
ARTICLE IN PRESS

Neurocomputing 72 (2009) 2121–2133
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

E-m

(L. Mou
journal homepage: www.elsevier.com/locate/neucom
Fuzzy lattice reasoning (FLR) type neural computation for
weighted graph partitioning
Vassilis G. Kaburlasos a,�, Lefteris Moussiades a, Athena Vakali b

a Department of Industrial Informatics, Technological Educational Institution of Kavala, GR-65404 Kavala, Greece
b Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
a r t i c l e i n f o

Available online 16 December 2008

Keywords:

Clustering

Graph partitioning

Fuzzy lattices

Measurable path

Metric

Similarity measure
12/$ - see front matter & 2008 Elsevier B.V. A

016/j.neucom.2008.10.021

esponding author. Tel.: +30 2510 462 320; fax

ail addresses: vgkabs@teikav.edu.gr (V.G. Kab

ssiades), avakali@csd.auth.gr (A. Vakali).
a b s t r a c t

The fuzzy lattice reasoning (FLR) neural network was introduced lately based on an inclusion measure

function. This work presents a novel FLR extension, namely agglomerative similarity measure FLR, or

asmFLR for short, for clustering based on a similarity measure function, the latter (function) may also be

based on a metric. We demonstrate application in a metric space emerging from a weighted graph

towards partitioning it. The asmFLR compares favorably with four alternative graph-clustering

algorithms from the literature in a series of computational experiments on artificial data. In addition,

our work introduces a novel index for the quality of clustering, which (index) compares favorably with

two popular indices from the literature.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Neural computation is typically pursued on numeric data in the
Euclidean space RN, where there is an abundance of mathematical
tools available. Nonnumeric data were also considered including
linguistic (fuzzy) data [32,46]. Alternative (nonnumeric) data of
practical interest include structured (graph) data.

Our long-term interest, in the context of this work, is in
partitioning a weighted graph, which represents a WWW-site as
explained below. Advantages of meeting the aforementioned task
by neural computing techniques include a capacity for massively
parallel data processing as well as a capacity for both learning and
generalization. A number of authors have pursued neural comput-
ing involving graphs as described next.

A structure (graph) was used as a vehicle for a unified
data representation including arrays, sequences, and trees; in
conclusion, a neural paradigm was proposed for learning,
probabilistically, IO-isomorph transductions from an input- to an
output- structured space, where transductions admit a recursive
hidden state–space representation [18]. The latter work has
spurred a lasting research activity including various enhance-
ments and applications [1,2,8,20,47,48]. In addition, a number
of technical issues were studied including ambiguity [19], node-
complexity, etc. [21]. Extensions to Kohonen’s self-organizing map
(SOM) were also reported [27,29]. However, the aforementioned
neural paradigm pursues learning by optimizing an ‘‘energy type’’
ll rights reserved.

: +30 2510 462 348.

urlasos), lmous@teikav.edu.gr
objective (error) function in RN using ‘‘number crunching’’ techni-
ques. Hence, even though semantics may exist in (structured) input/
output data, nevertheless semantics is absent during data proces-
sing. Also, the aforementioned neural paradigm does not induce
descriptive, decision-making knowledge for the general user.

On a different context, especially popular is an employment of
the Hopfield neural network in graph–theoretic problems includ-
ing: maximum cut [9], search [58], minimum vertex cover [66],
etc. Note that, typically, a Hopfield network ignores semantics and
it pursues optimization of an ‘‘energy type’’ objective function.
Nevertheless, a different (Hopfield) network, which does not
neglect graph–theoretical properties, preserved under isomorph-
ism, was also presented for deciding whether two graphs are
structurally equivalent [31].

Several works have dealt with the problem of graph matching

using neural networks [62]. For instance, a general framework was
proposed for approximate graph matching problems in image
retrieval tasks [22]. Moreover, a (neural) graph matching techni-
que was presented for object recognition [57], where a graph
representation of the neuron positions/inter-connections reflects
the structure of model objects. Furthermore, a pattern recognition
problem was formulated as labelled graph matching towards
finding the best match between an input graph and a stored
graph [59].

The abovementioned graph matching techniques typically
assume overlapping graphs, moreover an objective (cost) function
is assumed. A recent work has introduced a (metric) graph edit

distance (GED), derived from a metric cost function, in a set
of graphs embedded in a labelled complete graph GO, namely
edit grid; moreover it demonstrated, comparatively, a successful
pattern recognition application regarding a chemical information

ARTICLE IN PRESS

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–21332122
system [33]. Furthermore, three novel graph kernels were
introduced for measuring similarity between feature vectors of
chemical molecules towards classification of chemical compounds
represented by graphs of covalent bonds [54].

The specifications of our task here, namely weighted graph

partitioning, require different tools since we need to partition
a graph into non-overlapping (sub)graphs by clustering, as
explained below. There exists an abundance of graph (clustering)
algorithms in various application domains including circuit
partitioning [6], pattern recognition [15,25,65], structure compar-
ison [26,33], etc. Note that the literature is dominated by divisive

type clustering algorithms [4,16,61], where clusters are computed
‘‘top-down’’ by successively batch-splitting a graph. A different
type of clustering, namely agglomerative (clustering), may proceed
‘‘bottom-up’’ by incrementally augmenting graphs. However,
agglomerative clustering is not usually pursued mainly due to a
shortage of enabling mathematical tools.

A fundamentally novel approach to neural computing was
introduced lately applicable on partially(lattice)-ordered data
including logic values, numbers, sets, symbols, and graphs
[36,38,40,41]. In conclusion, the fuzzy lattice reasoning (FLR)
emerged as an enhanced version of the learning algorithm
employed by the neural-fuzzy classifier s-FLN(MAP) [42]. The
latter (classifier), in turn, has emerged as a lattice data domain
extension of the well-known neural classifier fuzzy-ARTMAP, or
FAM for short [40].

The operation of FLR was originally based on an inclusion

measure function [39,42] towards inducing descriptive, decision-
making knowledge (rules). A cluster, computed by FLR, is
interpreted as an information granule [37]. A successful employ-
ment of a FLR version on graphs was already demonstrated using
fuzzy lattice neurocomputing (FLN) [52], where clusters (namely,
hyperwords) were computed in a master-graph, the latter encoded
a thesaurus of English language synonyms; in conclusion, hyper-
words were used for dimensionality reduction in a classification
problem regarding large text documents. Nevertheless, the work in
[52] ignores graph connectivity and treats, quite restrictively, a
graph as an unstructured set of both vertices (or, nodes) and edges

(or, links).
A substantial novelty of this work is consideration of graph

connectivity by a different FLR version based on a novel similarity

measure function. In conclusion, a master-graph is treated here as a
(structured) data domain where, in contrast with the conventional
data domain R, which includes a single shortest path between two
different real numbers a,bAR [40,42], there might be multiple
shortest paths between two different nodes a and b in a master-
graph.

Previous versions of FLR dealt either with hyperboxes in RN

[42] or with FINs [39]; whereas, this work extends the applic-
ability of FLR to graphs based on a metric distance. Note that a
number of distances between graphs have been proposed by
different authors [5,55].

There are similarities as well as substantial differences between
FLR and previous graph processing algorithms. For instance, the
latter algorithms have proposed a unification of graph/set/series
data at a ‘‘representation’’ (encoding) level in the Euclidean space
RN, whereas FLR proposes a disparate data fusion in a mathema-
tical product-lattice L ¼ L1�?�LN data domain [36,40]. In
conclusion, previous algorithms carry out data processing by
‘‘number crunching’’ techniques, whereas FLR may retain seman-
tics throughout data processing [34]. In addition, the FLR may
induce descriptive decision-making knowledge (rules) from the
training data. An additional advantage for FLR includes the
capacity to introduce tunable nonlinearities [34,36,37,39,40,42].

This paper builds on previous work [43] including the following
substantial novelties. First, we introduce a number of useful
mathematical results including theoretical substantiation (i.e.
proofs) and, second, we demonstrate comparatively a large
number of new experimental results on artificial data. In addition,
the work in [43] employs solely the inner-transactions ratio (ITR)
index for evaluating the quality of graph clustering in a real-world
application, where a weighted master-graph represents traffic.
However, the ITR index ‘‘by definition’’ ascribes larger values to
fewer clusters; hence, it encourages the computation of a single
cluster. Whereas, the work here employs three different indices,
including a novel one, for evaluating advantageously the quality of
graph clustering. Future work will demonstrate a real-world
application using the novel (mathematical) tools detailed here.

The layout is as follows. Section 2 defines metrics in measure
(path) spaces. Section 3 summarizes the theory of fuzzy lattices
including useful extensions; the practical relevance is also
explained. Section 4 presents a novel neural computing algorithm
for graph clustering. Comparative experimental results are
presented in Section 5 including also a discussion. Section 6
concludes by summarizing the contribution of this work. Finally,
Appendix A summarizes useful mathematical definitions and
proofs.
2. Measurable paths and metrics

This section introduces useful metric distances between sets in
a metric space; the latter emerges from measurable paths in a
graph. Appendix A lists useful definitions.

2.1. Measurable paths

Inspired from measure theoretic analysis for path-planning in
robotics [44], this section introduces useful terminology. Consider
the following definition regarding a path.

Definition 2.1. Let X be a set and D be a totally-ordered ‘‘indexing
set’’ with least- and greatest-elements O and I, respectively. A path

from aAX to bAX, symbolically a-b, is a function pab(.): D-X such
that pab(O) ¼ a and pab(I) ¼ b.

