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Abstract The proposed survey discusses the topic of community detection in the con-

text of Social Media. Community detection constitutes a significant tool for the analysis

of complex networks by enabling the study of mesoscopic structures that are often as-

sociated with organizational and functional characteristics of the underlying networks.

Community detection has proven to be valuable in a series of domains, e.g. biology, so-

cial sciences, bibliometrics. However, despite the unprecedented scale, complexity and

the dynamic nature of the networks derived from Social Media data, there has only

been limited discussion of community detection in this context. More specifically, there

is hardly any discussion on the performance characteristics of community detection

methods as well as the exploitation of their results in the context of real-world web

mining and information retrieval scenarios.

To this end, this survey first frames the concept of community and the problem of

community detection in the context of Social Media, and provides a compact classifica-

tion of existing algorithms based on their methodological principles. The survey places

special emphasis on the performance of existing methods in terms of computational

complexity and memory requirements. It presents both a theoretical and an experi-

mental comparative discussion of several popular methods. In addition, it discusses

the possibility for incremental application of the methods and proposes five strategies

for scaling community detection to real-world networks of huge scales. Finally, the sur-

vey deals with the interpretation and exploitation of community detection results in

the context of intelligent web applications and services.
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1 Introduction

Networks are omnipresent on the Web. The most profound Web network is the Web

itself comprising billions of pages as vertices and their hyperlinks to each other as edges

(Kumar et al. [57]). Moreover, collecting and processing the input of Web users (e.g.

queries, clicks) results in other forms of networks, such as the query graph (Baeza-

Yates [7]). Finally, the widespread use of Social Media applications, such as Delicious1,

Digg2, Flickr3 and YouTube4, is responsible for the creation of even more networks,

ranging from folksonomy networks (Mika [72]) to rich media social networks (Lin et

al. [66]). Since networks originating from Social Media data are of particular interest

to this study, we shall collectively refer to them as Social Media networks.

Despite the differences of Social Media networks with respect to the entities and the

type of relations they model, they present a significant source of intelligence since they

encode the online activities and inputs of masses of Social Media participants. Not only

is it possible by analyzing such networks to gain insights into the social phenomena

and processes that take place in our world, but one can also extract actionable knowl-

edge that can be beneficial in several information management and retrieval tasks,

such as online content navigation and recommendation. However, the analysis of such

networks poses serious challenges to data mining methods, since these networks are

almost invariably characterized by huge scales and a highly dynamic nature.

A valuable tool in the analysis of large complex networks is community detection.

The problem that community detection attempts to solve is the identification of groups

of vertices that are more densely connected to each other than to the rest of the network.

Detecting and analyzing the community structure of networks has led to important

findings in a wide range of domains, ranging from biology to social sciences (Girvan

and Newman [43]) and the Web (Kumar et al. [56], Flake at al. [34]). Such studies

have shown that communities constitute meaningful units of organization and that

they provide new insights in the structure and function of the whole network under

study. Recently, there has been increasing interest in applying community detection on

Social Media networks not only as a means of understanding the underlying phenomena

taking place in such systems, but also to exploit its results in a wide range of intelligent

services and applications, e.g. automatic event detection in Social Media content.

Despite the increasing significance of Social Media and the proliferation of methods

for detecting communities, there has been no prior effort to collect and systematically

discuss research efforts with reference to the emerging topic of community detec-

tion in Social Media. In particular, there are two important aspects of the problem

that are not adequately addressed in related survey articles: (a) performance as-

pects of community detection methods, namely computational complexity, memory

requirements and possibility for incremental updates of already identified community

structure, (b) interpretation and exploitation of community detection results by

Social Media applications.

Previous related works have studied individual aspects of this problem. For in-

stance, the survey articles by Fortunato [36–38] contain an extensive discussion of

numerous community detection methods; however, they are mostly concerned with the

1 http://delicious.com
2 http://digg.com
3 http://flickr.com
4 http://www.youtube.com
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methodological foundations of community detection. Furthermore, they describe com-

munity detection in a generic context, mostly under the statistical physics perspective,

thus lacking any association to web mining and Social Media research. The study by

Danon et al. [25] presents a comparative discussion on the computational complexity

of several community detection methods. However, it disregards their memory require-

ments, and other scalability considerations, such as the possibility for incremental

computations, and it further lacks a Social Media context. In addition, Schaeffer [94]

presents a generic overview of graph clustering, which can be considered as equiva-

lent to community detection. Finally, Tang and Liu [104] discuss several social network

analysis problems with emphasis on community detection relating them with the Social

Media domain; nevertheless, it is limited to the methodological principles of methods,

discussing neither the performance attributes of methods nor the interpretation and

exploitation of their results.

The lack of prior work systematically dealing with the aforementioned aspects of

community detection in relation to Social Media applications has motivated the present

study, which makes the following contributions:

– Frame the concept of community and the problem of community detection in

the context of Social Media (Section 3).

– Present a systematic study and a compact methodological classification of

several community detection methods (Section 4.1).

– Study existing methods in view of the scalability challenges posed by the magni-

tude and dynamic nature of Social Media networks. Compare complexity and

memory requirements of existing methods (subsection 4.2) as well as incre-

mental/dynamic computation characteristics (subsection 4.3).

– Conduct a comparative experimental study (subsection 4.2.2) benchmarking eight

popular community detection algorithms in terms of execution time, peak memory

usage and attained community structure precision.

– Introduce five scalability strategies that can be employed in order to scale

community detection methods to the magnitude of Social Media data (Section 5).

– Discuss the interpretation and exploitation of community detection re-

sults by Social Media applications and services (Section 6).

Due to the breadth of the topic under study, we do not attempt to be exhaustive with

respect to the number of presented methods, nor do we target at delving into deep

foundational issues of the methods. Instead, we aim at discussing the methodological,

performance and application aspects of existing techniques under a paradigmatic and

comparative perspective, which we believe will be valuable for applying them in Social

Media mining problems.

2 Background

The term “community” has been extensively used in the literature in different contexts

and with different connotations. Social studies are probably the earliest context, where

the notion of community was used to denote groups of people with shared interests

or activities (e.g. communities of practice). Once networks became widely adopted

as a means to study social interactions and processes (Wasserman and Faust [109],

Scott [97]), the concept of community was associated to networks of human actors

exhibiting certain characteristic structural properties.
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As networks became established as a model for many real-world complex systems,

the concept of community expanded in scope to refer to group structures in a variety of

networks, not necessarily consisting of human actors. For instance, community struc-

ture was studied in the context of protein interaction networks, bibliographical citation

networks, networks of football teams, and others. With the emergence of the Web and

the Web Graph as a prevalent model of web pages and their hyperlinks, communities

were also considered on the Web (Kumar et al. [56], Flake et al. [34]).

The advent and wide success of Social Media has created a new context for the

notion of community. Currently, there is a variety of online entities residing in the

virtual setting of Social Web applications and there are numerous kinds of interactions

and relations among such entities. For that reason, before proceeding with the definition

of communities in Social Media in Section 3, we will first describe the concept of Social

Media networks and the elements that they comprise (subsection 2.1), as well as the

process of their creation (subsection 2.2).

2.1 Elements of a Social Media network

The ecosystem of Social Media applications comprises a wide range of objects that are

associated to each other through numerous types of interactions and relations. Social

Media networks provide an elegant representation of Social Media data, containing

online objects as their vertices and the relations/interactions among them as edges5.

The vertices of Social Media networks can represent different types of actors, such

as users, content items (e.g. blog posts, photos, videos), and even metadata items

(e.g. topic categories, tags). In addition, the edges of Social Media networks can be of

different types, such as simple, weighted, directed and multiway (i.e. connecting more

than two entities) depending on the network creation process (discussed below).

