been studied in

various application frameworks, since for example based on

users clusters, Web-based companies may provide dynamic

content (advertisements, offers, customized guides) and decide

their market strategies and administrators may restructure or

redesign their sites and improve their performance (by user-

tailored caching and prefetching policies) etc.

Earlier research efforts have focused on grouping users

that present similar page preferences mainly identified by

Web server log files which explicitly record the browsing

behavior of each user. Such efforts have used various clus-

tering approaches, which are based on identifying common

patterns in users navigational behavior. It should be noted that

these methods are either model-based or similarity-based. The

Expectation-Maximization (EM) algorithm is the most popular
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model-based approach. It is typically used to provide associ-

ations among users and pages [1], [2] as well as to identify

user profiles [3]. The most popular similarity-based algorithm

is K-means [4] which has been used with popular distance

measures such as the squared Euclidean, the cosine and the

Manhattan distances [5], [6], [7]. Among other approaches,

hierarchical and partitional [8] clustering techniques are used

to evaluate similarity of users’ sessions [6] while a two-phase

clustering is used to perform pattern analysis and classification

based on users’ registration information [9].
Time-related issues in Web users’ clustering have been

addressed in previous work by mainly considering the duration

of a user’s accessing on a page and the succession of their

visits (the so-called ”clickstreams”) [10], [11]. However, such

time consideration does not clearly identify users needs since

the time spent by a user in a particular page is not always

an actual indication of the user’s preferences (e.g. users often

leave their browsers idle during breaks, meetings or in order

to start browsing in a new window) whereas capturing similar

”clickstreams” is done in an overall time span and not on

simultaneous intervals. An oversimplified approach [12] uses

a bit value to identify the access time (i.e. 0 and 1 indicates

day or night visit) but does not capture more detailed time

preferences of users’ visits. In summary, it is important to

emphasize that the common ground of related work is the

effort to identify common page visiting pathways irrelevant to

the actual time when these occurred, even in cases where the

notion of time is used.
This work is inspired by the fact that in the framework of

several current applications, the time locality of page visiting

patterns needs to be also considered, since in reality users

exhibit varying accessing behavior at different times (e.g.

on a yearly, monthly or even daily scale). Therefore, the

consideration of access time along with the page preferences

is imperative in clustering since, in fact, the time in which

users perform certain page visits is a crucial criterion for

characterizing their particular needs and preferences. We may

identify numerous scenarios in which time is critical in the

Web users clustering process, since time along with page

visiting is important in:

• commercial Web-based applications, e.g., some users

tend to buy gifts, cards or books only during Christmas

while others make travel reservations only in summer,

therefore the fact that two users have visited the particular

products site is not enough to identify the customers

similarity in browsing preferences. This is crucial since

at a certain time of the year the company might organize

a particular promotion campaign.

• personalization and/or recommendation engines, e.g. in a

recommendation engine the clustering of users showing
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similar navigational behavior over the same time span is

important, since their personalization information or the

recommendations proposed will be tailored accordingly.

• e-learning environments, e.g. in a University Department

site, just the fact that two users have visited the Labs

same pages is not indicative by its own for assigning

them to the same cluster, since visits during the summer

months would probably correspond to students interested

in enrolling to a course (some of them might never

visit the page again), while autumn months visits would

probably refer to students enrolled to courses.

• low-level applications, e.g. identifying groups of users

exhibiting similar navigational behavior in terms of their

page preferences and access time may be beneficial for

applications like Web caching and prefetching which

affect the Web server performance.

Based on the above, in this paper we highlight the fact

that grouping Web users based on their navigational behavior

should be faced as a twofold problem that will: (i) deal with

the different users’ page preferences and (ii) identify the

time dependencies involved in the usage navigational patterns.

Thus, the problem that has to be addressed should combine

the above two criteria namely the users’ page preferences i.e.

the page aspect and the time their visits were logged i.e. the

time aspect. Since the proposed approach aims at advancing

the earlier ones (which considered only the page preferences),

it is crucial to determine the way that the time aspect will be

incorporated in the clustering process.

Therefore, two tracks of problems are identified, where in

the first one the role and importance of time is tuned with

page preferences while in the second one the time and page

aspects are bound. In the tuning problem it is important to

specify the aspect (i.e. the page or time) that is initially

considered since this aspect will guide the clustering process.

Thus, we adopt two algorithmic approaches that differ in

their initialization step and tune the two aspects based on

a weight factor. The first tuning approach initiates with the

page preferences and then proceeds to the time aspect while

the second one follows the reverse logic. The binding problem

captures the two aspects based on a structure that incorporates

page preferences and access time simultaneously.

The remainder of this paper is organized as follows. Sec-

tion II focuses on the structures and distance measures used

to represent users and capture their similarities respectively.

Section III describes the two tracks of problems defined to tune

and bind page and time aspects, whereas Section IV presents

the algorithms and discusses their complexity. Section V

presents the experimentation carried out in both synthetic

and real data and highlights their implementation perspective.

Finally, conclusions and future work insights are given in

Section VI.

II. CAPTURING USERS’ ACCESS BEHAVIOR

We consider a particular Web usage framework where

we have (as a source) log files which capture the users’

navigational behavior. Moreover, we define the notion of the

timeframe which refers to the particular time basis (i.e. period)

TABLE I
BASIC SYMBOLS NOTATION.

Symbol Definition

n, p, t Number of users, pages and timeframes

U Users’ set {u1, . . . , un}
PV The n x p users’ page visiting table

TV The n x t users’ time visiting table

PTV The n x p x t users’ page-over-time visiting table

dp Users’ distance over pages

dt Users’ distance over timeframes

dpt Page-over-time users’ distance

on which we examine users’ actions. For example, working

with a monthly log file we can define the timeframe as one

day while in an annual log file one month could serve as the

respective timeframe. These choices are based on the log file’s

time period, however, in the proposed approaches, timeframe’s

definition can be adjusted according to the demands imposed

by the particular application framework on which we work on.

Therefore, we have n, p and t to denote the number of users,

pages and timeframes respectively while U denotes the users’

set U = {u1, . . . , un}. Notation summary is given in Table I.

As emphasized in [13], prior to clustering, appropriate

structures or patterns choice, largely affects the accuracy

and quality of the yielded clusters. Therefore, we need to

define appropriate structures to represent users, since based

on these structures we may then define their similarities and

end up to simple and easily interpretable clusters. In general,

patterns can be represented by using various structures, such

as strings or trees [14], whereas the vector-space model has

been extensively used [15] since vectors values can be either

quantitative (continuous values: e.g. weight, discrete values:

e.g. the number of visits of a Web user or interval values: e.g.

the duration of an event) or qualitative (nominal: e.g. ”red” or

ordinal: e.g. ”cool”) [16]. Since in our web usage approach

we have discrete values, the proposed time-aware clustering

uses the ideas of vector-space model for users’ representation.

More specifically, we define three different user visiting

structures in order to capture all aspects of interrelations in

page and time visiting. A vector is used to represent the

frequency of a user’s visits to particular pages (with no infor-

mation about the time of visits) while a second one records the

frequency of the user’s visits at particular timeframes (with no

information about which page was visited). Moreover, the lack

of the complementary information in each of these vectors,

motivated us to define a table which will incorporate the

overall information (seen as a set of vectors). In particular,

this table represents the frequency of visits to particular pages

incorporating the exact knowledge about the timeframes of

these visits. These structures are summarized next:

1) page visiting vectors: A page visiting vector PV (i, :),
where i = 1, . . . , n, represents a user’s accessing behav-

ior with respect to page visiting solely. It is a multivariate
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Fig. 1. Page and time users’ visiting structures.

vector consisting of p measurements:

PV(i, :) = (PV(i, 1), . . . , PV(i, p))

where the PV(i, j) element, j = 1, . . . , p, indicates

the number of times the user i visits the page j.