We point out that the indexing set D implies a totally-ordered
complete lattice (D,p), whose cardinality may be either finite, e.g.
D ¼ {0,1,2,y,M}, or infinite; in turn, the latter could be either
countable, e.g. D ¼ {0,1,2,y}, or uncountable, e.g. D ¼ [0,1] or
D ¼ RX0. We assume that both infinite sets {0,1,2,y} and RX0

have greatest element I ¼ +N.
Our interest is in ‘‘measurable’’ paths pab(.): D-X such that a

measure space (D, SD, mSD
) can be defined with 0omSD

ðDÞoþ1.
The s-algebra SD includes intervals [t1,t2], where t1,t2AD with
t1pt2. In particular, mSD

ðDÞ ¼ mSD
ð½O; I�Þ is called length (of the path

a-b from aAX to bAX).
A measure function mSD

: SD-RX0 is induced from a measure
space (X, SX, mSX

) as follows. Number mSD
ðDÞ is calculated from

a partition {D1,y,DN} of D such that there are no xay with
pab(x) ¼ pab(y), i.e. there are no ‘‘cycles’’ on the path a-b.
In conclusion, mSD

ðDÞ ¼ mSX
ðpabðD1ÞÞ þ � � � þmSX

ðpabðDNÞÞ, where
pab(Di) denotes the image (set) of Di, i ¼ 1,y,N. We point out that
any partition of D results in the same number mSD

ðDÞ.
Measure space (D, SD, mSD

) implies complete lattice (SD,D)
with least and greatest elements + and D, respectively; moreover,
function mSD

: SD-RX0 is a positive valuation in lattice (SD,D)
[40]. Our interest, next, focuses on the (complete) indexing lattice
(D,p).

Function vD ðxÞ ¼ mSD
ð½O; x�Þ, xAD is a positive valuation in the

indexing lattice (D,p) because (1) vD ðxÞ þ vD ðyÞ ¼ mSD
ð½O; x�Þ þ

mSD
ð½O; y�Þ ¼ mSD

ð½O; x _ y�Þ þmSD
ð½O; x ^ y�Þ ¼ vD ðx _ yÞ þ vD ðx ^ yÞ

ARTICLE IN PRESS

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–2133 2123
and (2) xoy) mSD
ð½O; x�ÞomSD

ð½O; y�Þ) vD ðxÞovD ðyÞ. Hence, a
metric dD: D�D-RX0 is given by dD ðx; yÞ ¼ vD ðx _ yÞ � vD ðx ^ yÞ ¼

mSD
ð½O; x _ y�Þ �mSD

ð½O; x ^ y�Þ.
The greatest lower bound of all path pab(.) lengths we call

distance between a and b, symbolically dX(a,b). That is, distance
dX(a,b) is the length of a shortest path from aAX to bAX. Note that
uniqueness of number dX(a,b) does not imply uniqueness of the
shortest path between a and b since more than one path can have
the same (shortest) length. In conclusion, a metric space (X,dX)
emerges from measurable paths between set X elements.

Definition 2.2. A subset VDX in a metric space (X,dX) is called
convex if and only if it includes all shortest paths between set
V elements.

In the context of this work, a convex set is interpreted as an
information granule [50].

We define distance(s) between sets in a metric space (X,dX),
next.
2.2. Metrics in a s-algebra

The previous section has detailed how a measure space (X, SX,
mSX

) gives rise to a metric space (X,dX). This section presents three
metrics in a s-algebra SX.

Proposition 2.3. Function da:SX�SX-RX0 such that da(A,B) ¼
03A ¼ B, moreover daðA;BÞ ¼ ð1=ðjAjjBjÞÞ

P
i;jdXðai; bjÞ is a metric.

The proof of Proposition 2.3 is shown in Appendix A.
We remark that Proposition 2.3 regards only sets of finite

cardinality. More specifically, |A| in Proposition 2.3 denotes the
cardinality of finite set A. In other words, |A| denotes the (integer)
number of elements contained in set A, e.g. |A ¼ {a,b,c}| ¼ 3.
Moreover, expression

P
i;jdXðai; bjÞ in Proposition 2.3 is a simpli-

fication for
P

ai2A½
P

bj2BdXðai; bjÞ�.
The following two metrics employ unary operations _S and ^S,

which equal, respectively, the supremum and the infimum of a
set S of real numbers. Note that expressions _S and ^S are
simplifications for expressions _x2SS and ^x2SS, respectively. For a
finite set S, numbers _S and ^S equal, respectively, the maximum
and minimum number in S.

Proposition 2.4. Function dM:SX�SX-RX0 such that dM(A,B) ¼
03A ¼ B, moreover dMðA;BÞ ¼ _i_jdXðai; bjÞ is a metric.

The proof of Proposition 2.4 is shown in Appendix A.
We remark that expression _i_jdXðai; bjÞ in Proposition 2.4 is a

simplification for expression _ai2Af_bj2BfdXðai; bjÞgg. Consider the
following condition.

Condition 2.5. Let A, B, C be sets in a metric space (X,dX), and let
aiAA, bjAB, ckAC. For an index k suppose both 9Ik : Ik ¼

argif^idXðck; aiÞg and 9Jk : Jk ¼ argjf^jdXðck; bjÞg. Then we define
‘‘Condition 2.5’’ as follows dXðaIk

; bJk
Þpmaxf_i^jdXðai; bjÞ;_j^idX

ðbj; aiÞg.
cba

c ba

Fig. 1. (a) Non-overlapping intervals [a,b] and [c,d] on the real lin
Proposition 2.6. Condition 2.5 is sufficient for a metric function

dH:SX�SX-RX0 given by dHðA;BÞ ¼ maxf_i^jdXðai; bjÞ;_j^idX

ðbj; aiÞg.

The proof of Proposition 2.6 is shown in Appendix A.
The metrics above are different from other ones between

graphs [26,33] in that the latter quantify structural dissimilarity
between graphs, whereas the metrics here quantify distance
between graphs. More specifically, metric dH(.,.) is a generalization
of the Hausdorf metric, the latter is typically defined in RN [13,35].
Moreover, metric da is applicable solely to sets of finite cardinality,
whereas the other two metrics dM and dH are applicable between
any sets.

2.3. Examples

In this section we demonstrate computation of metrics dM(.,,)
and dH(.,,) including also geometric interpretations.

Example 2.7. Consider intervals [a,b] and [c,d] on the real line
(Fig. 1). Sufficient Condition 2.5 holds, therefore it follows

dMð½a; b�; ½c; d�Þ ¼ maxfja� dj; jb� cjg for ½a;b�a½c; d� and

dHð½a; b�; ½c;d�Þ ¼ maxfja� cj; jb� djg.

Example 2.8. We represent a circle in the normed linear space RN

by a pair (c,r), where cARN and rX0 is the (circle) radius. For
instance, Fig. 2 shows circles (cA,rA) and (cB,rB) on the plane.
A vector r, on the line defined by the centers of circles (cA,rA) and
(cB,rB), is given by r(l) ¼ cA+l(cB�cA), lAR. For intervals on the
line r(l) sufficient Condition 2.5 holds. Therefore, it follows

dMððcA; rAÞ; ðcB; rBÞÞ ¼ rA þ kcA � cBk þ rB

for ðcA; rAÞaðcB; rBÞ and

dHððcA; rAÞ; ðcB; rBÞÞ

¼ max cA �
cB � cA

kcB � cAk
rA

� �
� cB �

cB � cA

kcB � cAk
rB

� �����
����

�
,

cA þ
cB � cA

kcB � cAk
rA

� �
� cB þ

cB � cA

kcB � cAk
rB

� �����
����
�

¼ maxfjrA þ kcA � cBk � rBj; jrB þ kcA � cBk � rAjg,

where J � J denotes the norm of its vector operand, and | � | denotes
the absolute value of its real number operand.

3. Fuzzy lattices and useful extensions

This section introduces useful functions based on the theory of
fuzzy lattices [36,37,40,42] summarized below including novel
extensions.

3.1. Power-lattices

Lattice theory was compiled creatively by Garrett Birkhoff [3].
This section considers the power-set 2L of a lattice (L,p). Next, we
introduce a binary relation pD2L�2L such that for U ¼ {u1,y,uI}
d

d

e and (b) overlapping intervals [a,b] and [c,d] on the real line.

ARTICLE IN PRESS

rA

rB

rB

rA

cA

cB

cA

cB

Fig. 2. (a) Non-overlapping circles (cA,rA) and (cB,rB) on the plane and

(b) overlapping circles (cA,rA) and (cB,rB) on the plane.

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–21332124
and W ¼ {w1,y,wJ} in 2L it is UpW if and only if 8iA{1,y,I},
(jA{1,y,J}: uipwj. It can be shown immediately that the
aforementioned binary relation, first, is a partial order and, second,
it is a lattice order. In conclusion, the power-lattice (2L,p) emerges
with U ^W ¼ [i;jfui ^wjg and U _W ¼ [i;jfui _wjg.
3.2. Fuzzy lattices

A fuzzy set is a pair (U,m), where U is a universe of discourse and
m is a membership function m:U-[0,1]. In particular, the core

(of fuzzy set m) is the set CDU for which supx2U mðxÞ is attained.
Fuzzy lattices emerged in mathematics as well as in computational
intelligence [36] by fuzzifying the binary relation ‘‘p’’ in a (crisp)
lattice as follows.

Definition 3.1. A fuzzy lattice is a triple (L,p,m), where (L,p) is a
crisp lattice and (L�L,m) is a fuzzy set such that m(x,y) ¼ 1 if and
only if xpy.

We remark that function m:U-[0,1] in Definition 3.1 is
interpreted as a weak (fuzzy) partial order relation in the sense
that both m(x,y) ¼ 1 and m(y,z) ¼ 1 imply m(x,z) ¼ 1, whereas if
either m(x,y)a1 or m(y,z)a1 then m(x,z) could be any number in
the interval [0,1]. A (complete) lattice can be fuzzified by an
inclusion measure function defined next.

Definition 3.2. Let (L,p) be a complete lattice with least element O.
An inclusion measure is a function s:L�L-[0,1], which satisfies
conditions: (I0) s(u,O) ¼ 0, uaO; (I1) s(u,u) ¼ 1, 8uAL; (I2)
u4wou)s(u,w)o1; (I3) upw)s(x,u)ps(x,w) (The Consistency
Property).

We remark that s(x,y) is interpreted as a (fuzzy) degree of
inclusion of x in y. Therefore, notations s(x,y) and s(xpy) are used
interchangably. If s:L�L-[0,1] is an inclusion measure in lattice
(L,p) then (L,p,s) is a fuzzy lattice [36,42]. A couple inclusion
measures can be defined based on a positive valuation function as
follows [36,42,52].
Theorem 3.3. If v:L-RX0 is a positive valuation in a complete

lattice (L,p), with v(O) ¼ 0, then both functions s(x,u) ¼ v(x4u)/v(x)
and k(x,u) ¼ v(u)/v(x3u) are inclusion measures.