In terms of notation, Social Media networks employ the typical graph notation

G = (V, E), where G stands for the whole network, V stands for the set of all vertices

and E for the the set of all edges. Due to the different types of vertices and edges in

such networks, it is common to consider sets of vertices and edges within V and E

that contain vertices and edges of the same type. For instance, in the case of a photo

sharing and tagging network, one can consider the set of vertices V to comprise the

users, photos and tags of the system, i.e. V = {U, P, T}. Similarly, the set of edges

in such an application would comprise the set of user-photo, photo-tag and user-tag

associations, E = {UP, PT, UT}.

2.2 Social Media network creation

In practice, the creation of Social Media networks starts from a set of transactions

that are performed and recorded in Social Media applications. Every such transaction

typically involves different entities; for instance a tag assignment in Flickr involves a

user, a photo and a tag, while a comment on a blog article involves the commenter, the

blog article and the comment text. In that way, an association (edge) is formed between

the items of the same transaction on an underlying network, so that the resulting Social

Media network constitutes a direct representation of a subset of online transactions.

5 There are alternative data models, such as multidimensional data cubes (Chi et al. [22]),
for representing Social Media data. However, those models are not considered in this survey.
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Since “raw” Social Media networks comprise multiple types of vertices and edges

(some of which can be multi-way, i.e. link more than two vertices), they are mathe-

matically represented by hypergraphs. Alternatively, if each hyper-edge of the graph

is reduced to the pairwise connections among the k different types of nodes, the hy-

pergraph is reduced to a k-partite graph. The majority of network analysis methods,

and community detection in particular, are not applicable to hypergraphs or k-partite

graphs. For that reason, it is common practice to extract simplified network forms that

depict partial aspects of the complex interactions of the original network. Such networks

are typically one- or two-mode (i.e. contain only one or two vertex types) and contain

simple edges (i.e. connecting two vertices), which makes possible the application of

numerous network analysis techniques. In summary, the typical lifecycle of a Social

Media network (Figure 1) involves its creation from a set of recorded transactions and

its transformation into some suitable form for the analysis that follows.

Folksonomies constitute an extensively studied example of Social Media networks.

A folksonomy comprises three types of entities, namely users, resources and tags

(Mika [72]). Starting from the tag assignments of users, i.e. transactions involving

a user, a resource and a tag, a “raw” folksonomy network is formed, comprising three

types of vertices and three-way relations among them. Subsequently, simpler (two-

mode or one-mode) network representations are derived by use of projection operations

(Mika [72], Schmitz et al. [96]). For instance, Figure 2(a) presents a toy folksonomy

network created from six tag assignment transactions. The “raw” tri-partite folkson-

omy network is transformed to a simple tag association network by considering an

edge between two tags when they are used to tag the same resource. Other variants

of deriving tag association networks from folksonomies are described in the works by

Cattuto et al. [16], and Au Yeung et al. [6].

A more sophisticated paradigm for Social Media networks, termed metagraph, is

presented by Lin et al. [66]. The vertices of a metagraph are organized in facets and

interactions among different facets, which can be multi-way, constitute the edges of

the metagraph. For instance, a metagraph representation of the Digg Social Media

application considers users, stories, comments, topics and keywords as different facets

of the metagraph representation and further maps user activities, such as votes and

commenting, to edges on the metagraph as illustrated in Figure 2(b). Another network

model is proposed by Agichtein et al. [1] for representing users, questions and answers

in a community question-answering application. In conclusion, different forms of Social

Media networks are possible depending on the transactions of the Social Media applica-

tion under study, the modeling requirements of the problem, as well as the capabilities

of the network analysis method at hand.

Fig. 1 Typical lifecycle of a Social Media network: A set of transactions involving users,
content and metadata lead to the formation of a “raw” Social Media network. Typically, this
network is simplified before any sophisticated analysis (e.g. community detection) takes place.
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(a) Folksonomy (b) Digg metagraph

Fig. 2 Two paradigmatic Social Media networks: (a) a folksonomy network (Mika [72,96])
(b) a digg metagraph (Lin et al. [66]).

3 Social Media communities

Due to the abundance of related works and the variety of adopted perspectives, there

is no unique and widely accepted definition of community. Community definitions are

formulated with reference to the network structure of the system under study and are

commonly bound to some property either of some set of vertices (local definitions)

or of the whole network (global definitions). However, at a different level, one should

also define a community with respect to the domain under study, which in this survey

comprises the realm of Social Media systems. For that reason, we will first provide a

qualitative definition of Social Media communities and subsequently we will link this

definition to established network-based definitions of quantitative nature.

At the most abstract level, given a Social Media network G = (V, E), a Social

Media community can be defined as a subgraph of the network comprising a set

VC ⊆ V of Social Media entities that are associated with a common element of interest.

This element can be as varied as a topic, a real-world person, a place, an event, an

activity or a cause. For instance, in a blogging network, the set of all bloggers, articles,

tags and comments related to the topic of “renewable energy” constitutes the respective

community. Similarly, in a photo sharing application, the set of users, photos and tags

that are associated with the island of Crete form a distinct community.

Social Media communities can further be described as explicit or implicit. Explicit

communities are created as a result of human decision and acquire members based

on human consent. Examples of explicit Social Media communities are Facebook and

Flickr Groups. Implicit communities, on the other hand, are assumed to exist in the

system and “wait” to be discovered. Implicit communities are particularly important

for two reasons: (a) they do not require human effort and attention for their creation

and (b) they enable the study of emerging phenomena within Social Media systems.

This survey focuses on the definition and discovery of implicit communities.
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3.1 Classes of implicitly defined communities

Implicit communities are defined with reference to the network structure. The most

established notion of community-ness within a network is based on the principle that

some sets of vertices are more densely connected to each other than to the rest of

the network. Depending on whether this property of vertices is considered locally (on

a connected subset of vertices) or globally (on the whole network), we distinguish

between local and global community definitions. Communities are also defined on the

basis of the result of some principled network-based process (process-based definitions).

Several of these definitions are tabulated and described in the supplementary material

included in the work by Kovács et al. [55].

Local definitions. Early notions of community emerged from social studies focusing on

the concepts of subgroup cohesiveness and mutuality. Examples of such community

definitions are cliques, n-cliques, n-clubs, n-clans, k-plexes, and k-cores (Wasserman

and Faust [109], Scott [97]). More recently, the structures of LS and Lambda sets were

defined (Borgatti et al. [13]) as community constructs. However, most of the above

definitions are too restrictive and computationally very expensive. Thus, their use is

very limited in a Social Media context.

Alternatively, the internal and external vertex and subgraph degrees have been

used to define community-ness. The internal degree of a vertex is the number of edges

that connect it to vertices of the same community. The external degree is defined in

a similar way. The definitions of communities in the strong and weak sense (Radicchi

et al. [88]) are based on the internal and external degrees of vertices belonging to a

community. Moreover, it is possible to define some local measure of community quality

and then quantify the degree of community-ness for a given subgraph. Examples of

such local measures are local and relative density (Š́ıma et al. [100]), local modularity

(Clauset [24]), and subgraph modularity (Luo et al. [68]).

Global definitions. Global community definitions consider community structure as a

property of the whole network. There are several important classes of global community

definitions. Perhaps, the most intuitive community definition relies on the number of

edges falling between communities (cut size) as a measure of quality of a given network

partition into communities. Since the absolute number of inter-community edges is

problematic, normalized measures such as Normalized Cut (Shi and Malik [99]) and

conductance (Kannan et al. [52]) have been introduced for quantifying the profoundness

of separation between the communities of a network.