All the PV(i, :) vectors are then organized in the two

dimensional n x p users’ page visiting table PV . For

example, in Fig. 1(a), which depicts the table PV, the

fact that PV(2, 2) = 10 means that the user identified as

2 has made 10 visits to the page 2.

2) time visiting vectors: A time visiting vector TV (i, :),
where i = 1, . . . , n, represents a user’s accessing be-

havior with respect to time (timeframes). It is also a

multivariate vector consisting of t measurements:

TV(i, :) = (TV(i, 1), . . . , TV(i, t))

where the TV(i, l) element, l = 1, . . . , t, indicates the

number of times the user i visits the whole site (all

the p pages) during the l timeframe. All the TV(i, :)
vectors are organized in the two dimensional n x t users’

time visiting table TV. For example, in Fig. 1(b), which

depicts the table TV, the fact that TV(2, 2) = 9 means

that the user identified as 2 has made 9 visits to the

whole site during the timeframe 2.

3) page-over-time visiting tables: A page-over-time visit-

ing table PTV(i, :, :), where i = 1, . . . , n also represents

a user’s accessing behavior but with respect both to page

and time aspects. It consists of p x t measurements:

PTV(i, :, :) =

⎛
⎜⎜⎜⎝

PTV(i, 1, 1) . . . PTV(i, 1, t)
PTV(i, 2, 1) . . . PTV(i, 2, t)

...
...

...

PTV(i, p, 1) . . . PTV(i, p, t)

⎞
⎟⎟⎟⎠

where the PTV(i, j, l) element, j = 1, . . . , p and l =
1, . . . , t, indicates the number of times the user i visits

the page j during the l timeframe while the PTV(i, j, :)
denotes the timeframes vector of the user i over the page

j (jth row of PTV(i, :, :) table). All the PTV(i, :, :) tables

are organized in the three dimensional n x p x t users’

page-over-time visiting table PTV. In Fig. 1(c), the fact

that PTV(2, 2, 1) = 5 means that the user identified as 2
has made 5 visits to the page 2 during the timeframe 1.

Based on the above, it is obvious that the elements of

the page visiting vectors PV(i, :), the time visiting vectors

TV(i, :) and the page-over-time visiting tables PTV(i, :, :)
are related. Following the previous examples, it holds that∑t

l=1 PTV(2, 2, l) = PV(2, 2) = 10, i.e. the number of visits

of a user to a page is split over the underlying timeframes

in order to capture the exact timeframes of these visits.

Respectively,
∑p

j=1 PTV(2, j, 2) = TV(2, 2) = 9, i.e. the

number of visits of a user during a timeframe is split to capture

the exact visited pages. (1) gives the relationship between the

PV and PTV tables, where i = 1, . . . , n, j = 1, . . . , p and

l = 1, . . . , t:

PV(i, j) =
t∑

l=1

PTV(i, j, l) (1)

while (2) gives the relationship between the TV and PTV
tables:

TV(i, l) =
p∑

j=1

PTV(i, j, l) (2)

Furthermore, given that in the above two dimensional struc-

tures each element captures visiting frequencies, it is clear that

the overall number of visits of a particular user to a specific

site is embedded in both of these tables. Therefore, it holds

that
∑p

j=1 PV(2, j) =
∑t

l=1 TV(2, l). Given the user i, where

i = 1, . . . , n, (3) gives the relationship between the PV and

TV tables, where j = 1, . . . , p and l = 1, . . . , t:

p∑
j=1

PV(i, j) =
t∑

l=1

TV(i, l) (3)

In summary, given that users’ accessing behavior depends

on the time of their navigation, our users’ representation

captures both their page preferences, by the page visiting

vectors PV(i, :), and their time locality by the time visiting

vectors TV(i, :). At the same time, the page-over-time visiting

tables PTV(i, :, :) captures simultaneously the page and time

aspect of users’ visits.

A. Calculating users’ distance

Devising appropriate distance measures is fundamental in a

clustering process, and so far it is quite common to evaluate

dissimilarity between two patterns by using a distance measure
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in order to find if they are relevant or not [13]. To proceed with

our Web users’ clustering process, we employ the Squared

Euclidean distance1 which is a well-known and widely used

distance measure in the vector-space model [5],[6],[7]. Then,

the evaluation of dissimilarity between two users may be

expressed by their distance that can be based either on their

visiting vectors (page or time) or on their visiting table (page-

over-time). So, we define three types of distances:

1) users’ distance over pages: When only the pages

preferences are taken into consideration, the distance

between two users must be calculated over each of

the p pages. In this case, we will use the expression

dp(ux, uy), where ux, uy ∈ U to denote the distance

between the page visiting vectors PV(x, :) and PV(y, :)
of the users ux and uy. Their Squared Euclidean distance

is:

dp(ux, uy) = ‖PV(x, :) − PV(y, :)‖2

Example. Consider the users identified as 1 and 3 in

Fig. 1(a). Their distance over pages will be dp(u1, u3) =
‖PV(1, :) − PV(3, :)‖2 = ‖(2, 0, 4) − (7, 6, 3)‖2 = 62.�

2) users’ distance over timeframes: When only the time

locality of visits is taken into consideration, the distance

between two users must be calculated over each of the

t timeframes. In this case, we will use the expression

dt(ux, uy) to denote the distance between the time

visiting vectors TV(x, :) and TV(y, :) of the users ux

and uy . Their Squared Euclidean distance is:

dt(ux, uy) = ‖TV(x, :) − TV(y, :)‖2

Example. Considering the same users (1 and 3)

in Fig. 1(b), their distance over timeframes will be

dt(u1, u3) = ‖TV(1, :) − TV(3, :)‖2 = ‖(2, 4) −
(6, 10)‖2 = 52. �

3) page-over-time users’ distance: When both pages pref-

erences and their time locality are taken into considera-

tion, the distance between two users must be calculated

over each of the p pages separately. In this way, we can

capture the dissimilarity between users over each page

for all timeframes. As a consequence, two users’ access

behaviors are considered to be similar not only if they

visit the same pages with similar frequency but also if

they visit the same pages at the same timeframes with

similar frequency. So, we define the distance of page-

over-time visiting tables to be the sum of distances over

all pages.

We will use the expression dpt(ux, uy) to denote the

distance between the page-over-time visiting tables

PTV(x, :, :) and PTV(y, :, :) of the users ux and uy.

Since each row of these p x t tables is a vector (i.e.

PTV(x, j, :) and PTV(y, j, :) respectively), we compute

their distance by calculating the sum of the Squared

Euclidean distances between the corresponding p rows

1The Squared Euclidean distance uses the same equation as the Eu-
clidean distance, but does not take the square root. For two points P =
(p1, p2, · · · , pn) and Q = (q1, q2, · · · , qn) in n-space their Squared
Euclidean distance is defined as: ‖pi − qi‖2

(i.e. vectors) of the tables:

dpt(ux, uy) =
p∑

j=1

‖PTV(x, j, :) − PTV(y, j, :)‖2

Example. The page-over-time distance of the users

identified as 1 and 3 in Fig. 1(c) will be dpt(u1, u3) =∑3
j=1 ‖PTV(1, j, :) − PTV(3, j, :)‖2 = ‖(1, 1) −

(1, 6)‖2 + ‖(0, 0)− (3, 3)‖2 + ‖(1, 3)− (2, 1)‖2 = 48.�

III. PROBLEM FORMULATION

TABLE II
CLUSTERING AND OBJECTIVE FUNCTIONS.