We point out that Theorem 3.3 calls for a nonnegative positive
valuation function v.

A novel inclusion measure can be introduced in a power-lattice
as follows.

Proposition 3.4. Let function sV:L�L-[0,1] be an inclusion

measure in a lattice (L,p). Then function s:2L�2L-[0,1] given by

the convex combination s({u1,y,uI} ¼ UpW ¼ {w1,y,wJ}) ¼ l1

maxjsV(u1pwj)+?+lI maxjsV(uIpwj) is an inclusion measure.

The proof of Proposition 3.4 is shown in Appendix A.
We remark that by ‘‘convex combination’’ we mean a set

l1,y,lI of positive numbers such that l1+?+lI ¼ 1.

3.3. Similarity measure functions

Various similarity measures are employed/defined in applica-
tions [11,53,55]. A novel definition is proposed next.

Definition 3.5. A similarity measure is a function m:U�U-[0,1],
which satisfies conditions: (S1) m(x,y) ¼ 13x ¼ y; (S2) m(x,y) ¼
m(y,x).

We remark that the advantage of our proposed Definition 3.5 is
that it retains rigorously the essentials of a ‘‘common sense’’
notion of similarity while avoiding redundancies.

We define a similarity space as a pair (U,m) including a non-
empty set U and a similarity measure function m:U�U-[0,1]. The
following proposition introduces a similarity measure in a
(complete) lattice based on an inclusion measure function s.

Proposition 3.6. Let (L,p) be a lattice with an inclusion measure

s:L�L-[0,1]. Then, function ms:L�L-[0,1] given by msðx; yÞ ¼
ðsðxpyÞ þ sðypxÞÞ=2 is a similarity measure.

The proof of Proposition 3.6 is shown in Appendix A.
The following proposition introduces a similarity measure, in a

metric space.

Proposition 3.7. Let function d:U�U-RX0 be a metric. Then,
function md:U�U-[0,1] given by mdðx; yÞ ¼ 1=ð1þ dðx; yÞÞ is a

similarity measure.

The proof of Proposition 3.7 is shown in Appendix A.

3.4. Practical relevance

A metric space emerges below by adding up the weights of
links and nodes along shortest paths in a weighted master-graph
M ¼ (V,E), where V ¼ {v1,y,vN} is the (non-empty) finite set
of vertices (or, equivalently nodes) and EDV�V is the set of edges

(or, equivalently, links).
A partition, also called equivalence relation, P of the set V of

vertices in a master-graph is a (finite) collection of subsets
P1,y,PN, namely parts, of V such that both Pi\Pj ¼ { } for iaj

and P1[y[PN ¼ V for an integer number N. Apparently, based on
shortest path lengths, we can define different metric distances
da(.,.), dM(.,.), and dH(.,.) between parts of partitions, where a part

represents a subgraph. Note that different authors have already
proposed distances beyond space RN, e.g. in metric spaces for
queries [64], in spaces of convex/concave bodies for optimization
[7], etc. An additional, useful function is presented next.

Consider the family PV of all partitions of a set V. It is known
that (PV,p) is a lattice-ordered by (partitions’) refinement [56].

ARTICLE IN PRESS

Fig. 3. The agglomerative similarity measure FLR (asmFLR) neural computing algorithm for partitioning the nodes of a master-graph by clustering.

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–2133 2125
More specifically, lattice (PV,p) is a sublattice of power-lattice
(2L,p), where (L ¼ 2V,p) is the power-set (lattice) of V.

In this work we have considered (in a master-graph) inclusion
measure ‘‘type’’ functions defined as in Proposition 3.4 with
l1 ¼? ¼ lI for the following choices of sV:

ð1Þ sV1ðPipQjÞ ¼
jPi ^ Qjj

jPij
; ð2Þ sV2ðPipQjÞ ¼

jQjj

jPi ^ Qjj
; and

ð3Þ sV3ðPipQjÞ
jPi ^ Qjj

jPi _ Qjj
,

where the unary operator | � | returns the cardinality of its (set)
operand; e.g. |P1 ¼ {a,b,c}| ¼ 3.

It turns out that only functions sV1(.,.) and sV2(.,.) above are
inclusion measures, according to Theorem 3.3; whereas, function
sV3(.,.) is not an inclusion measure as demonstrated by the
following counter-example.

Consider the (totally-ordered) lattice (R,p) of real numbers. For
1 ¼ upw ¼ 2 it is straightforward to confirm that the Consistency
Property upw)s(x,u)ps(x,w) of Definition 3.2 does not hold for
x ¼ 0.5, because 0.541/0.531 ¼ 0.540.25 ¼ 0.542/0.532. Hence,
function sV3(.,.) is not an inclusion measure. Nevertheless, function
sV3(.,.) has produced the best experimental results as demon-
strated below.
4. A FLR-type neural network

FLR has emerged as an enhanced version of the learning
algorithm employed by fuzzy neural network s-FLN(MAP) [42].
The latter, in turn, has emerged as a lattice data domain
enhancement of neural network fuzzy-ART(MAP) [40].

The operation of FLR was originally based on an inclusion

measure function [37,39,42] towards inducing descriptive, deci-
sion-making knowledge (rules). Lately, there was an effort to
extend FLR in space RN based on a ‘‘non-rigorously defined’’
similarity measure function [12]. Inspired from the latter we
introduce, in the following, a FLR version for clustering in a graph,
based on a rigorously defined similarity measure function.

4.1. The agglomerative similarity measure FLR (asmFLR) algorithm

The agglomerative similarity measure FLR (asmFLR) algorithm
for master-graph partitioning by clustering is presented in Fig. 3
for neural computing subgraphs, namely granules or, equivalently,
clusters. Data processing by asmFLR repeats, conditioned on a
user-defined Assimilation Condition (Fig. 3, Step-1), a number of
cycles. Each aforementioned cycle carries out, in parallel, ‘‘batch
processing’’ computations. Overall, it can be claimed that the
asmFLR algorithm carries out lattice computing (LC), the latter is
defined as lattice-theory-based computational intelligence [23].

4.2. Algorithm asmFLR details

The asmFLR may set out learning without a priori knowledge;
however, a priori knowledge can be supplied in the form of an
initial set of subgraphs/clusters (Fig. 3, Step-0). In particular, for
n ¼ N it follows that each master-graph node constitutes a (trivial)
cluster.

There can be different user-defined Assimilation Conditions

(Fig. 3, Step-1). For instance, a naive Assimilation Condition could be
‘‘n41’’ meaning that clustering proceeds until all master-graph
nodes are put in one cluster. Another Assimilation Condition may
define a maximum threshold size for a computed cluster, etc.

Generalization can be effected as follows. A cluster QDV in a
weighted master-graph M ¼ (V,E) defines a fuzzy set (SX, md(P;Q))
such that cluster Q corresponds to the core of fuzzy set (SX,
md(P;Q)). Note that in notation ‘‘md(P;Q)’’ symbol ‘‘P’’ denotes a
variable, whereas symbol ‘‘Q’’ denotes a parameter. Hence,
generalization becomes feasible beyond core Q.

We remark that the original FLR classifier, which employs
an inclusion measure function, supports two different modes
of reasoning, namely Generalized Modus Ponens and Reasoning by

Analogy [42]. None of the aforementioned modes of reasoning is
supported by asmFLR since the latter is a scheme for clustering
based on a similarity measure function. Next, we compute the
complexity of asmFLR.

Algorithm asmFLR (Fig. 3) includes a number of O(N) cycles.
Each cycle computes O(N2) similarity measure function values.
Moreover, each of the latter (values) requires the length (i.e. the
metric distance) of the shortest path between two master-graph
nodes; nevertheless, there is no additional computational over-
head since all aforementioned metric distances are computed
once, in a data preprocessing step. It follows that the learning
(clustering) complexity of asmFLR is cubic O(N3) in the number ‘‘N’’
of master-graph nodes.

4.3. Comparative discussion

There are inherent similarities as well as substantial differences
between asmFLR and FLR. More specifically, a cluster computed by

ARTICLE IN PRESS

0
1

2
3 10

11

12 13

15 16

14

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–21332126
either algorithm corresponds to the core of a fuzzy set. Never-
theless, a cluster for FLR is a N-tuple FIN in space RN, the latter is
the Cartesian product of N totally-ordered lattices R [42]; whereas,
the asmFLR here is applied in the partially-ordered lattice (PV,p)
of partitions of the set V ¼ {v1,y,vN} of vertices in a weighted
master-graph M ¼ (V,E). Moreover, asmFLR is a data-order-
independent extension of the data-order-dependent FLR such that
asmFLR is based on a similarity measure function, whereas FLR is
based on an inclusion measure function. In addition, the FLR learns
rapidly with complexity O(n) in the number n of data, whereas the
learning complexity of asmFLR is O(N3) in the number N of master-
graph nodes as shown above.
4 5

6

8 9
17

18

19

0 1

2 3

4 5

76

8 9

10

11

12 13
14

16
15

17

18

19

7

Fig. 4. A dataset including two master-graphs, i.e. M ¼ 2, each of whom has C ¼ 5

identical graph-clusters with 3, 4, or 5 vertices. A master-graph has both a user-

defined intra-connection ratio rin ¼ 1.0 and a user-defined inter-connection ratio

rout ¼ 0.3: (a) a master-graph with average rout equal to 0.38 and standard

deviation 0.23 and (b) a master-graph with average rout equal to 0.36 and standard

deviation 0.24.
5. Comparative experimental results

We applied (neural) algorithm asmFLR, comparatively, on
metric spaces emerged from master-graphs as described above.
Master-graphs were generated as described next.

5.1. Artificial data generation and preprocessing

A user defined a number of parameters for generating,
randomly, a dataset. The aforementioned parameters included:
the number M of master-graphs in a dataset, the number C of
graph-clusters in a master-graph, both the minimum number vmin

and the maximum number vmax of vertices per graph-cluster and,
finally, both an intra-connection ratio rinA[0,1] and an inter-

connection ratio rout40. A single master-graph was generated as
detailed next.