Another class of global community structure is based on the widely used concept of

modularity that quantifies the extent to which a given partition of a network into com-

munities deviates from the hypothetical state (null model) that the network would be

randomly rewired under the constraint of same-degree for each vertex (Newman and

Girvan [74]). A generalization of modularity was presented by Reichardt and Born-

holdt [90] and numerous variations of the concept have been introduced for computing

modularity in weighted (Newman [76]), directed (Arenas et al. [4]) and bipartite (Bar-

ber [9]) networks.

Finally, a wide class of global community definitions relies on some similarity mea-

sure between network vertices. Once pairwise similarities between vertices are com-

puted, communities are defined as clusters of vertices that are close to each other.

Vertex similarities can be derived by use of numerous methods, such as embedding
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graph vertices in n-dimensional Euclidean space (and then use some traditional dis-

tance measure such as Manhattan or Euclidean distance) or using the adjacency matrix

of the graph, e.g. compute Pearson correlation between rows of the adjacency matrix,

or random-walk based similarities (Pons and Latapy [85]). Another vertex similarity

measure is the structural equivalence (Lorrain and White [67]), which expresses the

overlap between the neighborhoods of two vertices (even if they are not connected).

Process-based definitions. An alternative means of defining communities is by consid-

ering some community formation process taking place on the network under study. For

instance, the Clique Percolation Method (Palla et al. [78]) considers a k-clique template

that “rolls” on the network and results in a community consisting of the union of all

k-cliques that are adjacent to each other (i.e. share (k − 1) nodes). Other community

definitions rely on a dynamic process that is iteratively applied on the network in or-

der to reveal groups of vertices that form well-separated communities. Van Dongen [30]

describes a flow diffusion process, namely the Markov Cluster Algorithm, which is iter-

atively applied on the network in order to render the underlying community structure

conspicuous. According to it, communities are defined as sets of vertices, in which a

random walker is very likely to get trapped. Another dynamic process used for the def-

inition of communities is the synchronization of a set of phase oscillators on a network

(Arenas et al. [3]): groups of vertices whose oscillators synchronize first are considered

to form communities. Finally, a label propagation scheme based on neighbor majority

voting is devised by Raghavan et al. [89] to define communities as groups of vertices

forming stable consensus with respect to their label.

3.2 Community attributes

Across all community definitions presented above, a set-based view of communities

was presented: community was seen as a set of vertices and the membership of each

vertex in a network was implicitly assumed to be the result of a boolean decision. In

reality, and especially in the context of Social Media, the concept of community and

community membership may be more complicated. For instance, in several of the above

community definitions, e.g., most of the local ones (Clauset [24], Luo et al.[68]), the

one based on Clique Percolation (Palla et al. [78]), and others (Gregory [45], Chen et

al. [21]), it is possible for communities to overlap (Figure 3(a)). Community overlap is

important for Social Media networks since it is common for Social Media entities to

participate in multiple communities; for instance, a user may be affiliated to his/her

family, friends and professional community.

In addition, there are other attributes that vertices of a network may have in re-

lation to communities. For instance, different vertices may participate with varying

degrees in a community depending on their centrality6 within it (Figure 3(b)). More-

over, vertices may have discrete roles: for example, Xu et al. [110] define two roles (hubs

and outliers) for vertices that are not assigned to any community. Hubs are connected

to multiple communities and act as liaisons, thus enabling interactions among commu-

nities. Outliers are connected to a single community through a single link, therefore

they are usually considered as noise. Community-based vertex roles are also discussed

by Scripps et al. [98]. Specifically, the roles roles of “loners”, “big fish”, “bridges” and

“ambassadors” are defined (Figure 3(c)).

6 Centrality quantifies how frequently vertices fall in the paths between other vertices.
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(a) Overlap (b) Weighted membership (c) Roles

(d) Hierarchy

Fig. 3 Several attributes that may characterize community structure: (a) overlap, (b) weighted
membership, (c) vertex roles within/across communities, (d) hierarchical organization.

Finally, it is possible to impose hierarchical (Figure 3(d)) or multi-scale structures

on communities. Community organization may be considered at different scales in a

variety of systems. For instance, a set of users of a Social Media application may

be organized in a community focused on a very specific topic (e.g. fans of a particular

indie-rock band) and at the same time they may be considered as members of a broader

community (rock music). For Social Media systems, the consideration of multiple levels

of community organization typically does not involve any kind of hierarchical organi-

zation since the constraints imposed by the hierarchical model are too restrictive for

modeling the uncontrolled and emerging nature of Social Media phenomena.

4 Community detection methods

From the discussion of Section 3 it became clear that there is a variety of community

definitions based on network measures and structures. The variety of methods that have

appeared in literature for detecting communities is even larger, since for each commu-

nity definition there are more than one methods claiming to detect the respective

communities. Here, we will summarize the most important classes of such methods,

associate them with the definitions presented in the previous section and compara-

tively discuss their performance requirements in terms of computational complexity

and memory consumption, as well as their dynamic computation characteristics, which

are particularly pertinent for the analysis of Social Media networks. Before proceeding

with the discussion of the methods, we will first delineate the relation of the problem

of community detection with that of graph partitioning and graph clustering.

Community detection and graph partitioning. Graph partitioning is a well-

specified problem: divide the vertices of a graph into n groups of given sizes such

that the number of edges lying between the groups (cut size) is minimum. Commu-

nity detection is different from graph partitioning in two fundamental aspects. First,

community detection requires neither the number of groups nor their sizes as input in
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order to extract them. Furthermore, the result of community detection may not be a

partition, i.e. a set of vertex sets, whose union is the set of all graph vertices and whose

pairwise intersections result always in the empty set. As became apparent in Section 3,

communities in a network may present overlap and there may be vertices in a network

that are not assigned to any community.

Community detection and graph clustering. Community detection is almost

interchangeably used with graph clustering (Fortunato [38], Schaeffer [94]). In both

problems, the aim is to identify groups of vertices on a graph that are better connected

to each other than to the rest of the network. However, a differentiation between the

two problems regards the requirement for knowing the number of communities/clusters

that a method is expected to identify. Community detection methods typically do not

require the number of communities to be provided as input, but instead the number

of communities is one of the method outputs7. In contrast, there are numerous graph

clustering techniques that require the number of clusters to be provided as input. Due

to the immense scale and evolving nature of Social Media, it is almost impossible

to know or even to estimate the number of communities in a Social Media network.

Therefore, graph clustering methods that require the number of clusters to be provided

as input are of limited use for the study of such data8.

In this section, we first present a classification of existing community detection and

graph clustering methods based on their methodological principles (subsection 4.1).

Furthermore, we provide a discussion and experimental study of their computational

complexity and memory requirements (subsection 4.2), which are particularly perti-

nent for their application on a Social Media scale. Finally, we discuss the potential of

applying existing community detection methods on dynamic networks (subsection 4.3).

4.1 Methodological classification

Depending on the underlying methodological principle as well as the adopted defini-

tion of community, we consider five broad classes of community detection and graph

clustering methods: (a) cohesive subgraph discovery, (b) vertex clustering, (c) com-

munity quality optimization, (d) divisive, and (e) model-based. For the sake of self-

containment, we are going to briefly refer to each of the aforementioned method classes

here. For a more thorough discussion of their principles, we refer to the survey articles

by Danon et al. [25], Fortunato [36–38], Porter et al. [86], and Schaeffer [94]. Also,

a useful listing of a large number of community detection methods appears in the

supplementary material of Kovács et al. [55].