Symbol Definition

CL Clustering process

k Number of clusters

Uj Cluster, j = 1, . . . , k

cj Cluster representative, j = 1, . . . , k

f(ui, Uj) Function membership of user ui to cluster Uj

CP k x p cluster representative’s page visiting table

CT k x t cluster representative’s time visiting table

CPT k x p x t cluster representative’s page-over-time visiting table

Ep, Et Page and time objective function

E Tuning objective function

Ept Binding objective function

In the proposed clustering, it is important to identify the

type of problem to be solved, since as mentioned earlier, we

are dealing with a twofold problem which at the same time

involves two distinct criteria: the users’ page preferences and

the timeframe of their occurrence. We consider that under the

proposed CL time-aware clustering process, k denotes the

number of clusters and U is the set of users U = {u1, . . . , un}
to be clustered. Then, U1, . . . , Uk denote each of the k clusters

consisting of |U1|, . . . , |Uk| members respectively. Under this

notation, the underline clustering process CL is defined as the

assignment of users to k users’ groups (i.e. clusters):

CL : {1, . . . , n} −→ {1, . . . , k}
such that the users assigned to each cluster are more similar

to each other than to the users assigned to different clusters

on the basis of: (i) their page preferences (ii) the timeframe

these preferences were logged.

Membership of a user ui, where i = 1, . . . , n, to a cluster

Uj , where j = 1, . . . , k, is defined by the function f as

follows:

f(ui, Uj) =
{

1 if ui ∈ Uj

0 otherwise

A. The TUNING TIME-AWARE CLUSTERING problem

Let us consider an arbitrary cluster Uj , where j = 1, . . . , k,

of the users’ set U in the n x p space. The representation of

the cluster Uj when a clustering process CL is applied to it,

collapses the users belonging to Uj into a single point (i.e. the
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mean value which does not correspond to an existing user).

We call this point cluster’s representative cj (also known as

centroid) as each user ui ∈ Uj is represented by cj . Given

the page visiting vectors of ui ∈ Uj , we can define the page

visiting vector of cj in the n x p space as follows:

CP(j, :) =
∑n

i=1 f(ui, Uj) ∗ PV(i, :)
|Uj |

Since both PV (i, :), where i = 1, . . . n, and CP (j, :), where

j = 1, . . . k, are vectors, their dissimilarity is measured by

their page visiting distance dp(ui, cj). Considering all clusters,

we define the page objective function Ep to be the sum of

distances over pages between each user and the representative

of the cluster that the user is assigned to.

Ep =
k∑

j=1

∑
ui∈Uj

dp(ui, cj)

Considering the cluster Uj in the n x t space, we can

respectively define its cj representative based on time visiting

vectors of ui ∈ Uj as:

CT(j, :) =
∑n

i=1 f(ui, Uj) ∗ TV(i, :)
|Uj |

In this case, the distance between cj and ui is measured by

their time visiting distance dt(ui, cj) while the time objective
function Et computes the sum of distances over timeframes

between each user and the representative of the cluster that

the user is assigned to.

Et =
k∑

j=1

∑
ui∈Uj

dt(ui, cj)

Tuning page and time objective functions can be treated as

a multi-objective optimization problem. Such problems have

been studied in many different domains [17], [18], [19] and

a crucial difficulty in optimizing a multi-objective problem

is that no single optimal solution exists. Instead, an optimal

solution exists for each objective function in the solution

space. Moreover, finding an optimal solution for one objective

function may require accepting a poor solution for the others.

Therefore, in our case, a clustering solution that can optimize

the page aspect will most probably be non-optimal according

to the time aspect. To disambiguate the multi-objective prob-

lem’s solution, we assign different weights to each objective

function in order to consider them in conjunction. We define

the tuning objective function E to capture the properties and

quality of the desired clustering solution and formulate the

clustering problem. This objective function will guide our

clustering and is defined as:

E = α ∗ Ep + (1 − α) ∗ Et (4)

where Ep and Et are the objective functions focusing on page

and time aspect respectively, and α is the weight factor with

values in [0..1]. Then, at the one end, when α = 1, E = Ep,

i.e. our solution proposes an assignment based only on users’

page preferences and completely discards the time aspect. At

the other end, when α = 0, E = Et and the solution is based

only on time locality of users’ visits and does not take into

account their page preferences. For any other value of α the

clustering solution considers both criteria at balanced weights.

Based on the above, we define the TUNING TIME-AWARE

CLUSTERING problem as follows:

Problem 1 (TUNING TIME-AWARE CLUSTERING): Given

a set U of n users in both n x p and n x t space, an integer

value k, and the tuning objective function E, find a CL
clustering of U into k clusters such that the E is minimized.�

1) Distance normalization: Our TUNING TIME-AWARE

CLUSTERING problem aims at minimizing the tuning objective

function E defined in (4). However, the formulation of (4)

cannot handle objective functions that change in different

scales, because a weighted sum of them would be meaningless.

One way to overcome this difficulty is to normalize the

distance values.

Let d∗
p(ui, cj) and d∗t (ui, cj) be the normalized values of

dp(ui, cj) and dt(ui, cj) respectively. It will be proved that

d∗p(ui, cj) and d∗t (ui, cj) are of the same scale.

Given that dp(ux, uy) is the Squared Euclidean distance

between the visiting vectors PV (x, :), PV (y, :) of the users

ux and uy , where ux, uy ∈ U , we denote maxdp to be the

maximum distance between all pairs of ux and uy . Thus,

0 ≤ dp(ux, uy) ≤ maxdp.

Defining the normalized distance d∗p(ux, uy) to be:

d∗p(ux, uy) =
dp(ux, uy)

maxdp

we conclude that:

0 ≤ d∗p(ux, uy) ≤ 1

Based on the above, the definitions of Ep and Et are

updated as follows:

Ep =
k∑

j=1

∑
ui∈Uj

d∗p(ui, cj) (5)

and

Et =
k∑

j=1

∑
ui∈Uj

d∗t (ui, cj) (6)

Lemma 1: Let Uj , 1 ≤ j ≤ k, be the jth of the k clusters

of a users’ set U after a CL clustering process, CP(j, :) be

cluster representative’s page vector, |Uj | be the number of its

members and h, g denote the 1st and |Uj |th member of the

Uj cluster respectively. Given that the page objective function

Ep is the sum of the normalized distances between users and

their cluster representative, it holds that:

0 ≤ Ep ≤ n (7)

Proof: Given the (5), we must prove that for every user

ui ∈ Uj , 0 ≤ d∗
p(ui, cj) ≤ 1, 1 ≤ i ≤ n. By the definition of

normalized distances it holds that d∗p(ui, cj) = dp(ui,cj)
maxdp

. So,
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we shall prove that dp(ui, cj) ≤ maxdp.

dp(ui, cj)=‖PV (i, :)−CP (j, :)‖2

=

√
|PV (i, :)−(

PV (h, :)+. . .+PV (g, :)
|Uj | )|2

2

= |PV (i, :)−PV (h, :)
|Uj | −. . .−PV (g, :)

|Uj | |2

=
1

|Uj |2 ||Uj |PV (i, :)−PV (h, :)−. . . − PV (g, :)|2

=
1

|Uj |2 |PV (i, :)−PV (h, :)+. . .+PV (i, :)−PV (g, :)|2

a≤
√

a2

≤ 1
|Uj |2 |

√
(PV (i, :)−PV (h, :))2+. . .