For a graph-cluster cA{1,y,C}, a number vcA[vmin,vmax] of
vertices was drawn randomly. Then, we computed the number nin

of intra-cluster links between a vertex and different ones in graph-
cluster c such that nin equals the integer nearest to real number
rin(vc�1). Next, we randomly selected (eligible) intra-cluster links
from the list of all links in graph-cluster c. Hence, a total number C

of graph-clusters were computed.
The graph-clusters computed above were connected by

randomly generated inter-cluster links as follows. We computed
the (constant) number nout of links between a vertex in graph-
cluster cA{1,y,C} with vertices in different graph-clusters such
that nout equals the smallest integer above real number
rinðvc � 1Þrout. In addition, we required vertex intra-connectivity
(within a cluster) to be larger than the corresponding vertex inter-
connectivity (with different clusters) in order to produce clearly
separated graph-clusters (in a master-graph). Note that different
authors often generate inter-cluster links ‘‘probabilistically’’ [49]
resulting in, unfortunately, ‘‘not clearly separated’’ graph-clusters.
Finally, we randomly drew (eligible) inter-cluster links from the
list of all links in the master-graph. Hence, a master-graph was
generated.

We repeated the above procedure M times. In conclusion,
one dataset was generated including M (different) master-graphs.
The next example demonstrates dataset generation.

Example 5.1. Fig. 4 (as well as Fig. 5) displays a dataset with M ¼ 2
different master-graphs; each of the aforementioned master-
graphs includes C ¼ 5 identical graph-clusters with vmin ¼ 3,
vmax ¼ 5. Note that it is rin ¼ 1.0 in both Figs. 4 and 5, i.e. each
graph-cluster is completely intra-connected. A user defined
rout ¼ 0.3 for the dataset in Fig. 4, and rout ¼ 0.6 for the dataset
in Fig. 5.

Due to the master-graph generation procedure detailed above,

it turns out that the (actual) rout of a specific vertex is, typically,

different than the user-defined rout. Therefore, for each vertex, we

computed the (actual) rout as the ratio of (number of) inter-cluster
links over (number of) intra-cluster links. Finally, we computed

both the average rout and the corresponding standard deviation in

a master-graph in Fig. 4 as well as in Fig. 5. It turns out that the

average rout is different than the user-defined rout, as expected.
As soon as a master-graph was generated, we used (in a data-
preprocessing step) Floyd’s algorithm [17] in order to compute
the distances between any two nodes in the master-graph.
We point out that Floyd’s algorithm receives as input the
corresponding master-graph’s ‘‘adjacency matrix’’ and outputs
the required ‘‘distance matrix’’ with cubic complexity O(N3) in the
number N of master-graph nodes. Note that in our experiments
we considered master-graph links of ‘‘unit’’ length, moreover the
vertices in a master-graph did not have a weight.

ARTICLE IN PRESS

0
1

2
3

11

10

12

13 14

16

15

8 9
5

4
19 17

18
6

0
1

32

15

16

1413
11

10

12

8
19 17

18

4
5

76

7

9

Fig. 5. A dataset including two master-graphs, i.e. M ¼ 2, each of whom has C ¼ 5

identical graph-clusters with 3, 4, or 5 vertices. A master-graph has both a user-

defined intra-connection ratio rin ¼ 1.0 and a user-defined inter-connection ratio

rout ¼ 0.6: (a) a master-graph with average rout equal to 0.63 and standard

deviation 0.10 and (b) a master-graph with average rout equal to 0.62 and standard

deviation 0.13.

Table 1
Statistics regarding five datasets ds1, ds2, ds3, ds4, and ds5.

Dataset No. of

clusters C

Cluster size rin User-

defined

rout

vmin vmax Average Std. rout Average Std.

ds1 10 5 15 11.6 3.565 1 0.5 0.532 0.031

ds2 10 5 15 11.6 3.565 1 0.7 0.755 0.051

ds3 10 5 15 11.6 3.565 1 0.9 0.937 0.043

ds4 10 5 15 11.6 3.565 1 1.0 0.996 0.031

ds5 10 5 15 11.6 3.565 1 1.2 1.255 0.046

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–2133 2127
5.2. Comparative experiments

We generated five (different) datasets ds1, ds2, ds3, ds4, ds5,
respectively, for routA{0.5, 0.7, 0.9, 1.0, 1.2}. A master-graph in a
dataset included C ¼ 10 (identical) graph-clusters with vmin ¼ 5
and vmax ¼ 15. Table 1 summarizes various dataset statistics
including average cluster size as well as the corresponding
standard deviation 11.6 and 3.565, respectively. Table 1 also shows
the user-defined intra-connection ratio rin ¼ 1, that is each vertex
in a graph-cluster was connected to all other vertices. The next
column in Table 1 indicates the user-defined inter-connection ratio
rout. The last two columns in Table 1 display the actual (average)
rout as well as the corresponding standard deviation in a dataset.

In a data-preprocessing step we calculated (and stored) the
metric distances between all pairs of nodes in a master-graph, for
fast access.

We employed algorithm asmFLR using a similarity measure
md(.,.) based on three different metrics, namely da(.,.), dM(.,.), and
dH(.,.). Notation asmFLR(dX) below means algorithm asmFLR based
on metric dX, XA{a, M, H}. For comparison, we implemented and
applied four alternative graph clustering algorithms, namely
MajorClust [61], MinCutTrees [10,16], Modularity [49], and SingleLink

[30]. Where applicable, the aforementioned algorithms were
executed until 10 graph-clusters were computed.

Tables 2–6 summarize our experimental results regarding
datasets ds1, ds2, ds3, ds4, and ds5, respectively. Algorithms
MajorClust and MinCutTrees terminated by computing a small
number Cp3 of graph-clusters. The other algorithms terminated
when a total number of C ¼ 10 graph-clusters were computed as
shown in the second column of Tables 2–6. The next four columns
in Tables 2–6 display size statistics regarding graph-clusters
computed by an algorithm. Symbol ‘‘NaN’’, i.e. Not-a-Number,
appears in the std (standard deviation) column in a Table when a
single cluster was computed, hence computation of std is mean-
ingless. Column ‘‘No. of trivials’’ in a Table indicates the (average)
number of trivial graph-clusters in a total number of C ¼ 10 graph-
clusters computed by an algorithm. The last three columns in a
table show the corresponding values of (graph-clustering) indices
Purity [67], Entropy [68], and similarity measure ms(.,.). Note that
we used a different similarity measure function ms(.,.) as an index
than the similarity measure function md(.,.) used by algorithm
asmFLR towards producing unbiased results.

Fig. 6, as well as Fig. 7, demonstrates comparatively the
performance of algorithms asmFLR(da) and Modularity using three
indices, namely Purity (curve in light gray color), Entropy (curve in
dark gray color), and index ms(.,.) (curve in black color), versus a
(decreasing) number of computed graph-clusters for dataset ds1.
First, Figs. 6a and b correspond to algorithms asmFLR(da) and
Modularity, respectively, where both aforementioned figures use
index ms(.,.) based on inclusion measure sV2(PipQj) ¼ |Qj|/|Pi3Qj|.
Note that similar curves were obtained by the aforementioned
alternative graph clustering algorithms, also for sV1(PipQj) ¼
|Pi4Qj|/|Pi|, for other datasets as well. Second, Figs. 7a and b
correspond to algorithms asmFLR(da) and Modularity, respectively,
where both aforementioned figures use index ms(.,.) based on
sV3(PipQj) ¼ |Pi4Qj|/|Pi3Qj|. Note that similar curves were ob-
tained also by the aforementioned alternative graph clustering
algorithms, for other datasets as well.
5.3. Discussion of the results

Our computational experiments have clearly demonstrated
a favorable comparison for our proposed asmFLR algorithms. In
addition, our experimental work has confirmed the value of our
proposed index function ms(.,.) as detailed next.

First, an index value (in Figs. 6 and 7) was calculated by
comparing a partition, computed by a graph clustering algorithm,
to an ‘‘optimum’’ partition. The latter was the one, which included
the C ¼ 10 graph-clusters used for generating a master-graph as
described above. Note that index Purity, by definition, indicates
the average largest percentage of a computed cluster inside an
‘‘optimum’’ cluster; hence, larger values of Purity are preferable.

ARTICLE IN PRESS

Table 2
Statistics of experimental results regarding dataset ds1 by various graph clustering algorithms.

Algorithm

name

No. of

clusters C

Cluster size No. of

trivials

Purity Entropy Similarity

measure ms(.,.)

Min Max Average Std.

asmFLR (da) 10 4.8 16 11.6 3.818 0 0.957 0.062 0.921

asmFLR (dM) 10 3.7 33.7 11.6 9.049 0 0.731 0.252 0.665

Modularity 10 1 22.5 11.6 7.529 2.5 0.816 0.156 0.659

MajorClust 3 9 92 38.6 46.285 0 0.336 0.698 0.510

asmFLR (dH) 10 1 90.2 11.6 27.704 3.2 0.309 0.729 0.269

MinCutTrees 1 116 116 116 NaN 0 0.129 0.979 0.114

SingleLink 10 1 107 11.6 33.520 9 0.206 0.899 0.111

The results are arranged in the order of decreasing similarity measure ms(.,.) values.

Table 3
Statistics of experimental results regarding dataset ds2 by various graph clustering algorithms.

Algorithm

name

No. of

clusters C

Cluster size No. of

trivials

Purity Entropy Similarity

measure ms(.,.)

Min Max Average Std.

asmFLR (da) 10 5 17.9 11.6 3.818 0 0.888 0.148 0.817

Modularity 10 1 23.7 11.6 7.529 2.1 0.824 0.147 0.705

asmFLR (dM) 10 2.1 38.4 11.6 9.049 0.3 0.606 0.375 0.512

MajorClust 2 32 84 58 46.285 0 0.258 0.723 0.261

asmFLR (dH) 10 1 94.3 11.6 27.704 3.8 0.282 0.780 0.220

MinCutTrees 1 116 116 116 NaN 0 0.129 0.979 0.114

SingleLink 10 1 107 11.6 33.520 9 0.206 0.899 0.111

The results are arranged in the order of decreasing similarity measure ms(.,.) values.