Cohesive subgraph discovery. The methods of this class presume a specifica-

tion of the structural properties that a subgraph of the network should satisfy in order

to be considered a community. Once such a subgraph structure is specified, methods

involve the enumeration of such structures in the network under study. The local com-

munity definitions presented in subsection 3.1, e.g., cliques, n-cliques, k-cores, LS sets

and lambda sets, are examples of such cohesive structures and therefore algorithmic

schemes for enumerating such structures, such as the Bron-Kerbosch algorithm (Bron

7 That does not imply that community detection methods are necessarily parameter-free.
They may well rely on some other parameter.

8 However, in case it is possible to identify a relatively small set of values for the number
of clusters to be detected, it is customary to employ such algorithms within some iterative
parameter selection scheme with the goal of identifying the optimal number of clusters.
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Fig. 4 A classification of community detection and graph clustering methods according to
the adopted community definition and underlying methodological principle.

and Kerbosch [15]) and the efficient k-core decomposition algorithm of Batagelj and

Zaversnik [10], belong to this class of community detection methods. In addition, meth-

ods such as the Clique Percolation Method (Palla et al. [78]) and the SCAN algorithm

(Xu et al. [110]), which lead to the discovery of subgraph structures with well-specified

properties, fall under the same class of methods.

Vertex clustering. Such techniques originate from the traditional data clustering

research. A typical means of casting a graph vertex clustering problem to one that can

be solved by conventional data clustering methods (such as k-means and hierarchical

agglomerative clustering) is by embedding graph vertices in a vector space, where pair-

wise distances between vertices can be calculated. Another popular method is to use

the spectrum of the graph for mapping graph vertices to points in a low-dimensional

space, where the cluster structure is more profound (Donetti and Munoz [29], Von

Luxburg [69]). Other vertex similarity measures such as the structural equivalence

(Breiger et al. [14]) and the neighborhood overlap have been used to compute sim-

ilarities between graph vertices (Wasserman and Faust [109]). Finally, a noteworthy

method, called Walktrap (Pons and Latapy [85]), makes use of a random-walk based

similarity between vertices and between communities and uses modularity in a hierar-

chical agglomerative clustering scheme to derive an optimal vertex clustering structure.
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Community quality optimization. There is a very large number of methods

that are founded on the basis of optimizing some graph-based measure of community

quality. Subgraph density and cut-based measures, such as normalized cut (Shi and

Malik [99]) and conductance (Kannan et al. [52]), were among the first to be used

for quantifying the quality of some network division into clusters. A whole new wave

of research was stimulated by the measure of modularity. Approximate modularity

maximization schemes abound in the literature. Apart from the seminal greedy opti-

mization technique of Newman [75], and speeded up versions of it, such as max-heap

based agglomeration (Clauset et al. [23]) and iterative heuristic schemes (Blondel et

al. [12]), more sophisticated optimization methods have been devised, for instance, ex-

tremal optimization (Duch et al. [31]), simulated annealing (Massen and Doye [71])

and spectral optimization (Newman [77]). Methods aiming at the optimization of local

measures of community quality, such as local and subgraph modularity (Clauset [24],

Luo et al. [68]), also belong to this category. Finally, this category includes methods

that exploit the “hills” and “valleys” in the distribution of network-based node or

edge functions, e.g. the ModuLand framework proposed by Kovács et al. [55] and the

“reachability” measure by Chen et al. [21].

Divisive. These methods rely on the identification of network elements (edges and

vertices) that are positioned between communities. For instance, the seminal algorithm

by Girvan and Newman [43] progressively removes the edges of a network based on

some edge betweeness measure until communities emerge as disconnected components

of the graph. Several measures of edge betweeness have been devised, for instance,

edge, random-walk, and current-flow betweeness (Newman and Girvan [74]), as well

as information centrality (Fortunato et al. [35]) and the edge clustering coefficient

Radicchi et al. [88]). A similar principle is adopted by vertex removal methods (Vragović

and Louis [107]); such methods remove vertices in order to reveal community structure.

Finally, min-cut/max-flow methods (Flake et al. [34], Ino et al. [49]) adopt a different

divisive perspective: they try to identify graph cuts (i.e. sets of edges that separate the

graph in pieces) that have a minimum size.

Model-based. This is a broad category of methods that either consider a dynamic

process taking place on the network, which reveals its communities, or they consider

an underlying model of statistical nature that can generate the division of the network

into communities. Examples of dynamic processes are label propagation (Raghavan et

al. [89], Leung et al. [62], Gregory [45]), synchronization of Kuramoto oscillators (Are-

nas et al. [3]), diffusion flow, better known as Markov Cluster Algorithm (Van Don-

gen [30]), and the popular spin model by Reichardt and Bornholdt [90]. In addition,

community detection can be cast as a statistical inference problem (Hastings [46]), as-

suming some underlying probabilistic model, such as the planted partition model, that

generates the community structure and estimating the parameters of this model. Other

model-based approaches rely on the principle that a good clustering is determined by

a low encoding cost, thus they perform community detection by finding the cluster

structure that results in the lowest possible cluster encoding cost (Chakrabarti [18],

Rosvall and Bergstrom [92]).

4.2 Performance comparison

In assessing the performance of community detection methods, there are two funda-

mental aspects that one needs to consider: (a) the computational complexity and (b)
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the requirements of the method in terms of main memory. As will be discussed in the

following (subsection 4.3), the incremental computation properties of community detec-

tion methods constitute an additional performance consideration, which is increasingly

important in the context of Social Media systems. In this section, we provide a theo-

retical discussion of the first two performance aspects, computational complexity and

memory requirements, for a variety of methods, and report the results of an exper-

imental study that compares the performance of eight popular community detection

methods on a wide variety of synthetic networks.

4.2.1 Theoretical discussion

Computational complexity: It is customary to quantify the computational com-

plexity of community detection and graph clustering algorithms in terms of graph pa-

rameters. Since many of the algorithms rely on vertex and/or edge iteration schemes,

their complexity is commonly expressed in relation to the number of graph vertices n

and/or edges m. In addition, the complexity of algorithms is sometimes dependent on

the average or maximum degree of the graph vertices, denoted by k and kmax respec-

tively. Sometimes, the complexity also depends on the number C of communities to be

discovered. For hierarchical methods that produce a community dendrogram, the depth

d of the dendrogram can also affect the complexity of the method.

In the literature, there are many cases where, instead of the “true” complexity of

an algorithm, one reports its approximate complexity based on the assumption that

the underlying graphs are sparse, i.e. n ≈ m. Since this distinction is frequently not

evident, we are going to present, for each method, the complexity both in the case

where no assumption is made about the underlying graph and in the case where the

assumption of a sparse graph is made. Table 1 presents a complexity comparison among

several selected graph clustering and community detection methods. From the table, it

appears that vertex clustering and divisive approaches present complexities higher than

quadratic to the number of network vertices, which renders them inapplicable for large-

and mega-scale networks that commonly appear in Social Media systems. On the other

hand, there are several recent methods (Blondel et al.[12], Leung et al. [62], Raghavan

et al. [89], Xu et al. [110]) from the other classes that present linear complexity to the

number of network edges. Since the number of edges contained in real-world Social

Media networks can easily exceed the billion scale, it is obvious that such methods are

preferable in terms of complexity for tackling community detection on such networks.

For several popular methods, it is not possible to derive a closed-form expression of

their complexity, as this depends on the structure of the graph under study, as well as

on particular method parameters. For instance, in the case of the Clique Percolation

Method (Palla et al. [78]) there is no closed-form expression for bounding the algorithm

running time, although it is experimentally demonstrated that the algorithm completes

in reasonable time for fairly large networks. In a similar fashion, the complexity of the

modularity maximization method based on simulated annealing (Massen and Doye [71])

cannot be expressed in terms of graph characteristics (although it is known to be a

slow method and applicable only to relatively small networks).