. . . +
√

(PV (i, :)−PV (g, :))2|2

=
1

|Uj |2 |Euclidean(ui, uh)+. . .+Euclidean(ui, ug)|2

≤ 1
|Uj |2 |Uj |2|maxEuclidean|2

=maxdp

Lemma 2: Let Uj , 1 ≤ j ≤ k, be the jth of the k clusters

of a users’ set U after a CL clustering process, CT (j, :) be

cluster representative’s time vector, |Uj | be the number of its

members and h, g denote the 1st and |Uj |th member of the

Uj cluster respectively. Given that the time objective function

Et is the sum of the normalized distances between users and

their cluster representative, it holds that:.

0 ≤ Et ≤ n (8)

Proof: The proof of the Et scaling is similar to the

Lemma 1 proof.

Based on the above Lemmas 1 and 2, it holds that both Ep

and Et, defined in (5) and (6) respectively, are of the same

scale and thus we can use E, defined in (4), to guide the

TUNING TIME-AWARE clustering.

B. The BINDING TIME-AWARE CLUSTERING problem

To capture the two aspects of the time-aware clustering

in a binding way, we must define an objective function that

incorporates both of them. The motivation is that we can

express users’ preferences over both pages and timeframes

by exploiting the three dimensional structure PTV (n x p
x t). The PTV table carries information for page and time

users’ preferences simultaneously as we extensively presented

in Section II.

Let us consider an arbitrary cluster Uj , where j = 1, . . . , k,

of the users’ set U in the n x p x t space. The representation

of the cluster Uj when a clustering process CL is applied to it,

collapses the users belonging to Uj into a single three dimen-

sional point (i.e. the mean value which does not correspond to

an existing user). We call this point cluster’s representative cj ,

similarly to the previous subsection approach, and given the

page-over-time visiting tables of ui ∈ Uj , we can respectively

define the page-over-time visiting table of cj in the n x p x t
space as follows:

CPT(j, :, :) =
∑n

i=1 f(ui, Uj) ∗ PTV(i, :, :)
|Uj |

Since both PTV (i, :, :), where i = 1, . . . n, and CPT (j, :, :
), where j = 1, . . . k, are tables, their dissimilarity is measured

by their page-over-time distance dpt(ui, cj). Considering all

clusters, we define the binding objective function Ept to be

the sum of distances over both pages and timeframes between

each user and the representative of the cluster that the user is

assigned to.

Ept =
k∑

j=1

∑
ui∈Uj

dpt(ui, cj) (9)

At this point, we can define the BINDING TIME-AWARE

CLUSTERING problem as follows:

Problem 2 (BINDING TIME-AWARE CLUSTERING): Given

a set U of n users in n x p x t space, an integer value k, and

the binding objective function Ept, find a CL clustering of

U into k clusters such that the Ept is minimized.�

IV. TIME-AWARE CLUSTERING ALGORITHMS

Our defined problems are of NP-hard nature since they are

a generalization of the well-known clustering problem [20]

and thus we can only aim for approximate solutions. Based

on the previous section, we define two algorithms to solve

the TUNING TIME-AWARE CLUSTERING problem (tuning

algorithms) and one algorithm for the BINDING TIME-AWARE

CLUSTERING problem (binding algorithm). These algorithms

adopt local search heuristics which are similar in spirit with

the well-known K-means algorithm [4], which is used for our

initial clustering setup. Although K-means does not provide

approximation guarantees, it has been proved very effective in

many practical problems.

A. Clustering Phases

Our time-aware clustering algorithms are unsupervised,

hard partitional methods. The tuning algorithms are used to

minimize the objective function E defined in (4) while the

binding algorithm aims at minimizing the Ept defined in (9).

For each of the three algorithms we adopt a similar, two

steps process which is depicted in Fig. 2. During the initial-

ization step which comes after the data preprocessing [21],

the algorithms compute an initial set of k clusters guided by

the K-means algorithm. The tuning algorithms are based on

either page or time users’ visiting structures while the binding

algorithm initiates clusters using the page visiting structure.

Then an iterative reassignment step takes place to improve the

initial clusters based on the two requirements: (i) users’ page

preferences and (ii) the time these preferences were logged.

1) Initialization: We employed the widely used K-means

partitional clustering algorithm to produce the initial k clusters.

K-means algorithm in summary is: given n points to be

clustered, a distance measure d to capture their dissimilarity

and the number of clusters k to be created, the algorithm

initially selects k random points as clusters’ centers and
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Web Usage Data

Initial Clusters

Final Clusters

DATA PREPROCESSING 

INITIALIZATION

Page / Time Visiting Structures

REASSIGNMENT

K-means

Tuning / Binding
Algorithms

Fig. 2. The time-aware clustering process overview.

assigns the rest of the n − k points to the closest cluster

center (according to d). Then, within each of these k clusters

the cluster representative (also known as centroid or mean)

is computed and the process continues iteratively with these

representatives as the new clusters’ centers, until convergence.

In our framework, given the n users and the number of k
clusters to be created we use CL to denote the initial clustering

produced by the K-means algorithm. In case of the tuning

algorithms, we adopt two approaches with different logic

in the initialization step in terms of prioritizing either page

or time aspect. More specifically, the first tuning algorithm

initiates clusters based only on the page aspect and thus the

CL clustering considers the page visiting structure (i.e. PV
table) while users’ dissimilarity is computed using the dp

distance measure defined in Subsection II-A. Favoring the page

preferences would be beneficial, for example, in case of the

recommendation engine of a book store, since the topic is more

important than the time of the search. On the other hand, in

the second tuning algorithm the CL clustering considers the

time aspect via time visiting structure (i.e. TV table) and uses

dt as users’ dissimilarity distance measure (also defined in

Subsection II-A). Prioritizing the time aspect is essential, for

instance, in building customized pages of a bus info search

application interface, since the access time (e.g. bus schedule

after 5 p.m. for a user usually searching in the afternoon) is

more crucial than the search topic (e.g. bus destination).

The binding algorithm can assign users to the initial clusters

taking into account either the users’ page preferences or their

access time without the clustering process being depended

on the aspect considered initially. Since our algorithm aims

at advancing earlier approaches, that initiate clusters based

only on users’ page preferences, it initially considers the page

aspect and thus it uses the PV table and the dp distance

measure. In both tuning and binding approaches, the initial

CL clustering will be the basis for the reassignment step.

2) Reassignment: The reassignment step of all algorithms

aims at producing a CL∗ clustering which enhances the initial

CL to meet the two criteria of the time-aware problems.

In the aforementioned examples, it is important to include

time in a book store’s recommendation engine since users

are interested in different books at different time periods (e.g.

winter, summer), whereas, in the bus scheduling applications

users’ destinations (i.e. search topic) is also important for

characterizing their profiles. Therefore, given the initial CL
clustering, we aim at finding a CL∗ that minimizes either

the objective function E (4) or the Ept (9) according to the

problem to be solved. For example, in the first tuning algorithm

which begins considering the page aspect, its reassignment

step regards the time aspect. The reverse logic is adopted by

the second tuning algorithm. The binding algorithm enhances

the initial clustering (i.e. CL based on PV table) using the PTV
table, which incorporates both the page and time aspects, and

the dpt distance measure defined in Subsection II-A.