Table 4
Statistics of experimental results regarding dataset ds3 by various graph clustering algorithms.

Algorithm

name

No. of

clusters C

Cluster size No. of

trivials

Purity Entropy Similarity

measure ms(.,.)

Min Max Average Std.

asmFLR (da) 10 5.6 18.4 11.6 4.109 0 0.869 0.176 0.788

Modularity 10 1 24.4 11.6 8.269 2.7 0.787 0.190 0.623

asmFLR (dM) 10 1.5 49.2 11.6 14.720 0.6 0.517 0.470 0.429

asmFLR (dH) 10 1 98.5 11.6 30.562 4.4 0.256 0.819 0.185

MajorClust 1 116 116 116 NaN 0 0.129 0.979 0.114

MinCutTrees 1 116 116 116 NaN 0 0.129 0.979 0.114

SingleLink 10 1 107 11.6 33.520 9 0.206 0.899 0.111

The results are arranged in the order of decreasing similarity measure ms(.,.) values.

Table 5
Statistics of experimental results regarding dataset ds4 by various graph clustering algorithms.

Algorithm

name

No. of

clusters C

Cluster size No. of

trivials

Purity Entropy Similarity

measure ms(.,.)

Min Max Average Std.

asmFLR (da) 10 4.2 21 11.6 5.296 0.3 0.804 0.246 0.697

Modularity 10 1 22.4 11.6 7.281 2.4 0.799 0.185 0.629

asmFLR (dM) 10 1.2 54.3 11.6 16.323 1.1 0.466 0.532 0.370

asmFLR (dH) 10 1 96.4 11.6 29.841 4 0.274 0.794 0.207

MajorClust 1 116 116 116 NaN 0 0.129 0.979 0.114

MinCutTrees 1 116 116 116 NaN 0 0.129 0.979 0.114

SingleLink 10 1 107 11.6 33.520 9 0.206 0.899 0.111

The results are arranged in the order of decreasing similarity measure ms(.,.) values.

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–21332128
Whereas, index Entropy, by definition, is (roughly) the comple-
ment of index Purity; hence, smaller values of Entropy are
preferable.

A disadvantage of both indices Purity and Entropy is that ‘‘more’’
graph-clusters may be characterized by better (index) values than
the optimum number of C ¼ 10 graph-clusters as demonstrated in
both Figs. 6 and 7. Whereas, index ms(.,.) has a global optimum
value at C ¼ 10 graph-clusters as demonstrated in both Figs. 6 and
7. Note in both Figs. 6 and 7 that the Purity index drops sharply for
fewer than C ¼ 10 graph-clusters, as expected, since ‘‘10’’ is the
optimum number of clusters. Moreover, the Purity index in both
Figs. 6 and 7 is less than 1 at C ¼ 10 due to the fact that the

ARTICLE IN PRESS

Table 6
Statistics of experimental results regarding dataset ds5 by various graph clustering algorithms.

Algorithm

name

No. of

clusters C

Cluster size No. of

trivials

Purity Entropy Similarity

measure ms(.,.)

Min Max Average Std.

asmFLR (da) 10 3.4 21.6 11.6 5.566 0.3 0.800 0.258 0.687

Modularity 10 1 23.5 11.6 7.175 2.1 0.806 0.197 0.649

asmFLR (dM) 10 1.2 62.8 11.6 19.133 1.1 0.402 0.602 0.317

asmFLR (dH) 10 1 94.1 11.6 29.032 3.7 0.287 0.786 0.214

MajorClust 1 116 116 116 NaN 0 0.129 0.979 0.114

MinCutTrees 1 116 116 116 NaN 0 0.129 0.979 0.114

SingleLink 10 1 107 11.6 33.520 9 0.206 0.899 0.111

The results are arranged in the order of decreasing similarity measure ms(.,.) values.

0

0.2

0.4

0.6

0.8

1

1.2

116 109 102 95 88 81 74 67 60 53 46 39 32 25 18 11 4
no. of graph-clusters

in
de

x
va

lu
es

0

0.2

0.4

0.6

0.8

1

1.2

116 109 102 95 88 81 74 67 60 53 46 39 32 25 18 11 4

no. of graph-clusters

in
de

x
va

lu
es

Fig. 6. Values of (graph clustering) indices Purity (curve in light gray color), Entropy

(curve in dark gray color), and index ms(.,.) (curve in black color), the latter is based

on inclusion measure sV2(PipQj) ¼ |Qj|/|Pi3Qj|, versus a (decreasing) number of

graph-clusters for dataset ds1 by: (a) neural algorithm asmFLR(da) and (b)

algorithm Modularity.

0

0.2

0.4

0.6

0.8

1

1.2

116 109 102 95 88 81 74 67 60 53 46 39 32 25 18 11 4

no. of graph-clusters

in
de

x
va

lu
es

0

0.2

0.4

0.6

0.8

1

1.2

116 109 102 95 88 81 74 67 60 53 46 39 32 25 18 11 4

no. of graph-clusters

in
de

x
va

lu
es

Fig. 7. Values of (graph clustering) indices Purity (curve in light gray color), Entropy

(curve in dark gray color), and index ms(.,.) (curve in black color), the latter is based

on function sV3(PipQj) ¼ |Pi4Qj|/|Pi3Qj|, versus a (decreasing) number of graph-

clusters for dataset ds1 by: (a) neural algorithm asmFLR(da) and (b) algorithm

Modularity.

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–2133 2129
computed 10 clusters are not identical to the original (‘‘optimal’’)
ones in a dataset. An inherent drawback of index Purity is its
trustworthy capacity mainly for comparing partitions of the same
cardinality. Whereas, by definition, index ms(.,.) is also reliable for
comparing partitions of different cardinalities.

Index ms(.,.) based on sV3(PipQj) ¼ |Pi4Qj|/|Pi3Qj| (Fig. 7)
is preferable to index ms(.,.) based on sV2(PipQj) ¼ |Qj|/|Pi3Qj|
(Fig. 6) because the index ms(.,.) curves in Fig. 7 have a ‘‘sharper’’
global maximum than the corresponding curves in Fig. 6. Hence,
the graph-clustering algorithms in Tables 2–6 were arranged in the
order of ‘‘decreasing’’ values of index ms(.,.) based on sV3(PipQj) ¼
|Pi4Qj|/|Pi3Qj|. Note also that, in our computational experiments,
only index ms(.,.) based on sV3 has retained nearly the same
ordering in the performance of the alternative four algorithms
Modularity, MajorClust, MinCutTrees, and SingleLink as the popular
Purity index; whereas, index ms(.,.) based on either sV1 or sV2 has
produced different orderings. The latter is one more reason for
preferring sV3. Furthermore, note that function sV3, also known
in the literature as Jaccard (similarity measure) coefficient, has
demonstrated a superior performance as compared to seven well-
known similarity measure functions in a series of computational
experiments elsewhere [45]. The extensive experimental evidence
presented in this work has confirmed the superiority of the Jaccard

coefficient sV3.
Second, algorithm asmFLR(da) invariably tops all the other

algorithms in Tables 2–6. In the second and third places appear
algorithms Modularity and asmFLR(dM). In the fourth and fifth
places appear algorithms MajorClust and asmFLR(dH). Finally,
algorithm MinCutTrees is always in the sixth place, whereas
algorithm SingleLink is always in the last (seventh) place in all
Tables 2–6. It is remarkable that the aforementioned arrange-
ment of algorithms essentially remains the same (with minor
differences) in Tables 2–6, for either index Purity or Entropy.
Therefore, based on experimental evidence, it can be claimed that
algorithm asmFLR(da) approaches the ‘‘optimum’’ graph clustering
better than any other graph clustering algorithm in this work.

ARTICLE IN PRESS

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–21332130
Furthermore, it is a remarkable advantage that algorithm
asmFLR(da) typically avoids computing trivial graph-clusters.

We, further, pursued computation of convex subgraphs in a
master-graph. In a large number of experiments, using various
indices of performance, we recorded a ‘‘non-statistically signifi-
cant’’ deterioration of performance for the same number of
computed subgraphs. In addition, the time required for computing
convex subgraphs grew significantly (i.e. exponentially) in the
number of nodes. Therefore, we conclude that convex subgraphs
do not improve performance here. The explanation is that the
artificial master-graphs, generated in the context of this work, as
described above, were not convex in the first place.
6. Conclusion

This work has introduced novel mathematical perspectives
and tools for clustering in a general metric space. In conclusion,
the agglomerative similarity measure FLR (asmFLR) neural comput-
ing algorithm was introduced for partitioning-by-clustering. In
addition, our work introduced a novel index for evaluating the
quality of clustering.

A metric space emerged here from a weighted graph. Experi-
mental results have confirmed, comparatively, the viability of our
proposed techniques/tools on artificial data (graphs) generated
randomly. A real-world application of practical interest is to
partition a master-graph, whose link-weights represent Web-
traffic, towards Web-navigation support [14,51,60,63]. The pre-
liminary experimental work in [43] will be extended in the future
using the tools here. Future work may also consider alternative
weighted graph partitioning problems including an approximate
solution to the ‘‘minimum cut’’ problem [16].
Appendix A

This Appendix A lists useful definitions. It also includes the
proofs of six novel propositions.
A.1. Lattice theory

For elementary definitions regarding lattice theory the reader
may refer to [3,24,39]. The following definition is important in the
sequel.

Definition A.1. A positive valuation in a lattice (L,p) is a real
function v:L-R, which satisfies both v(x)+v(y) ¼ v(x4y)+v(x3y)
and xoy)v(x)ov(y).