A whole class of methods whose complexity cannot be expressed in closed form are

the methods that rely on spectral graph properties (Von Luxburg [69]). Such methods

are based on the computation of some or all the eigenvectors of the graph Laplacian in

order to cluster the vertices of the graph. In the worst case, where all eigenvectors are

computed, such methods have a O(n3) complexity. However, most methods compute



14

Table 1 Comparison of community detection complexity. Two bounds are provided, one for
general graphs irrespective of density (Complexity-A) and one computed under the assumption
that the graph is sparse (Complexity-B). Furthermore, the scale of graphs for which each
method is appropriate is provided: S stands for small scale (< 104 nodes), M stands for
medium scale (< 106 nodes), and L for large scale (106 − 109 nodes).

Method Complex-A Complex-B Scale

Cohesive substructure detection

Bron-Kerbosch [15] O(3n/3) O(3n/3) S
k-core detection (Batagelj and Zaversnik [10]) O(n2) O(n) L
SCAN (Xu et al. [110]) O(n2) O(n) L

Vertex clustering

embedding in space + k-means O(C n2) O(C n2) M
Walktrap (Pons and Latapy [85]) O(n4) O(n2 log n) M
Donetti-Munoz [29] O(C n2) O(C n2) M

Community quality optimization

Clauset-Newman-Moore [23] O(n2 d log n) O(n log2 n) M
Extremal optimization (Arenas et al. [4]) O(n2 log n) O(n2 log n) M
Spectral optimization (Newman [77]) O(n3 d) O(n2 log n) M
Community folding (Blondel et al. [12]) O(n2) O(n) L

Divisive

Girvan-Newman [43] O(n5) O(n3) S
Information centrality (Fortunato et al. [35]) O(n7) O(n4) S
Edge clustering coefficient (Radicchi et al. [88]) O(n6) O(n2) M
Max flow + Gomory-Hu tree (Ino et al. [49]) O(n4 log n) O(n3 log n) S

Model-based

MCL (Van Dongen [30]) O(n3) O(n3) M
Minimum encoding cost (Chakrabarti [18]) O(n2) O(n) L
Label propagation (Raghavan [89], Leung [62]) O(n2) O(n) L
Infomap (Rosvall and Bergstrom [92]) O(n2 log n) O(n log n) L

only a limited number of eigenvectors (corresponding to the smallest eigenvalues of

the Laplacian) by use of some efficient method (e.g. Lanczos) and are thus much more

efficient. Still, their complexity cannot be expressed in relation to the graph size.

Finally, the complexities of methods that operate at a local level, such as the ones

by Clauset [24], Luo et al. [68], Bagrow [8], Papadopoulos et al. [80], were not included

in Table 1, since such methods are used to discover a single community around a given

vertex or set of vertices. Although it is possible in principle to derive global community

detection schemes by bootstrapping such methods, there is no meaning in comparing

the complexity of such schemes with inherently global approaches. For that reason,

and due to the fact that local methods can be used as a means of scaling community

detection to larger networks, we present an additional discussion of local methods in

subsection 5.2.

Memory requirements: The magnitude of networks formed from Social Media

data, and the development of community detection methods presenting linear complex-

ity with respect to the network size, has revealed an additional bottleneck to community

detection methods: memory consumption. Most existing techniques consider direct and
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instant access to graph elements, since the whole graph is assumed to reside in main

memory. Moreover, additional main memory structures are frequently used by methods

to speed up certain graph analysis operations. For that reason, it is necessary to assess

community detection methods on the basis of their memory requirements.

A large number of community detection methods rely on the edges of the graph

under study to reside in memory. In addition, the assignments of nodes to communities

and their degrees need to be readily accessible by the algorithm (e.g. in the case of

modularity computation). Thus, the bare minimum memory consumption for many

community detection methods scales linearly with the size of the graph9 (2 ·m+2 ·n).

This estimate assumes that the graph is unweighted and stored in the form of an edge

list (thus requiring only two elements per edge, the endpoint vertices). In practice,

many community detection implementations rely on a matrix representation of the

graph (adjacency matrix) to be available in memory, thus calling for at least 2 ·m+3 ·n
in case of unweighted undirected graphs in case the Yale sparse matrix format is used.

More often than not, methods require additional data structures to be held in

memory in order to speed up certain operations. For instance, the efficient greedy

scheme of Clauset et al. [23] makes use of a ∆Q matrix instead of a simple adjacency

matrix that requires both n binary trees and n max-heaps (which are also represented in

the form of trees), thus raising the memory needs of the method. The eigenvector-based

approach for modularity maximization (Newman [77]) poses even higher requirements

for memory, since it relies on the so-called modularity matrix B that is not sparse and

thus takes up n2 space. Other spectral approaches (Von Luxburg [69]) store a set C of

eigenvectors in main memory (in addition to some graph-derived sparse matrix, such

as the Laplacian) resulting in the need for additional C ·n memory space. Some recent

methods tackle the problem of minimizing the Normalized Cut of a clustering (spectral

partitioning), without the need to compute the eigenvectors of graph-derived matrices

(Dhillon et al. [27]).

Another class of methods that inherently suffer from large memory requirements

are those based on vertex clustering. Such methods involve the embedding of graph

vertices in some n-dimensional space, thus resulting in a dense n×n matrix, which takes

up n2 memory space. Moreover, community detection based on statistical inference

(Hastings [46]) also suffers from high memory usage. Approximating the solution to

the belief propagation problem that the method tries to solve requires an additional

C ·n memory in order to track the estimated probabilities with which network vertices

belong to each community.

On the other hand, there are numerous community detection methods that are

suitable even under strict memory constraints. For instance, the label propagation

method of Raghavan et al. [89] proceeds by inspecting only the neighborhood of a

vertex each time a relabeling operation is performed. Therefore, if needed the method

can work even with as little as n+kmax memory space (community assignment vector

plus vector of largest vertex neighborhood) assuming that the graph is streamed in

memory in the form of vertex adjacency lists. Obviously, local community detection

approaches are also memory efficient, since they process only a portion of the graph at

a time. However, when the local community boundary grows large (e.g. in the case of

gigantic communities), even local methods might cause significant memory overhead

(this is further discussed in subsection 5.2).

9 When discussing memory consumption, it is meaningless to use the Big O notation, since
we want to distinguish between a memory consumption of α ·m, α ∈ N+ and one of m.
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4.2.2 Experimental study

In order to gain insight into the performance aspects of community detection, we

have conducted a comparative experimental study including eight well-known meth-

ods, namely:10 (1) the greedy modularity maximization scheme by Clauset, Newman,

Moore (CNM) [23], (2) the Walktrap method by Pons and Latapy (WALKTRAP) [85],

(3) the “leading eigenvector” method by Newman (LDEIGEN) [77], (4) the spin con-

figuration method by Reichardt and Bornholdt (SPIN) [90], (5) the label propagation

method by Raghavan et al. (LPROP) [89], (6) the Markov Cluster Algorithm by van

Dongen (MCL) [30], (7) the heuristic modularity maximization scheme by Blondel et al.

(LOUVAIN) [12], and (8) the information theoretic method by Rosvall and Bergstrom

(INFOMAP) [92].