More specifically, the reassignment step begins with the set

of k clusters produced by the CL and involves a number of

iterations. During each iteration, we compute for each user ui

the fluctuation of the value of the underlying objective function

(i.e. E for the tuning algorithms and Ept for the binding

algorithm) caused by moving user ui to one of the rest k − 1
clusters. If there exist some moves that lead to an improvement

in the overall value of the objective function, then ui is

moved to the cluster that leads to the highest improvement.

If no such cluster exists, ui remains in his initial cluster. The

reassignment phase follows K-means idea for its convergence,

ending either after a number of iterations or when the objective

function improvement between two consecutive iterations is

less than a minimum amount of improvement specified. In our

experiments, we select the number of iterations to be r = 10
because we observed that the reassignment step converges in

less than 10 repetitions, given that it begins with CL clustering

and not randomly as K-means. As a result, we obtain the CL∗

with the final clusters.

Our proposed algorithms follow an incremental attitude,

since we move a user only when it is determined that such

a move will lead to an improvement of the objective function

value. Thus, the reassignment phase always converges to a

local optimum (i.e. minimum) which depends on the particular

cluster representatives selected during the initialization step.

To eliminate this sensitivity, we repeat the overall process

NUM times and report the best found clustering solution [19].

In our experiments, we select NUM = 5 in order to keep low

the algorithm’s time execution. In addition, according to our

observation, in most cases the best local optimum was obtained

during the first 5 repetitions.

B. Tuning Algorithms

1) The PAGETUNETIME algorithm: The PAGETUNETIME

algorithm deals with the TUNING TIME-AWARE CLUSTERING

problem giving priority to page preferences and then refining

clusters based on time information. The core idea is that we

can initiate clustering based only on users’ page preferences

and then enhance assignment taking into account the time

aspect. This algorithm involves the two steps described in Sub-

section IV-A where, at the first step, an initial CL clustering of

the users’ set U occurs, based on the n x p page visiting table

PV. The K-means employed for this CL clustering minimizes

the page objective function Ep. Next, given this CL and taking

into account the n x t time visiting table TV, the clusters’

representatives are defined (k x t CT table) with respect to
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time in order that we compute the time objective function Et.

The calculated Et is then combined with Ep to form the tuning

objective function E. Once the E is initialized, the algorithm

proceeds to the second step called the reassignment step. The

goal is to find a meaningful users’ clustering CL∗ so that

its tuning objective function E is minimized. The algorithm

finalizes the clusters, when all necessary reassignments have

been made.

Algorithm 1 The PAGETUNETIME algorithm.

Input: A set U of n users organized in an n x p page visiting

table PV and an n x t time visiting table TV and the

number of clusters k.

Ouput: The tuning objective function E and the assignment

of the users in the k clusters that minimizes E.

1: /*Initialization Process*/
2: (CL, Ep) = K − means(PV, k)
3: CT = TimeRepresentative(TV, CL, k)
4: Dt = CalcDist(TV, CT) /*Dt is an n x k distance

table*/
5: Et = CalcObjF (Dt, CL)
6: E = α ∗ Ep + (1 − α) ∗ Et

7: /*Reassignment*/
8: min := E
9: for r := 1 to 10 do

10: for i := 1 to n do
11: for j := 1 to k − 1 do
12: E

′
= CheckUserReassignment(i, j)

13: if E
′
< min then

14: CL∗ = PerformReassignment(i, j)
15: min := E

′

16: end if
17: end for
18: end for
19: if r > 1 then
20: if EImprovement < 1e − 5 then
21: break

22: end if
23: end if
24: end for

Theorem 1: The PAGETUNETIME algorithm 1 has time

complexity O(n2).
Proof: The K-means algorithm (line 2) used at the ini-

tialization phase has time complexity O(nkm), where n is the

number of users, k the number of clusters to be created and m
the number of iterations that takes the algorithm to converge.

However, both k and m are relatively small compared to n
and thus, their contribution to the algorithm’s complexity can

be ignored [13]. So, the initial CL clustering is computed in

time linear on the number of users: O(n). TimeRepresentative
function (line 3) calculates clusters’ representatives in O(k)
time, since it performs k iterations, one for each cluster.

CalcDist function (line 4) takes O(nk) time to calculate

distances between the n users and k representatives whereas

CalcObjF needs O(k) time to compute the time objective

function Et of the k clusters. The total time complexity of

the initialization process is thus O(n + k + nk + k) which

becomes O(n).
During the reassignment process, the outer loop (line 9) is

iterated the maximum O(10) times (r = 10) while the inner

loops (lines 10 and 11) O(n) and O(k−1) times respectively.

The CheckUserReassignment function (line 12) computes the

tuning objective function E
′

considering that a user moves

to another cluster and its time complexity is O(nk) since the

calculation of E
′

is based on the computation of distances

between the n users and the k new representatives. If E
′

is im-

proved (reduced) then the reassignment is actually performed

by the PerformReassignment function (line 14) which sim-

ply assigns the values calculated by CheckUserReassignment.
The total time complexity of the reassignment phase is thus

O(n(k − 1)(nk)) = O(n2).
As a result, the total complexity of Algorithm 1 is O(n) +

O(n2) = O(n2).
2) The TIMETUNEPAGE algorithm: The TIMETUNEPAGE

algorithm also addresses the TUNING TIME-AWARE CLUS-

TERING problem but with a reverse logic. The motivation

behind this algorithm is that we could start from time locality

of users’ visits and then enhance assignment taking into

account their specific page preferences. This second algorithm

also consists of two steps. However, during the initialization

step it fixes the initial CL clustering of the users’ set U
based on the n x t time visiting table TV. In this case, the

K-means minimizes the time objective function Et. Once the

initial CL clustering of TV into k clusters is fixed and Et is

calculated, the algorithm computes the page objective function

Ep considering the clusters’ representatives (k x p CP table)

with respect to page visits. The value of Ep is combined

with Et to form the tuning objective function E. Then, the

algorithm proceeds to the reassignment step, where the goal is

to find a new clustering CL∗ of users, that minimizes the value

of E. Once the algorithm has decided upon the reassignments

that need to be made, it outputs the obtained clusters.

Algorithm 2 The TIMETUNEPAGE algorithm.

Input: A set U of n users organized in an n x p page visiting

table PV and an n x t time visiting table TV and the

number of clusters k.

Ouput: The tuning objective function E and the assignment

of the users in the k clusters that minimizes E.

1: /*Initialization Process*/
2: (CL, Et) = K − means(TV, k)
3: CP = PageRepresentative(PV, CL, k)
4: Dp = CalcDist(PV, CP) /*Dp is an n x k distance

table*/
5: Ep = CalcObjF (Dp, CL)
6: E = α ∗ Ep + (1 − α) ∗ Et

7: /*Reassignment process of the Algorithm 1*/

Theorem 2: The TIMETUNEPAGE algorithm 2 has time

complexity O(n2).
Proof: The proof is similar to that of the Algorithm 1.

C. The BINDING algorithm
The BINDING algorithm solves the BINDING TIME-AWARE

CLUSTERING problem that considers the users’ set U in the n
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x p x t space and organizes it in the page-over-time visiting ta-

ble PTV. Its first step is similar to that of the PAGETUNETIME

algorithm. However, once the initial CL clustering of PV into

k clusters is fixed, the algorithm proceeds to the calculation of

the binding objective function Ept. More specifically, given the

CL clustering and taken into account the n x p x t page-over-

time visiting table PTV , it defines the clusters representatives

in the n x p x t space (CPT table) in order to compute the

Ept. The reassignment step of this algorithm aims at finding

the CL∗ clustering that minimizes the value of Ept. Once the

algorithm has converged, it outputs the obtained clusters.