A positive valuation v:L-R in a lattice (L,p) implies a metric

function d:L�L-RX0 given by

dða; bÞ ¼ vða _ bÞ � vða ^ bÞ (E1)

For definition of a metric function see below.
It is remarkable that the latter metric (distance) is used

implicitly in the ‘‘graph literature’’ without reference to lattice
theory. More specifically, (metric) distance dmcs1(G0,G1) ¼ |V0|+
|V1|�2|V01| is used in [33], which (distance dmcs1), in the context
of lattice theory, can be produced as follows. Function
v(G(V,E,l)) ¼ v(V) ¼ |V| is a positive valuation in the power-set
(lattice) of vertices. Hence, dmcs1(G0,G1) ¼ v(G03G1)�v(G04G1) ¼
v(V03V1)�v(V04V1), where both V04V1 ¼ V01 and v(V03V1)+
v(V04V1) ¼ v(V0)+v(V1) hold. It follows, dmcs1(G0,G1) ¼ v(V0)+
v(V1)-2v(V04V1) ¼ |V0|+|V1|�2|V01|.
A.2. Measure spaces

Consider the following definition [28].

Definition A.2. A s-algebra SX over a set X is a collection of
subsets of X that satisfies:
(S1) +ASX,
(S1) AASX implies (X�A)ASX, and
(S3) for a collection of sets AiASX indexed by a countable
indexing set D it follows ð

S
i2DAiÞ 2 SX .
In words, a s-algebra includes the empty set and it is closed under
both complementation and countable (including finite) unions.

A measure is a set function mS:S-RX0, which assigns a size to
every ‘‘measurable set’’ element in S. Note that a measure mS is
required, by definition, to satisfy: (1) mS(+) ¼ 0, and (2) for any
countable (including finite) indexing set D, and any collection
of pairwise disjoint sets AiAS indexed by iAD it holds
mSð[i2DAiÞ ¼

P
i2DmSðAiÞ. In this work S is a s-algebra, i.e. S ¼ SX.

A measure space (X, SX, mSX
) includes a set X, a s-algebra SX

over X, and a measure mSX
over SX. We remark that a probability

space is a measure space such that mSX
ðXÞ ¼ 1.

A.3. Metric spaces

Consider the following definition.

Definition A.3. A metric in a set U is a nonnegative real function
d:U�U-RX0, which satisfies the following laws.
(M0)
 d(x,y) ¼ 0) x ¼ y;

(M1)
 d(x,x) ¼ 0;

(M2)
 d(x,y) ¼ d(y,x);

(M3)
 d(x,y)pd(x,z)+d(z,y) (Triangle Inequality).
If only conditions (M1)–(M3) are satisfied in Definition A.3 then
d is called pseudo-metric. A metric space is a pair (U,d) including
both a set U and a metric d:U�U-RX0.
A.4. Proofs of novel propositions

This section presents the proofs of six novel propositions.

Proposition 2.3. Function da:SX�SX-RX0 such that da(A,B) ¼
03A ¼ B, moreover daðA;BÞ ¼ ð1=ðjAjjBjÞÞ

P
i;jdXðai;bjÞ is a metric.

Proof. Let A,B,CASX. Real function da(A,B) is nonnegative. We
show next that function da(A,B) satisfies the four laws of a metric
(in Definition A.3).

(M0) and (M1) hold by definition.

(M2) daðA;BÞ ¼ ð1=ðjAjjBjÞÞ
P

i;jdXðai; bjÞ ¼ ð1=ðjBjjAjÞÞ
P

j;idXðbj; aiÞ ¼

daðB;AÞ.

(M3) Given (ai,bj)AA�B it follows dX(ai,bj)pdX(ai,ck)+dX(ck,bj), for

ckAC. Summing up for all ckAC it follows
P

kdXðai; bjÞp
P

k½dX

ðai; ckÞ þ dXðck; bjÞ�) dXðai; bjÞpð1= jCjÞ
P

k½dXðai; ckÞ þ dXðck; bjÞ�.

Furthermore, summing up for all pairs (ai,bj)AA�B it followsP
i;jdXðai; bjÞp

P
i;jð1=jCjÞ

P
k½dXðai; ckÞ þ dXðck; bjÞ�. Hence,

1

jAjjBj

X
i;j

dXðai;bjÞ

¼ daðA;BÞp
1

jAjjBjjCj

X
i;j;k

½dXðai; ckÞ þ dXðck; bjÞ�

ARTICLE IN PRESS

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–2133 2131
¼
1

jAjjCj

X
i;k

dXðai; ckÞ þ
1

jCjjBj

X
k;j

dXðck; bjÞ

¼ daðA;CÞ þ daðC;BÞ: &

Proposition 2.4. Function dM:SX�SX-RX0 such that dM(A,B) ¼
03A ¼ B, moreover dMðA;BÞ ¼ _i_jdXðai; bjÞ is a metric.

Proof. Let A,B,CASX. Real function dM(A,B) is nonnegative. We
show next that function dM(A,B) satisfies the four laws of a metric
(in Definition A.3).

(M0) and (M1) hold by definition.

(M2) dMðA;BÞ ¼ _i_jdXðai; bjÞ ¼ _j_idXðbj; aiÞ ¼ dMðB;AÞ.

(M3) Let aiAA, bjAB, and ckAC. Apparently, dX(ai,bj)pdX

(ai,ck)+dX(ck,bj). Since both inequalities dXðai; ckÞo_i_kdXðai; ckÞ

and dXðck; bjÞo_k_jdXðck; bjÞ hold, it follows dXðai;bjÞp_i_kdX

ðai; ckÞ þ _k_jdXðck;bjÞ. Furthermore, since the latter inequality

holds for any (ai,bj)AA�B it follows _i_jdXðai; bjÞp_i_kdXðai; ckÞþ

_k_jdXðck; bjÞ. Hence, dM(A,B)pdM(A,C)+dM(C,B). &

Proposition 2.6. Condition 2.5 is sufficient for a metric function dH:
SX�SX-RX0 given by dHðA;BÞ ¼maxf_i^jdXðai; bjÞ;_j^idXðbj; aiÞg.

Proof. Let A,B,CASX. Real function dH(A,B) is nonnegative. We
show next that function dH(A,B) satisfies the four laws of a metric
(in Definition A.3).
(M0)
 dHðA;BÞ ¼ 0)maxf_i^jdXðai; bjÞ;_j^idXðbj; aiÞg ¼ 0. There-
fore, 8aiAA, (bjAB:dX(ai,bj) ¼ 0, and 8bjAB, (aiAA: dX (bj,ai) ¼
0. Hence, 8aiAA, (bjAB such that ai ¼ bj , and 8bjAB, (aiAA

such that bj ¼ ai. In conclusion, A ¼ B.

(M1)
 dHðA;AÞ ¼maxf_ai2A^bj2AdXðai; bjÞ;_bj2A ^ai2AdXðbj; aiÞg ¼ 0.

(M2)
 dHðA;BÞ¼maxf_i^jdXðai; bjÞ_j^idXðbj; aiÞg¼maxf_j^idXðbj; aiÞ;

_i^jdXðai;bjÞg ¼ dHðB;AÞ.

(M3)
 Let aiAA, bjAB, and ckAC. Consider, first, Condition 2.5

dXðcKi
; bJi
Þpmaxf_k^jdXðck; bjÞ;_j ^kdXðbj; ckÞg, and, second,

triangle inequality dXðai; bjÞpdXðai; ckÞ þ dXðck; bjÞ) ^jdX

ðai; bjÞp^kdXðai; ckÞ þ dXðcKi
; bJi
Þ. Hence, _i^jdXðai; bjÞp_i^k

dXðai; ckÞþ _idXðcKi
; bJi
Þp _i^kdXðai; ckÞþ maxf_k^jdXðck; bjÞ;

_j^kdXðbj; ckÞg.
By rotating sets A and B we obtain _j^idXðbj; aiÞp_j^k

dXðbj; ckÞþmaxf_k^idXðck; aiÞ;_i^kdXðai; ckÞg. Hence, maxf_i

^jdXðai; bjÞ;_j^idXðbj; aiÞgpmaxf_i^kdXðai; ckÞ þmaxf_k^jdX

ðck;bjÞ;_j^kdXðbj; ckÞg;_j^kdXðbj; ckÞþmaxf_k^idXðck; aiÞ; _i^k

dXðai; ckÞgg

We consider four cases, next.
(1) Both _k^jdXðck; bjÞX_j ^kdXðbj; ckÞ and _k^idXðck; aiÞX

_i^kdXðai; ckÞ.
Hence, maxf_i^kdXðai; ckÞþ_k^jdXðck; bjÞ;_j^kdX ðbj; ckÞ

þ_k^idXðck; aiÞgp _k^jdXðck; bjÞþ _k ^idXðck; aiÞ.
(2) Both _k^jdXðck; bjÞX_j^kdXðbj; ckÞ and _k^idXðck; aiÞo_i

^kdXðai; ckÞ.
Hence, maxf_i^kdXðai; ckÞ þ _k^jdXðck; bjÞ;_j^kdXðbj; ckÞ

þ_i^kdXðai; ckÞg ¼ _i^kdXðai; ckÞ þ_k^jdXðck; bjÞ.
(3) Both _k ^jdXðck; bjÞo_j ^kdXðbj; ckÞ and _k^idXðck; aiÞ X

_i^kdXðai; ckÞ.
Hence, maxf_i^kdXðai; ckÞ þ _j^kdXðbj; ckÞ;_j^kdXðbj; ckÞ

þ_k^idXðck; aiÞg ¼ _j^kdXðbj; ckÞ þ _k^idXðck; aiÞ.
(4) Both _k^jdXðck; bjÞo_j ^kdXðbj; ckÞ and _k^idXðck; aiÞo_i

^kdXðai; ckÞ.
Hence, maxf_i^kdXðai; ckÞ þ _j^kdXðbj; ckÞ;_j^kdXðbj; ckÞ

þ_i^kdXðai; ckÞg ¼ _i^kdXðai; ckÞ þ _j ^kdXðbj; ckÞ.
In conclusion, dHðA;BÞ ¼ maxf_i^jdXðai; bjÞ;_j^i dXðbj;

aiÞgpmaxf_i^kdXðai; ckÞþmaxf_k^jdXðck;bjÞ; _j^k dXðbj;

ckÞg;_j^kdXðbj; ckÞ þmaxf_k^idXðck; aiÞ;_i^kdX ðai; ckÞgg

¼ maxf_i ^kdXðai; ckÞ;_k^idXðck; aiÞgþ maxf_k ^jdXðck;

bjÞ;_j^kdXðbj; ckÞg ¼ dHðA;CÞ þ dHðC;BÞ. &
V

measure in a lattice (L,p). Then function s:2L�2L-[0,1] given by
Proposition 3.4. Let function s :L�L-[0,1] be an inclusion

the convex combination s({u1,y,uI} ¼ UpW ¼ {w1,y,wJ}) ¼ l1

maxjsV(u1pwj)+?+lI maxjsV(uIpwj) is an inclusion measure.