In order to test the method performance under a wide range of structural network

features, we used the synthetic benchmark graphs by Lanchicinetti et al. [58]. The

graph generation process is based on five parameters: (a) number of nodes, N , (b)

average degree of nodes, k̂11, (c) mixing parameter, µ, indicating the “conspicuous-

ness” of communities (the higher its value, the fuzzier the communities), (d) power

law exponent for node degree distribution, γ, (e) power law exponent for community

size distribution, β. For testing the effect of each parameter on the performance of the

methods, we created synthetic graphs with varying values for each one of the parame-

ters while keeping the rest of the parameters fixed. For each parameter set, we created

10 graph realizations in order to obtain more reliable performance measurements by

averaging over the respective measurements. Our performance measurements include

execution time, Normalized Mutual Information (NMI)12, and peak memory consump-

tion for each method. Thus, apart from measuring the computational requirements of

the methods, we also benchmarked by means of NMI the quality of the community

structure that they produce.

Figure 5 provides an overview of the benchmark results by depicting the relation of

method performance to three graph generation parameters, namely N , k̂, and µ. For the

sake of brevity and due to the fact that there was no significant influence of performance

on parameters γ and β, the respective diagrams were omitted. Figures 5(a)- 5(c) depict

the relation of the method execution time in relation to the three graph generation

parameters. Figures 5(d)- 5(f) illustrate the execution time in relation to the achieved

community structure quality in terms of NMI. Finally, Figures 5(g) and 5(h) present

the peak memory requirements of the competing methods in relation to the number of

nodes and average degree (i.e. number of edges) of the network.

In terms of execution time, there is a remarkable performance difference between the

fastest methods, namely LPROP and LOUVAIN, and the slowest ones, i.e. SPIN and

MCL. For instance, for a network of 10 thousands of nodes, LPROP and LOUVAIN take

approximately 0.5 and 0.6 seconds to complete, while MCL takes 75 seconds and SPIN

almost 19 minutes. In terms of scalability, all methods appear to scale almost linearly

to the number of nodes in the network. An exception is the WALKTRAP method that

exhibits an abrupt increase in the execution time after the network grows larger than

10 thousands of nodes. This is actually not an inherent complexity characteristic of

10 For ease of reference, we provide for each method a short name in parentheses.
11 This is equivalent to the number of edges of a network.
12 This measure is typically used in community detection studies, e.g. the comparative study

by Danon et al. [25], to quantify the extent to which the detected community structure matches
the “true” one, which in the case of synthetic graphs is known.
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Fig. 5 Benchmark results for eight community detection methods.

the method but it is due to the fact that the method consumes all available memory,

as becomes obvious from Figure 5(g), and it thus needs to frequently access the disk.

Another method that scales a little worse than linear is the LPROP method, which

for small size networks is the fastest one, but for larger size networks comes second

after the LOUVAIN method. The execution time of some methods is also affected

by the average degree of the network. SPIN, MCL, CNM and WALKTRAP are the

methods affected most by the average network degree, while INFOMAP, LOUVAIN

and LPROP do not seem to be significantly influenced. Finally, changing the network

mixing parameter, i.e. how much the different communities “blend” with each other,

does not seem to have significant influence on the execution time of methods with the

exception of INFOMAP, MCL and SPIN.

In terms of memory consumption, WALKTRAP was found to be the most memory

hungry method, consuming all available 8GB of the test machine when networks of

50 thousands of nodes or larger were analyzed. This was also the reason for the steep

decrease in its performance in terms of execution time, as described above. MCL was

the second most memory hungry method needing more than 1.5GB of memory for

a network of 100 thousands of nodes. In contrast, the LOUVAIN method exhibited

the best memory performance, consuming only 18MB of memory for a network of 100

thousands of nodes. This is due to the fact that the LOUVAIN implementation is

based on an internal binary network representation that is much more compact than



18

the adjacency lists used by the majority of its competing methods. An additional useful

observation of how the memory requirements of methods scale with the average degree

(i.e. number of edges) in the network can be drawn from Figure 5(h): LOUVAIN and

MCL appear relatively insensitive to k̂, while the memory requirements for the rest of

the methods are heavily dependent on k̂.

Our final observations pertain to the precision of the detected community structure,

quantified by use of the NMI measure. The number of nodes in the network has only

limited effect on the precision of the detected community structure. Only the LOU-

VAIN and SPIN methods appear to suffer from the increase in the number of nodes;

specifically, their NMI performance drops approximately 10% as the number of nodes

in the network grows from one to 100 thousands of nodes. Furthermore, the average

node degree appears to have a strong impact on the precision of the detected commu-

nity structure. All algorithms sustain considerable loss in NMI, which is particularly

pronounced for MCL (NMI drops below zero after k̂ exceeds 50) and LPROP (NMI gets

zero once k̂ gets 100). The most resilient methods in that respect are WALKTRAP,

LOUVAIN and SPIN. Finally, the effect of the mixing parameter on the precision of the

detected community structure is in accordance with the observations of Lancichinetti

and Fortunato [59], where a sharp drop in NMI is observed as µ increases from 0.5

to 0.8. The most sensitive algorithms to µ are LPROP and CNM, while MCL and

WALKTRAP appear to be the most resilient.

4.3 Dynamic community detection

So far, the discussion on community detection has progressed under the silent assump-

tion that the network under consideration is static. In fact, it is only recent works in

this area that take the evolving nature of network data into account. Due to the highly

dynamic nature of Social Media data, this is a significant aspect of community detec-

tion that is worth further attention. In general, time-awareness can be incorporated in

community detection approaches in a number of ways: (a) longitudinal application on

successive snapshots, (b) vertex-centric time-awareness, (c) incremental application.

Longitudinal application on successive snapshots: This is a simple approach

for extending any community detection method for the analysis of dynamic networks.

It consists of two basic steps: (a) application of community detection on a sequence of

static network snapshots, and (b) identification of correspondence between communities

found in successive network snapshots. For instance, this is the approach adopted by

Palla et al. [79], where the Clique Percolation Method (Palla et al. [78]) is applied on

successive graph snapshots, G(t) and G(t+1), as well as on their union G(t)∪G(t+1)

in order to facilitate the community correspondence identification. An important result

of this study pertains to the possible changes that communities undergo throughout

their life, e.g. growth, contraction, merging, splitting, birth and death.

Similar community evolution operations are defined in Asur et al. [5], where the

MCL graph clustering algorithm (Van Dongen [30]) is used to discover communities on

successive graph snapshots. A more recent approach (Kim and Han [54]) relies on the

results of SCAN (Xu et al. [110]) on individual graph snapshots and identifies the cor-

respondence between communities in different times by imposing temporal constraints

on successive graph snapshots. This is achieved by considering vertex similarity links

across graph snapshots at different times and identifying dense t-partite quasi-cliques

on the t-partite graphs that are formed by linking similar vertices of successive graph
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snapshots. Alternatively, edges between vertices have been used as community features

and their correlations across different time snapshots have been used to match and

track communities in time (Lin et al. [64]).

Vertex-centric time-awareness: According to this approach, the dynamic char-

acter of community structure is attributed to their vertices. For instance, Fenn et al. [33]

apply the spin model of Reichardt and Bornholdt [90] on successive graph snapshots

to identify communities. Then, for each vertex it quantifies the extent to which the

vertex remains in the same community or switches from one community to another.

An alternative approach is introduced by Wang et al. [108]: community evolution is

described in terms of a small set of core vertices. For instance, when two successive

communities share a common core vertex, then the second community (from a tempo-

ral point of view) is considered as an evolved version of the first. Due to the fact that

vertex-centric approaches are also based on successive graph snapshots, they are quite

similar to the previous category of dynamic community detection methods.

Incremental application: This is a more sophisticated means of considering the

dynamic character of networks. The community detection at time t + 1 is initialized

with information derived from the community structure discovered at time t. The

incremental nature of these methods has two advantages: (a) it is considerably more

efficient in terms of computations, (b) it leads to more consistent community detection

results, since the clustering at time t + 1 is not dramatically different than the one at

time t, i.e. a balance is achieved between temporal noise and concept drift (Chakrabarti

et al. [19]). Incremental methods can be further divided in iterative approximation

schemes (Sun et al. [103], Yang and Liu [111], Lin et al. [65]) and graph modification

oriented reclusterings (Falkowski et al. [32], Franke and Geyer-Schulz [39]).