Algorithm 3 The BINDING algorithm.

Input: A set U of n users organized in an n x p page visiting

table PV and an n x p x t pave-over-time visiting table

PTV and the number of clusters k.

Ouput: The binding objective function Ept and the assign-

ment of the users in the k clusters that minimizes Ept.

1: /*Initialization Process*/
2: (CL, Ep) = K − means(PV, k)
3: CPT = TimeRepresentative(PTV, CL, k)
4: Dpt = CalcDist(PTV, CPT) /*Dpt is an n x k distance

table*/
5: Ept = CalcObjF (Dpt, CL)
6: /*Reassignment process of the Algorithm 1 where Ept is

used instead of E*/

Theorem 3: The BINDING algorithm 3 has time complexity

O(n2).
Proof: The proof is similar to that of the Algorithm 1

V. EXPERIMENTAL EVALUATION

To evaluate the proposed tracks of algorithms we carried out

experimentation that involves both synthetic and real datasets.

For all cases of synthetic data we found that the proposed

algorithms actually “understand” and capture the underlying

users behavior model that was initially used to generate the

data. For the real data we observed that the proposed time-

aware schemes improve the clustering output in terms of the

values of objective functions, defined in Subsections III-A

and III-B. Furthermore, we studied the impact of time on the

clustering output. The results of the algorithms are compared

and discussed in order to give an insight of their applicability

and importance.

A. Clustering over Synthetic datasets

For the purpose of this experimentation, we have generated

data based on a specific model and then tested if the suggested

algorithms succeed in discovering that model. More specifi-

cally, our synthetic data are generated as follows: initially, we

produce the two dimensional page visiting table (the n x p PV
table) and then based on it we generate the three dimensional

page-over-time visiting table (the n x p x t PTV table). For

the two dimensional table we fix the dimensionality p of the

data which was divided in advance into k
2 clusters. For each

cluster we select a random number of members while for each

jth dimension (1 ≤ j ≤ p) we select a mean value μi,j , which

0.5 0.75 1 1.25 1.5
0

0.5
0.4
0.6
0.8

1
1.2

O
bj

ec
tiv

e 
fu

nc
tio

n

0.5 0.75 1 1.25 1.5
0

0.2
0.4
0.6
0.8

1
1.2

O
bj

ec
tiv

e 
fu

nc
tio

n

0.5 0.75 1 1.25 1.5
0

0.2
0.4
0.6
0.8

1
1.2

Standard Deviation

O
bj

ec
tiv

e 
fu

nc
tio

n

Ground−truth
PageTuneTime
TimeTunePage

Number of clusters = 4
             a=0.3

a=0.5

a=0.7

(a) Objective function values as a function of the
standard deviation

4 6 8
0

0.1
0.2
0.3
0.4
0.5
0.6

O
bj

ec
tiv

e 
fu

nc
tio

n

4 6 8
0

0.1
0.2
0.3
0.4
0.5

O
bj

ec
tiv

e 
fu

nc
tio

n

4 6 8
0

0.1
0.2
0.3
0.4
0.5

Number of clusters

O
bj

ec
tiv

e 
fu

nc
tio

n

Ground−truth
PageTuneTime
TimeTunePage

Standard Deviation = 0.5
               a=0.3

a=0.5

a=0.7

(b) Objective function values as a function of the
number of clusters
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is uniformly distributed in [0..99]. Points are then generated

by adding a value sampled from the normal distribution

N (μij , σ
2). Once the two dimensional page visiting table is

created, we proceed to the three dimensional page-over-time

visiting table starting by fixing the dimensionality t. The goal

here is to split each of the k
2 clusters into 2 subsets which will

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 17, 2009 at 06:43 from IEEE Xplore.  Restrictions apply.



10

be diversified to the lth dimension (1 ≤ l ≤ t). In this case,

we generate values in [0..t] using the normal distribution and

use them in order to split each of PV(i, j) value to PTV(i, j, l)
values. For our experiments we fixed the values of users’ to

be around n = 1000, p = 100 and t = 10. We create different

datasets using k = 4, 6, 8 clusters and standard deviation (for

the PV table) σ = 0.5, 0.75, 1, 1.25, 1.5.

The results for the synthetically generated data are shown

in Fig. 3 and 4. These figures depict the objective functions

values calculated by the proposed algorithms in comparison

with those of the original model, used to generate the synthetic

data (“Ground-truth” bar). In all cases, the proposed methods

approach the Ground-truth objective function demonstrating

that our algorithms find the underlying model.

In case of the PAGETUNETIME and TIMETUNEPAGE al-

gorithms (Fig. 3) the Ground-truth bar is common since

the objective function E of the algorithms is the same. As

indicated in Fig. 3(a) the values of objective function are

increasing as the standard deviation increases for the different

values of factor α (0.3, 0.5, 0.7). The objective function values

as a function of the true underlying number of clusters for

different α is shown in Fig. 3(b). In this case, it is expected

the objective function values be decreasing as the number

of clusters increases (this does not always happen since the

number of users is random).

In case of the BINDING algorithm (Fig. 4), the objective

function values as a function of the standard deviation are

shown in Fig. 4(a) while Fig. 4(b) presents the objective

function values as a function of the true underlying number of

clusters. The algorithms’ performance is apparent in all cases.

1) A Graphical analysis for the synthetic dataset: Graphi-

cal analysis is generally very important since it can reveal the

underlying structure of a dataset. In case of high-dimensional

data, advanced multivariate graphical techniques such as An-

drews’ curves are employed in order to efficiently depict the

data properties [22].

Andrews’ curves is a way to visualize and hence to find

structure of high-dimensional data. Each multivariate observa-

tion e.g. (PV (i, 1), · · · , PV (i, p)) is transformed into a curve

based on the function:

f(t) = PV (i, 1)
1√
2

+ PV (i, 2) sin(t) + PV (i, 3) cos(t)

+ PV (i, 4) sin(2t) + PV (i, 5) cos(2t) + · · ·

and plotted over the range −π < t < π. Thus, each data point

(e.g. user) may be viewed as a curve between −π and π. This

function representation has several interesting characteristics,

namely it preserves the standard deviation and the distances of

data points (e.g. close points will appear as close curves while

distant points as distant curves). So, if there is an underlying

structure in the data, it may be visible in its Andrews’ curves.

More specifically, regarding Andrews’ curves in conjunction

with clustering process, we can claim that the different shapes

of curves among clusters are an indication of dissimilarity

between users belonging to different clusters while the similar

curves among the users of the same cluster are an indication

of similarity between them [23].
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Fig. 5. Andrews’ curves in page space: each curve depicts a user based on
p = 10 pages.
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(b) 1st cluster after reassignment phase

Fig. 6. Andrews’ curves in pave-over-time space: for each of p = 10 pages
each curve depicts a user based on t = 10 timeframes.

In our time-aware framework, Andrews’ curves can prove

graphically the fact that time aspect differentiates users’ clus-

ters when it is taken into account in conjunction with their

navigational behavior. More specifically, we expect some users
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that are considered similar because of their page preferences

to be finally grouped separately given the time period of their

access. In other words, we expect dissimilar curves within

clusters after initialization to be moved in order that we take

clusters with similar curves after reassignment. The change in

curves will be depicted only when page and time are combined

in page-over-time space. So, we study Andrews’ curves only

with the BINDING algorithm.