Proof. First, we prove (by contraposition) the following Lemma.

Lemma: U4WoU) (iA{1,y,I} such that 8jA{1,y,J} it is

ui4wjoui.

Proof of the Lemma: NOT[(iA{1,y,I} such that 8jA{1,y,J} it is

ui4wjoui])8iA{1,y,I}, (jA{1,y,J} such that ui4wj ¼ ui)

8iA{1,y,I}, (jA{1,y,J} such that uipwj)NOT[U4WoU]. It fol-

lows, U4WoU) (iA{1,y,I} such that 8jA{1,y,J} it is ui4wjoui.

Next, we resume the proof of Proposition 3.4. More specifically,

we show that function s(UpW) satisfies the four laws of an

inclusion measure (in Definition 3.2).
(I0)
 s(UpO) ¼ l1 maxjsV(u1pO)+?+lI maxjsV(uIpO) ¼ l10+?+
lI0 ¼ 0.
(I1)
 s(UpU) ¼ l1 maxisV(u1pui)+?+lI maxisV(uIpui) ¼ l1+?+
lI ¼ 1.
(I2)
 From the above Lemma we have U4WoU) (iA{1,y,I} such
that 8jA{1,y,J} it is ui4wjoui. Hence, U4WoU) (iA{1,y,I}
such that 8jA{1,y,J} it is s(ui,wj)o1. In conclusion, s(Up
W) ¼ l1 maxjsV(u1pwj)+?+lI maxjsV(uIpwj)ol1+?+lI ¼ 1.
(I3)
 UpW)8iA{1,y,I},(jA{1,y,J}:uipwj)sV(xkpui)psV(xkpwj),
8k 2 f1; . . . ;Kg) 8k 2 f1; . . . ;Kg, maxisV(xkpui)p maxjsV(xkp
wj)) l1 maxisV(x1 p ui)+ ? +lK maxisV(xKpui)pl1 maxjsV

(x1pwj)+?+lK maxjsV(xKpwj))s(X,U)ps(X,W). &
Proposition 3.6. Let (L,p) be a lattice with an inclusion measure

s:L�L-[0,1]. Then, function ms:L�L-[0,1] given by msðx; yÞ ¼
ðsðxpyÞ þ sðypxÞÞ=2 is a similarity measure.

Proof. We show next that function ms(x,y) satisfies the two laws
of a similarity measure (in Definition 3.5).
(S1)
 ms(x,y) ¼ (s(xpy)+s(ypx))/2 ¼ 13s(xpy) ¼ 1 ¼ s(ypx)3
xpy and ypx3x ¼ y.
(S2)
 msðx; yÞ ¼ ðsðxpyÞ þ sðypxÞÞ=2 ¼ ðsðypxÞ þ sðxpyÞÞ=2 ¼
msðy; xÞ. &
Proposition 3.7. Let function d:U�U-RX0 be a metric. Then,
function md:U�U-[0,1] given by mdðx; yÞ ¼ 1=ð1þ dðx; yÞÞ is a

similarity measure.

Proof. We show next that function md(x,y) satisfies the two laws of
a similarity measure (in Definition 3.5).
(S1)
 md(x,y) ¼ 1/(1+d(x,y)) ¼ 13d(x,y) ¼ 03x ¼ y.

(S2)
 md(x,y) ¼ 1/(1+d(x,y)) ¼ 1/(1+d(y,x)) ¼ md(y,x). &
References

[1] M. Bianchini, M. Maggini, L. Sarti, F. Scarselli, Recursive neural networks for
processing graphs with labeled edges: theory and applications, Neural
Networks 18 (8) (2005) 1040–1050.

[2] M. Bianchini, M. Gori, L. Sarti, F. Scarselli, Recursive processing of cyclic graphs,
IEEE Transactions on Neural Networks 17 (1) (2006) 10–18.

[3] G. Birkhoff, Lattice Theory, Colloquium Publications, vol. 25, American
Mathematical Society (AMS), Providence, 1967.

[4] U. Brandes, M. Gaertler, D. Wagner, Experiments on graph clustering
algorithms, in: G. Di Batista, U. Zwick (Eds.), Lecture Notes in Computer
Science, vol. 2832, Springer, Heidelberg, 2003, pp. 568–579.

[5] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, 1990.
[6] T. Bultan, C. Aykanat, Circuit partitioning using mean field annealing,

Neurocomputing 8 (2) (1995) 171–194.

ARTICLE IN PRESS

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–21332132
[7] J.A. Carretero, M.A. Nahon, Solving minimum distance problems with convex
or concave bodies using combinatorial global optimization algorithms, IEEE
Transactions on Systems, Man and Cybernetics B 35 (6) (2005) 1144–1155.

[8] A. Ceroni, P. Frasconi, G. Pollastri, Learning protein secondary structure from
sequential and relational data, Neural Netwoks 18 (8) (2005) 1029–1039.

[9] Y. Che, Z. Tang, An efficient parallel algorithm for maximum cut problem,
Neural Information Processing Letters and Reviews 11 (8) (2007) 175–180.

[10] C. Chekuri, A.V. Goldberg, D. Karger, M. Levine, C. Stein, Experimental study of
minimum cut algorithms, in: Proceedings of Eighth SODA, 1997, pp. 324–333.

[11] S.-J. Chen, S.-M. Chen, Fuzzy risk analysis based on similarity measures of
generalized fuzzy numbers, IEEE Transactions on Fuzzy Systems 11 (1) (2003)
45–56.

[12] A. Cripps, N. Nguyen, Fuzzy lattice reasoning (FLR) classification using
similarity measures, in: V.G. Kaburlasos, G.X. Ritter (Eds.), Computational
Intelligence Based on Lattice Theory, Studies in Computational Intelligence,
vol. 67, Springer, Heidelberg, 2007, pp. 263–284.

[13] P. Diamond, P. Kloeden, Metric Spaces of Fuzzy Sets, World Scientific,
Singapore, 1994.

[14] D. Donato, L. Laura, S. Leonardo, S. Millozzi, Simulating the webgraph: a
comparative analysis of models, Neural Networks 6 (6) (2004) 84–89.

[15] M.-L. Fernández, G. Valiente, A graph distance metric combining maximum
common subgraph and minimum common supergraph, Pattern Recognition
Letters 22 (6–7) (2001) 753–758.

[16] G.W. Flake, R.E. Tarjan, K. Tsioutsiouliklis, Graph clustering and minimum cut
trees, Internet Mathematics 1 (4) (2004) 385–408.

[17] R.W. Floyd, Algorithm 96 ancestor, Communications of the ACM 5 (6) (1962)
344–345.

[18] P. Frasconi, M. Gori, A. Sperduti, A general framework for adaptive processing of
data structures, IEEE Transactions on Neural Networks 9 (5) (1998) 768–786.

[19] M. Gori, A. Petrosino, Encoding nondeterministic fuzzy tree automata into
recursive neural networks, IEEE Transactions on Neural Networks 15 (6)
(2004) 1435–1449.

[20] M. Gori, A. Sperduti, The loading problem for recursive neural networks,
Neural Networks 18 (8) (2005) 1064–1079.

[21] M. Gori, A. Küchler, A. Sperduti, On the implementation of frontier-to-root tree
automata in recursive neural networks, IEEE Transactions on Neural Networks
10 (6) (1999) 1305–1314.

[22] M. Gori, M. Maggini, L. Sarti, Exact and approximate graph matching using
random walks, IEEE Transactions on Pattern Analysis and Machine Intelligence
27 (7) (2005) 1100–1111.

[23] M. Graña, Lattice computing: lattice theory based computational intelligence,
in: Proceedings of the Kosen Workshop on Mathematics, Technology, and
Education (MTE), Ibaraki, Japan, 2008, pp. 19–27.

[24] G. Grätzer, General Lattice Theory, second ed., Birkhäuser, Basel, 2003.
[25] S. Günter, H. Bunke, Self-organizing map for clustering in the graph domain,

Pattern Recognition Letters 23 (4) (2002) 405–417.
[26] S. Günter, H. Bunke, Validation indices for graph clustering, Pattern

Recognition Letters 24 (8) (2003) 1107–1113.
[27] M. Hagenbuchner, A. Sperduti, A.C. Tsoi, A self-organizing map for adaptive

processing of structured data, IEEE Transactions on Neural Networks 14 (3)
(2003) 491–505.

[28] P.R. Halmos, Measure Theory, second ed., Springer, Berlin, 1978.
[29] B. Hammer, A. Micheli, A. Sperduti, M. Strickert, Recursive self-organizing

network models, Neural Networks 17 (8–9) (2004) 1061–1085.
[30] D. Hand, H. Mannila, P. Smyth, Principles of Data Mining, Massachusetts

Institute of Technology, 2001.
[31] B.J. Jain, F. Wysotzki, Solving inexact graph isomorphism problems using

neural networks, Neurocomputing 63 (2005) 45–67.
[32] J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice-

Hall, Upper Saddle River, NJ, 1997.

[33] D. Justice, A. Hero, A binary linear programming formulation of the graph edit
distance, IEEE Transactions on Pattern Analysis and Machine Intelligence 28
(8) (2006) 1200–1214.

[34] V.G. Kaburlasos, Improved fuzzy lattice neurocomputing (FLN) for semantic
neural computing, in: Proceedings of the International Joint Conference on
Neural Networks (IJCNN), vol. 3, Portland, OR, 2003, pp. 1850–1855.