Iterative approximation schemes are inherently incremental since they rely on

some iterative scheme that progressively approximates the target community struc-

ture. Therefore, in case they are initialized with the community structure found for

the previous graph snapshot, they tend to converge to the new community structure

in much fewer iterations. For instance, in GraphScope (Sun et al. [103]), community

detection is carried out by minimizing the information required to encode a graph and

its community structure (Minimum Description Length). Initializing the community

structure with some rough estimate (the structure found in the previous timestep)

leads to faster minimization of the Minimum Description Length. Similarly, the in-

cremental scheme of Yang and Liu [111] uses an iterative approximation technique for

estimating repulsion and attraction forces among vertices that are responsible for sepa-

rating the network into communities. Finally, FacetNet (Lin et al. [65]) presents another

important paradigm of incremental community detection formulated on the basis of

evolutionary clustering (Chakrabarti et al. [19]). According to it, community detection

is formulated as a cost minimization problem that is expressed as the combination of

two costs: the snapshot cost, which is related to the current network structure, and the

historic cost, which is derived from the divergence of the current community structure

from the previous one. This cost is minimized through an iterative rule update scheme.

The second approach to incremental community detection is based on the idea that

the incremental method should only take into account the graph modification opera-

tions (e.g. new vertex, new edge, etc.) in order to derive a new community structure,

which would be the same or equivalent with the one that would have been derived in

case a complete reclustering had taken place. For example, the DenGraph framework

(Falkowski et al. [32]), which uses a notion of subgraph density equivalent to the con-

cept of (µ, ε)-cores (Xu et al. [110]), translates each modification taking place on the
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graph into some update operation (or no operation in some cases) on the graph cores

and their associated communities. A more sophisticated scheme is presented by Franke

and Geyer-Schulz [39] based on an incremental version of a restricted random walk

clustering scheme, which takes into account only the changes that have taken place on

the graph since the last clustering.

5 Strategies for scaling community detection on Social Media scale

The remarkable growth of Social Media data has brought attention to the problem

of scaling community detection methods to real-world networks that contain many

billions of vertices and edges. Here, we present five strategies that can be employed in

order to scale community discovery methods to networks of such magnitude.

5.1 Sampling techniques

One possibility for reducing the complexity of community detection methods is to em-

ploy a sampling strategy in the computationally expensive part of the method. Previous

works (Leskovec and Faloutsos [60], Hübler et al. [47] have demonstrated that it is pos-

sible to sample a small subgraph from a large network so that the induced subgraph

has the same network properties (e.g. distribution of degree and clustering coefficient)

with the original large graph. However, in the context of community detection, vertex

(or edge) sampling may have different goals.

For instance, Tyler et al. [106] make use of sampling in the computation of edge

betweeness in large graphs, i.e. their sampling targets at approximating the true be-

tweeness of edges. In their betweeness computation, they take into account only the

contribution from a limited number of randomly selected vertices, which saves signif-

icant computational overhead at a modest statistical error that is further reduced by

repeating the sample-based computation several times and aggregating the results. A

crude means of approximating community detection is by use of high-degree vertex

sampling (Java et al. [51]). Subsequently, the unsampled vertices are assigned to the

community to which they have more connections. Following a more refined approach

(Maiya and Berger-Wolf [70]), vertices are sampled based on their expansion properties

in order to derive a subgraph, of which the community structure is representative and

can thus be used to infer the community assignments of unsampled vertices by use of

statistical relational learning.

Aside the computational efficiency aspects, sampling network data is important for

Social Media data for an additional reason: Any Social Media network under study

is essentially the result of a network sampling process that is implemented by some

crawling algorithm (Gjoka et al. [44], Ye et al. [113]). For that reason, the properties of

the sampled network and the extent to which these are representative of the original

network depend on the employed crawling/sampling principle. In the end, the results of

community detection will implicitly depend on the adopted network sampling process.

5.2 Local graph processing

Local community detection methods (Flake et al. [34], Clauset [24], Luo et al. [68],

Papadopoulos et al. [80], Chen et al. [20]) provide a means to alleviate scalability
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challenges by focusing on a portion of the network under study. In practice, such

methods start a network exploration process from a seed vertex or vertex set and start

attaching adjacent vertices to the community as long as these attachments lead to

the increase of some local community quality measure. This principle is illustrated in

Figure 6. According to it, the network is divided in four parts: (a) the set B of border

vertices that are adjacent to at least one vertex not belonging to the community, (b)

the set C of core community members that have no connection to vertices outside the

community, and (c) the set U of vertices that are adjacent to at least one vertex of the

community border, (d) the rest of the network. A local method proceeds by examining

which vertex (if any) from set U is appropriate for attachment to the community.

Once such a vertex is identified and attached to the community, sets B, C, and U are

updated and the process continues until it is not possible to identify any other vertex

that should be attached to the community.

Since local methods are limited to a portion of the network under study, it is

expected that they can circumvent the memory bottleneck faced by global methods.

In most local community quality measures, such as local modularity (Clauset [24]),

subgraph modularity (Luo et al. [68]) or node outwardness (Bagrow [8]), it is necessary

to maintain in memory only the subgraph GL = (VL, EL) ⊆ G, where VL = C ∪B ∪U

and EL = {(u, v) ∈ E|u, v ∈ VL}. However, in case such a local method leads to the

formation of a gigantic community, violating the assumption that |GL| ¿ |G|, even

local methods are not sufficient to address scalability concerns. Such cases are expected

to be rare and dependent on the network topology under study as well as the local

community quality measure employed by the method.

Local methods have the added advantage that they are targeted at some specific

topic. This is especially important for the Web in general and Social Media applications

in particular, since it is not feasible to study the community structure of the whole

Web. Usually, a community of interest can be defined by means of some seed items

(e.g. web pages, online photos, videos) and then the community containing them can

be progressively discovered by use of either their hyperlinks (conventional Web com-

munities (Flake et al. [34], Ino et al. [49]) or by use of the associated metadata (e.g.

tags, comments, etc.), which create implicit links between content items.

Fig. 6 Basic principle of local community detection: Starting from some seed vertex, one
progressively explores the neighborhood around it. Vertices are distinguished between Core
(C), Boundary (B) and Un-visited (U), with respect to their relation with the local community.
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Fig. 7 Basic principle of streaming/iterative schemes: an iterative process visits the vertex
adjacency lists and fetches part of them in main-memory, where the community computation
is performed by use of the local adjacency information and some additional state variables.

5.3 Streaming/Iterative schemes

Streaming and iterative schemes are a very promising means of scaling community

detection. According to them, an iterative process examines each vertex along with its

neighbors in a given order and performs a computation, of which the result is associ-

ated with the processed vertex. This vertex iteration process is repeated multiple times

until convergence. The same principle can be applied by use of edge iteration. In that

way, it is possible to perform community detection on networks that do not fit in main

memory under the assumption that the relevant parts of the graph (e.g. vertex neigh-

borhoods) are streamed in main memory and state information (e.g. values associated

with vertices) resides in main memory. This principle is illustrated in Figure 7.

Label propagation (Raghavan et al. [89]) is a prominent example of the iterative

paradigm. According to it, each vertex is visited and assigned a label as a result of

majority voting by its neighbors. This vertex iteration is repeated multiple times until

convergence.13 A more complex example of iterative community detection is provided

by the (µ, ε)-core community detection scheme (Xu et al. [110]) that consists of a single

edge and a single vertex iteration: each edge is visited once in order to compute the

structural similarity between the vertices it connects. Subsequently, a vertex visiting

scheme is carried out that first identifies (µ, ε)-cores and then attaches to them those

vertices that are structure reachable from them (in total each vertex is visited once).