In the BINDING algorithm each user can be repre-

sented by a single curve based on the p variables:

((PV(i, 1), · · · , PV(i, p)). In this n x p space, the improvement

our approach introduces will not be visible. At the same

time, however, we can represent each user with a single

curve for each page separately based on the t variables:

((PTV(i, j, 1), · · · , PTV(i, j, t)), 1 ≤ j ≤ p. Here, in n x p
x t space, curves shapes after initialization phase are expected

to be different within clusters since the aspect of time is not

taken into account. The curves’ differences are smoothen after

the reassignment phase since users’ “migrate” among clusters

resulting in clusters’ members close to each other both in page

and time space.

For this part of experiments we set n = 300 users, p = 10
pages and t = 10 timesframes in order to facilitate the

readability of the users’ graphical representation. We create a

dataset using k = 4 clusters and standard deviation σ = 1. As

expected, in Fig. 5(a) and 5(b), where each user is represented

by a single curve based on p = 10 variables, the users’ curves

have strong similarity within each individual cluster while

clusters’ curves are different and therefore well-discriminated

(we have 2 instead of 4 different curve shapes because we start

with 2 actual clusters in page space which are then divided so

as to take 4 clusters in page-over-time space). The difference

between corresponding clusters after the two phases of the

clustering process is on the number of their members. The

improvement our approach introduces is apparent in Fig. 6

(due to the lack of space we present only one of the four

clusters). Fig. 6(a) and 6(b) represent users in the 1st cluster

over each of the p = 10 pages. Each user over each page is

depicted by a single curve based on the t = 10 variables. We

can notice that irregularities in initial clustering (Fig. 6(a))

are smoothen after reassignment (Fig. 6(b)). This is a clear

indication that our approach creates clusters with members

close to each other according to both page preferences and

their time locality.

B. Experiments with real data

Our real data experimentation was based on two distinct

sources of log files. The first source records users’ naviga-

tional behavior on an academic oriented host (AUTH CSD

Department site2) while the second one logs users’ visits on

a general public, more popular server (NASA3). We present

experimentation based on two log files derived from the

first source and referring to different time periods. More

specifically, the first log file involves records over a month

period (Oct 03) and its size is about 60MB. The second CSD

2AUTH Department of Informatics, http://www.csd.auth.gr/
3NASA server log file, http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

log file involves records over a seven months period (Oct 03 -

Apr 04) and its size is about 430MB. The third log file, derived

from the NASA web server, involves records over a month

period (Jul 95) and its size is about 200MB. We will refer to

these datasets as CSD 1, CSD 7 and NASA, respectively.

As mentioned in Subsection IV-A, the data preprocessing

precedes the clustering process and involves data cleaning

which removes any log entry that is not needed for the

mining process (e.g image files, css, swf or requests made

by automated agents and spider programs). Thus, the initial

log entries have been significantly reduced so as to work with

useful for the clustering information. Table III summarizes

the details of the remaining log entries of each dataset. The

timeframe in case of the monthly logs (i.e. CSD 1 and

NASA datasets) has been set to one day since a day is a

typical subdivision of a month’s period. On the other hand,

in the seven months log (i.e. CSD 7) the timeframe has been

defined as one month. However, in the proposed approaches

the timeframe’s definition is not strict and can be determined

according to the underlying application’s framework and the

log file’s period we work on.

TABLE III
DATASETS DETAILS.

Dataset Time period Users Pages Timeframes
CSD 1 Oct 03 415 113 30

CSD 7 Oct 03 - Apr 04 473 256 7

NASA Jul 95 456 70 28

In the first part of the real data experimentation, we evaluate

the values of tuning E and binding Ept objective functions

defined in (4) and (9) respectively. In general, the objective

function expresses the sum of distances of each user belonging

to a cluster, from the cluster’s representative and thus lower

values of it declare a better clustering scheme. Consequently,

when referring to improvement in terms of objective function

we denote its decrement. Table IV presents the improvements’

percentages of E and Ept objective functions for the three

datasets.

In case of the PAGETUNETIME and TIMETUNEPAGE algo-

rithms, we experimented with different values of the factor α
while we set the number of clusters k = 4, 8, 12, 16, 20 (for the

different values of k the range of improvement percentages is

given in Table IV). More specifically, in the PAGETUNETIME

algorithm, we notice that the increase of values of α results in

lower improvements on clustering objective function E. This

is expected since the initial clustering takes into account only

the users’ page preferences. The tuning objective function E
implies that low values of α (i.e. α < 0.5) indicate more

“gravity” to the time aspect (Et) and thus result in high levels

of improvements while high values of α (i.e. α > 0.5) retain

“gravity” to the page aspect (Ep) and cause low improvements.

The above observations would be beneficial for applications

such as recommendation engines which are primarily based

on users’ page preferences (that reveal the topics users are

interested in) and secondarily should rely on the access time

to a different degree. For example, given that users’ books
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TABLE IV
E AND Ept IMPROVEMENTS FOR k = 4, 8, 12, 16, 20.

PAGETUNETIME (E)

Value of α CSD 1 NASA CSD 7
0.3 11% − 30% 24% − 45% 28% − 67%

0.5 4% − 16% 1% − 27% 31% − 55%

0.7 1.5%−12% 0.5%−20% 18% − 48%

TIMETUNEPAGE (E)

Value of α CSD 1 NASA CSD 7
0.3 0.5%−2.5% 0.3%−10% 6% − 16%

0.5 4% − 13% 8% − 21% 13% − 43%

0.7 7% − 25% 15% − 43% 27% − 56%

BINDING (Ept)

CSD 1 NASA CSD 7
28% − 33% 16% − 47% 1.5%−10%

preferences probably vary significantly over time (e.g. job-

related in winter, literature in summer), the recommendation

engine of a book store should give “gravity” to the time

aspect (i.e. a = 0.3). This could lead to high levels of

improvement, since in our datasets (according to Table IV),

the improvements are up to 67%. On the other hand, users’

movies preferences are less probable to change over time

and thus we can retain the “gravity” on the page aspect

(i.e. a = 0.7) providing meaningful clusters which in our

case are improved up to 48%. In a music recommendation

engine, given that users’ music preferences are less changeable

over time than books’ preferences and more changeable than

movies’ preferences, both aspects would be equally considered

(i.e. a = 0.5). In this case, our improvements reaching 55%
indicate that the PAGETUNETIME clusters are significantly

enriched with time information.

The TIMETUNEPAGE clusters also carry more information

than those that K-means initially creates as indicated in E
improvements (Table IV). In this case, we observe that higher

values of α result in higher improvements on E. This is

expected since the initial clustering process takes into account

only the time locality of users’ page preferences. Therefore,

choosing appropriate values of α we can either give “gravity”

to page information (i.e. α > 0.5) or retain “gravity” to time

information (i.e. α < 0.5).

In TIMETUNEPAGE algorithm, similarly to PAGETUNE-

TIME, the degree to which the page aspect should be con-

sidered may vary according to the underlying application. For

instance, using the TIMETUNEPAGE algorithm with a = 0.3
results in improvements up to 16%. This could efficiently

guide the administrator of a restaurant’s Web site who should

update the pages content (e.g. menu) based primarily on

users’ access time. However, in e-commerce Web sites with

marketing campaigns, after deciding the appropriate time for

their launching (e.g. at the beginning of a month), it is crucial

that the campaign’s content be adjusted to users products’ pref-

erences. In this case, choosing a = 0.7 the TIMETUNEPAGE

algorithm could yield improvements up to 56%. Finally, the

administrator of a University Department Web server could

decide the caching policy according to which pages are mostly

visited over specific time periods (e.g. examination results

pages cached during the examination period). In this case

the page and time aspects would be equally considered (i.e.

a = 0.5) since this could result in significant improvements

which in our case reach 43%.