[35] V.G. Kaburlasos, FINs: lattice theoretic tools for improving prediction of sugar
production from populations of measurements, IEEE Transactions on Systems,
Man and Cybernetics B34 (2) (2004) 1017–1030.

[36] V.G. Kaburlasos, Towards a Unified Modeling and Knowledge—Representation
Based on Lattice Theory, Studies in Computational Intelligence, vol. 27,
Springer, Heidelberg, 2006.

[37] V.G. Kaburlasos, Granular enhancement of fuzzy-ART/SOM neural classifiers
based on lattice theory, in: V.G. Kaburlasos, G.X. Ritter (Eds.), Computational
Intelligence Based on Lattice Theory, Studies in Computational Intelligence,
vol. 67, Springer, Heidelberg, 2007, pp. 3–23.

[38] V.G. Kaburlasos, S.E. Papadakis, Granular self-organizing map (grSOM) for
structure identification, Neural Networks 19 (5) (2006) 623–643.

[39] V.G. Kaburlasos, S.E. Papadakis, A granular extension of the fuzzy-ARTMAP
(FAM) neural classifier based on fuzzy lattice reasoning (FLR), Neurocomput-
ing, 2009, in press, doi:10.1016/j.neucom.2008.06.024.

[40] V.G. Kaburlasos, V. Petridis, Fuzzy lattice neurocomputing (FLN) models,
Neural Networks 13 (10) (2000) 1145–1170.

[41] V.G. Kaburlasos, G.X. Ritter (Eds.), Computational Intelligence Based on Lattice
Theory, Studies in Computational Intelligence, vol. 67, Springer, Heidelberg,
2007.
[42] V.G. Kaburlasos, I.N. Athanasiadis, P.A. Mitkas, Fuzzy lattice reasoning (FLR)
classifier and its application for ambient ozone estimation, International
Journal of Approximate Reasoning 45 (1) (2007) 152–188.

[43] V.G. Kaburlasos, L. Moussiades, A. Vakali, Granular graph clustering in the
Web, in: Joint Conference on Information Sciences (JCIS), Proceedings of the
Eighth International Conference on Natural Computing (NC), Salt Lake City,
Utah, 2007, pp. 1639–1645.

[44] A.M. Ladd, L.E. Kavraki, Measure theoretic analysis of probabilistic path
planning, IEEE Transactions on Robotics and Automation 20 (2) (2004) 229–242.

[45] L. Lee, Measures of distributional similarity, in: 37th Annual Meeting of the
Association for Computational Linguistics (ACL), East Stroudsburg, Maryland,
1999, pp. 25–32.

[46] G. Leng, T.M. McGinnity, G. Prasad, An approach for on-line extraction of fuzzy
rules using a self-organising fuzzy neural network, Fuzzy Sets Systems 150 (2)
(2005) 211–243.

[47] A. Micheli, F. Portera, A. Sperduti, A preliminary empirical comparison of
recursive neural networks and tree kernel methods on regression tasks for
tree structured domains, Neurocomputing 64 (2005) 73–92.

[48] A. Micheli, D. Sona, A. Sperduti, Contextual processing of structured data by
recursive cascade correlation, IEEE Transactions on Neural Networks 15 (6)
(2004) 1396–1410.

[49] M.E.J. Newman, Fast algorithm for detecting community structure in net-
works, Physical Review E 69 (2004) 066133.

[50] W. Pedrycz, Knowledge-Based Clustering—From Data to Information Gran-
ules, Wiley, Hoboken, 2005.

[51] M. Perkowitz, O. Etzioni, Towards adaptive web sites: conceptual framework
and case study, Artificial Intelligence 118 (1–2) (2000) 245–275.

[52] V. Petridis, V.G. Kaburlasos, Clustering and classification in structured data
domains using fuzzy lattice neurocomputing (FLN), IEEE Transactions on
Knowledge and Data Engineering 13 (2) (2001) 245–260.

[53] S. Raha, N.R. Pal, K.S. Ray, Similarity-based approximate reasoning: methodol-
ogy and application, IEEE Transactions on Systems, Man and Cybernetics A32
(4) (2002) 541–547.

[54] L. Ralaivola, S.J. Swamidass, H. Saigo, P. Balbi, Graph kernel for chemical
informatics, Neural Networks 18 (8) (2005) 1093–1110.

[55] C.J. Romanowski, R. Nagi, On comparing bills of materials: a similarity/
distance measure for unordered trees, IEEE Transactions on Systems, Man and
Cybernetics A35 (2) (2005) 249–260.

[56] G.C. Rota, The many lives of lattice theory, Notices of the American
Mathematical Society 44 (11) (1997) 1440–1445.

[57] S. Schmalz, B. Mertsching, Object recognition with structural descriptions and
deformable models, Neurocomputing 31 (1–4) (2000) 143–151.

[58] G. Serpen, A. Parvin, On the performance of Hopfield network for graph search
problem, Neurocomputing 14 (4) (1997) 365–381.

[59] L.B. Shams, M.J. Brady, S. Schaal, Graph matching vs. mutual information
maximization for object detection, Neural Networks 14 (3) (2001) 345–354.

[60] K.A. Smith, A. Ng, Web page clustering using a self-organizing map of user
navigation patterns, Decision Support Systems 35 (2) (2003) 245–256.

[61] B. Stein, O. Niggemann, On the nature of structure and its identification, in:
P. Widmayer, G. Neyer, S. Eidenbenz (Eds.), Graph–Theoretic Concepts in
Computer Science, Lecture Notes in Computer Science, vol. 1665, Springer,
Heidelberg, 1999, pp. 122–134.

[62] C. von der Malsburg, Pattern recognition by labeled graph matching, Neural
Networks 1 (2) (1988) 141–148.

[63] Y. Wang, D. Wang, W.H. Ip, Optimal design of link structure for e-supermarket
website, IEEE Transactions on Systems, Man and Cybernetics A36 (2) (2006)
338–355.

[64] J.T.L. Wang, X. Wang, D. Shasha, K. Zhang, Metricmap: an embedding
technique for processing distance-based queries in metric spaces, IEEE
Transactions on Systems, Man and Cybernetics B 35 (5) (2005) 973–987.

[65] L. Xu, I. King, A pca approach for fast retrieval of structural patterns in
attributed graphs, IEEE Transactions on Systems, Man and Cybernetics B 31 (5)
(2001) 812–817.

[66] X. Xu, Z. Tang, R. Wang, X. Wang, A new motion equation for the minimum
vertex cover problem, Neurocomputing 56 (2004) 441–446.

[67] Y. Zhao, G. Karypis, Criterion functions for document clustering: experiments
and analysis, Technical Report TR#01-40, Department of Computer Science,
University of Minnesota, Minneapolis, MN, 2001. Available at: /http://
cs.umn.edu/�karypis/publicationsS.

[68] Y. Zhao, G. Karypis, Empirical and theoretical comparisons of selected
criterion functions for document clustering, Machine Learning 55 (2004)
311–331.

Vassilis G. Kaburlasos received the Diploma from the
National Technical University of Athens, Greece, in
1986, and the M.Sc. and Ph.D. degrees from the
University of Nevada, Reno, in 1989 and 1992, respec-
tively, all in Electrical Engineering. He has been
participant investigator or leader in 16 research
projects, funded both publicly and privately, in the
USA and in the European Union. He has been a member
of the technical/advisory committee or an invited
speaker in 10 international conferences and a reviewer
of seven science citation indexed journals. He has
(co)authored more than 80 scientific research papers

in indexed journals, books, and refereed conferences.

ARTICLE IN PRESS

V.G. Kaburlasos et al. / Neurocomputing 72 (2009) 2121–2133 2133
Dr. Kaburlasos is the author of a research monograph book entitled Towards a
Unified Modeling and Knowledge-Representation Based on Lattice Theory (Heidelberg,
Germany: Springer, series: Studies in Computational Intelligence 27, 2006). Also, he
is co-editor (with Gerhard X. Ritter) of a book entitled Computational Intelligence
Based on Lattice Theory (Springer, Heidelberg, series: Studies in Computational
Intelligence 67, 2007). Dr. Kaburlasos currently serves as a Professor in the
Department of Industrial Informatics, Technological Educational Institution of
Kavala, Greece. His research interests include intelligent machine modeling
applications. He is a member of several professional, scientific, and honor societies
around the world including Sigma Xi, Phi Kappa Phi, Tau Beta Pi, Eta Kappa Nu, and
the Technical Chamber of Greece.

Lefteris A. Moussiades received his M.Sc. in Informa-
tion Technology from Glasgow University, and his B.Sc.
in Business Administration from Aristotle University.
He is currently a Professor of Applications in the
Department of Industrial Informatics at the Technolo-
gical Educational Institution of Kavala, and a Ph.D.
student in the Department of Informatics at Aristotle
University of Thessaloniki. He has worked as a software
engineer in large scale projects for several years. His
research interests include plagiarism detection, graph
clustering, optimization algorithms, web data manage-
ment and educational software.
Athena I. Vakali received her Ph.D. in Informatics from
Aristotle University, her M.Sc. in Computer Science
from Purdue University and her B.Sc. in Mathematics
from Aristotle University. She is currently an Associate
Professor in the Department of Informatics at Aristotle
University of Thessaloniki where she works as a faculty
member since 1997. She is the head of the Operating
Systems Web/INternet Data Storage and management
research group. Her research activities are on Web
information systems, including Web data management
(clustering techniques), content delivery on the Web,
Web data clustering, Web caching, XML-based author-

ization models, text mining, and multimedia data

management. Her publication record is now of more than 100 research publications
which have appeared in several journals (e.g. CACM, IEEE Internet Computing, IEEE
TKDE, WWWJ), book chapters and in scientific conferences (e.g., IDEAS, ADBIS,
ISCIS, ISMIS etc.). She is a member of the editorial board of the Computers and
Electrical Engineering Journal (Elsevier), the International Journal of Grid and High
Performance Computing (IGI), and since March 2007 she is the coordinator of the
IEEE TCSC technical area of Content Management and Delivery Networks. Professor
Vakali has led many research projects in the area of Web data management and
Web Information Systems.