Comparing the output of the PAGETUNETIME and TIME-

TUNEPAGE algorithms we can confirm our claim that they

are of reverse logic. For example, in case of CSD 1 dataset

and for α = 0.3 the PAGETUNETIME algorithm results in

improvements between 11%-30%, while about the same level

of improvements occur in case of TIMETUNEPAGE algorithm

when α = 0.7 (7%-27%). This observation holds also for

NASA and CSD 7 datasets. The variation in the improvement

levels between the two algorithms is highly dependent on the

initialization. In addition, the different levels of improvements

between datasets for the same values of α are due to their

nature (i.e. the degree to which the time aspect distinguishes

users).

The impact of the time aspect in the reassignment phase

of the tuning algorithms is difficult to be represented for all

users because of the datasets’ high dimensionality. Thus, in

Fig. 7 and 8 we focus on the reassignment of a user of the

CSD 1 dataset for k = 8 in case of the PAGETUNETIME and

TIMETUNEPAGE algorithms respectively. More specifically,

Fig. 7 depicts the visits of three users as a function of the

visited pages and the access time. All three users seem to

access common pages. However, the user of Fig. 7(a) requests

pages during the first and last timeframes (i.e. days) while the

access of the user depicted in Fig. 7(c) is mainly detected on

the middle timeframes. Due to their common page preferences,

users of Fig. 7(a) and 7(b) are grouped together in U2 during

the initialization phase, even though they differ in terms

of their access time. Thus, the reassignment phase of the

PAGETUNETIME algorithm manages to separate these users

and finally assign user of Fig. 7(b) to cluster U8 where the

user of Fig. 7(c) belongs. It is apparent that these two users

are more similar to each other since they pay visits not only to

common pages but also on common timeframes. In a similar

way, the initialization phase groups together in the cluster U1

the users of Fig. 8(a) and 8(b) because of their similarity over

time. However, due to their dissimilarity on page preferences,

the TIMETUNEPAGE algorithm succeeds in reassigning the

user of Fig. 8(b) in the cluster U3 where the user of Fig. 8(c)

belongs.

In case of the BINDING algorithm, the improvements inter-

vals on Ept for the various values of k are also depicted in

Table IV. The obtained clusters are based equally to the page

and time aspect and, as it has been already discussed, this is

beneficial for administration issues. For example, the content

updating of a Web site as well as caching policies could be

guided by users’ similar behavior at certain times resulting in

refined clusters which in our case are improved up to 47%.

The improvements observed in case of CSD 7 dataset are

lower than those of the other two datasets. This fact shows that

fine grained timeframes (30 and 28 timeframes in CSD 1 and

NASA respectively) provide more information to the BINDING
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Fig. 7. The PAGETUNETIME algorithm: the impact of the time aspect in a user’s reassignment.
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Fig. 8. The TIMETUNEPAGE algorithm: the impact of the time aspect in a user’s reassignment.

1 2 3 6 30
0

5

10

15

20

25

30

35

timeframes

O
bj

ec
tiv

e 
fu

nc
tio

n 
im

pr
ov

em
en

t (
%

)

noc=4
noc=8
noc=12

(a) CSD 1

1 2 3 4
0

5

10

15

20

25

30

35

40

timeframes

O
bj

ec
tiv

e 
fu

nc
tio

n 
im

pr
ov

em
en

t (
%

)

noc=4
noc=8
noc=12

(b) NASA

1 2 3 4
0

2

4

6

8

10

12

14

16

18

20

timeframes

O
bj

ec
tiv

e 
fu

nc
tio

n 
im

pr
ov

em
en

t (
%

)

noc=4
noc=8
noc=12

(c) CSD 7

Fig. 9. The BINDING algorithm: the Ept improvements as a function of the number of timeframes for k = 4, 8, 12.

algorithm and thus they result in higher improvements in

comparison with coarse grained timeframes (7 timeframes

in CSD 7). This is also demonstrated in Fig. 9 where the

improvements of the Ept are presented as a function of the

number of timeframes for all datasets for k = 4, 8, 12. The

number of timeframes on x-axis indicates the time period on

whose basis we examine the users’ actions. For example, in

CSD 1 we define the timeframes 1, 2, 3, 6, 30 whose duration

is 30, 15, 10, 5, 1 days respectively. It is apparent in all cases

that increasing the number of timeframes results in higher

improvements. The minimum improvement is 0% when t = 1
since in this case the PTV table becomes n x p and does not

carry any information about time. Fig. 9 indicates that the

appropriate timeframe’s definition can significantly affect the

results of the BINDING algorithm.

C. Interpreting Time-aware Clustering in practice

Analyzing the above derived clusters may yield plenty

of inferences about users’ preferences and needs which can

significantly benefit web-related applications. In accordance

to the scenarios highlighted in Section I, the proposed time-

aware clustering could be helpful for:

• E-commerce: targeted market campaigns, where one can

guide certain advertising tasks considering clusters’ fea-

tures [24]. For example, once we use an e-commerce site

logs we may have its users clustered according to the

TIMETUNEPAGE algorithm. Then a targeted campaign

might address different users based on their assignment

to clusters and, moreover, non-regular customers might

be captured.

• Recommendation engines: building users’ profiles by ana-

lyzing their common browsing behavior can be useful for

the effectiveness of recommendation systems which will

accurately predict the products (books, movies, music)

that a user may be interested in [25]. In such an applica-

tion, using the PAGETUNETIME algorithm will result in

users’ clusters that will carry information primarily for

users’ page preferences and secondarily for their access

time. As a result, the recommendation engine could build

better correlated and homogeneous profiles.
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• Web site administration: revealing users’ interests can

help Web administrators reorganize Web pages’ content

and layout in order to provide more user-oriented and

personalized environment and services [26]. The pro-

posed PAGETUNETIME and BINDING algorithms can be

beneficial for such tasks since Web administrators can

have clusters containing users with similar preferences

and needs at certain times.

• Caching and Prefetching: clustering interpretation can

provide beneficial indications of Web caching and

prefetching since the time criterion is crucial due to space

limitations imposed by the cache sizes [27]. Therefore,

both the TIMETUNEPAGE and BINDING algorithms can

be suitable since they will result in clusters of users

who would be coherent in terms of the page and time

aspects. Thus, they could offer useful information for

effectively prefetching web objects into local caches,

reducing latencies and even shifting network loads from

peak to non-peak periods.

The proposed algorithm’s usage may be extended to any

application that can be improved by a users’ clustering process,

since in most cases the impact of users’ visits time locality

is crucial and can contribute to revealing more unambiguous

relations between them.

VI. CONCLUSIONS-FUTURE WORK

This paper introduces and evaluates two tracks of time-

aware clustering approaches, the so-called TUNING and BIND-

ING time-aware clustering. Three different algorithms have

been introduced which combine page and time aspects either

“loosely” (tuning algorithms) or “tightly” (binding algorithm).

The proposed algorithms have been evaluated under real and

synthetic workloads and they have resulted in meaningful

clusters in terms of the criteria used to evaluate the users’

similarity. The produced clusters consist of users exhibiting

similar access behavior not only according to their page

preferences but also to their access time.

The results of the proposed algorithms offer insight for the

adoption of time-aware clustering in various Web applications.

Future work may aim at combining the algorithms along with

particular caching and prefetching techniques to investigate

whether the clustering information could be synchronized with

a cache replacement policy. Moreover, these clustering ideas

could be used in correlation with particular recommendation

engine tasks so as to build better user profiles.
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