5.4 Multi-level approaches

Multi-level approaches rely on the following principle: First, they try to find a rough

partition of the network into communities by use of a fast process (at the expense of

accuracy). Subsequently, the create a meta-network, where vertices represent commu-

nities and edges stand for inter-community associations. This meta-network is much

smaller in size than the original, therefore more accurate partitioning techniques can

be devised. This principle was popularized by the METIS graph partitioning frame-

work (Karypis and Kumar [53]) and applied within a community detection framework

by Djidjev [28], where modularity maximization is cast as a minimum weighted cut

problem that is solved by recursive bisection and refinement.

13 Sometimes there may be oscillation phenomena that can be addressed by extensions of the
method (Leung et al. [62]).
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In addition, a community “folding” or “contraction” process can be integrated in

various community detection schemes (Ino et al. [49], Blondel et al. [12]) with the goal

of uncovering community organization at multiple resolutions. Ino et al. [49] devise an

efficient scheme for enumerating certain types of subgraphs (satisfying the definition

of the so-called IKN-community) and apply it recursively at multiple levels in order to

uncover hierarchical community structure. Similarly, a heuristic scheme for modularity

maximization on large scale networks is presented by Blondel et al. [12]. Once an

optimal partition is identified at the lowest resolution, the identified communities are

“folded” into vertices and the same scheme is applied at the meta-network comprising

communities as vertices. In such methods, the main computational burden falls on the

first level of the multi-level scheme. For that reason, heuristics are commonly devised

to speed up computations at this level of community detection.

An alternative multi-level scheme was presented by Gibson et al. [42], where large

dense bi-cliques of vertices are identified on a directed network. A shingling operation

is proposed that maps an input set of size n to a set of much smaller size (a so-called

“fingerprint”). This operation is used to create fingerprints of the neighborhoods of

vertices (first level shingles) and then re-applied to create second-level shingles. Then,

the extraction of dense bi-cliques is translated to a problem of connected component

identification on the network of first-level shingles GS . This problem is much easier

than the original due to the fact that it only needs memory access to the vertices of

GS , since its edges are encoded in the second-level shingles. In that way, the authors

could analyze the community structure of a network consisting of two billion vertices

and 11 billion edges.

5.5 Distribution and parallelization

The constant increase in the size of the networks that need to be analyzed will eventu-

ally bring the aforementioned strategies for scaling community detection to their limits

assuming they are applied on a single machine. For that reason, an essential strategy

for making community detection scalable to peta-scale networks is the distribution of

the network into multiple processing nodes and parallel execution of many community

detection processes.

Hui et al. [48] present an interesting approach to distributed community detection.

Community detection is seen as a local process taking place in each processing node

in a network of devices so that each device is “aware” of its community. Although

this perspective does not address at all the scalability aspects of the problem, it is

interesting for two reasons: (a) it introduces the paradigm of distributed community

detection by use of local techniques (subsection 5.2), (b) it demonstrates the practical

issues arising when a local community detection method (such as the one based on

optimizing the local modularity by Clauset [24]) is applied in an environment where

only partial knowledge of the network is possible.

The Bulk Synchronous Model (BSP) is used by Zhang et al. [114] to detect com-

munities in large networks by means of distribution. The processing model is vertex-

oriented (similar to the one by Hui et al. [48]) and involves a set of local updates on

a local structural property termed “propinquity” and message passing to neighboring

vertices. It is demonstrated by authors that this dynamic process leads to the emer-

gence of communities in the form of connected components. The performance of the

technique is heavily dependent on the vertex degree distribution, which led the au-
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thors to the adoption of some ad hoc degree-based filtering on the network. In terms of

parallelism, the authors achieve substantial gains with the addition of new processing

nodes up to a meaningful number of nodes given the network size (i.e. it is of no use

to partition a relatively small network in many nodes due to the overhead that will be

incurred by the excessive message passing).

Alternatively, Yang et al. [112] implement a parallel community detection scheme

on top of the MapReduce (Dean and Ghemawat [26]) framework. A special mapping and

reduction scheme is employed with the goal of distributing the problem of enumerating

all maximal cliques in large networks. Subsequently, a clique merging step is performed

that results in a clique-based community structure similar to the one discovered by

the Clique Percolation Method (Palla et al. [78]), but with no need to specify the k

parameter. However, their experiments indicate that after distributing the problem to

more than 30 processors, the total processing throughput levels off indicating increased

computational overhead and thus calling for improved parallelization mechanisms.

6 Exploitation of community detection results

Community detection has attracted extensive research interest for some time now.

Despite the proliferation of methods developed for analyzing different types of com-

munities, there have been relatively less works that actually exploit the results of

community detection in some application. Traditionally, social network analysis and

biological systems have benefited from the results of community detection (Girvan and

Newman [43]). In addition, research on the structure and processes taking place on the

Web (Kumar et al. [56], Flake et al. [34]) constitute an additional application domain.

It is only recently that some works have started exploiting the results of community

detection research on Social Media data. Yet, Social Media present unique opportuni-

ties and challenges for community detection research due to the following properties:

(a) the unprecedented growth and magnitude of networked data generated by Social

Media applications, (b) the high rate of spam and the large variance in the quality of

Social Media content and metadata, (c) the highly interactive and dynamic character

of Social Media systems.

Here we collect the main applications that community detection has seen to date

in the context of Social Media. We differentiate between observational studies that are

focused on the structure and dynamics of communities in Social Media networks and

application-oriented studies that attempt to integrate community detection results in

the context of some information retrieval or web mining task.

6.1 Observational studies

6.1.1 Statistical analysis of Social Media community structure

Several studies focus on the structure of communities in Social Media networks. Most

of them consider some specific Social Media application and examine the community

structure of the network derived from it. For instance, a study on a collaborative

tagging system (delicious) is presented by Cattuto et al. [17], where an online book-

mark network is created from the tagging activities of delicious users14 and a spectral

14 Two bookmarks are linked by a weighted edge depending on the number of tags they share.
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Fig. 8 Core-periphery structure, a characteristic of many Social Media networks [61].

technique is applied for separating the resources into communities. Another study

(Zakharov [115]) focuses on the community structure of the users of the LiveJournal

blogging platform. Through a thermodynamic diffusion process on the network, the

authors could identify several prominent communities on the network (e.g. a russian-

speaking blogging community and two communities focused on two RPGs). Another

study on blog communities is presented by Java et al. [50]; in that, a co-clustering

framework is employed in order to exploit both the hyperlink structure of blog articles

as well as the tag information of articles.

One of the most extensive and systematic studies on the community structure of

networks, including several Social Media ones, is presented by Leskovec et al. [61]. The

examined Social Media networks are mostly user affiliation networks from different

Social Media applications (Delicious, Epinions, Flickr, LinkedIn, LiveJournal, Yahoo!

Answers), but there is also an interesting network comprising Netflix users and movies

as vertices and ratings as edges (bipartite). The authors employ both a hybrid graph

partitioning technique based on METIS (Karypis and Kumar [53]) and MQI (Gallo

et al. [40]), and a local spectral partitioning technique (Andersen et al. [2]), both of

which identify partitions with minimum conductance (Kannan et al. [52])15. In order

to express the community structure quality in different scales, the authors employ the

Network Community Plot, i.e. a plot of the minimum conductance value in relation to

the community of size.

From the analysis across a wide range of networks and by use of different graph

partition algorithms, it appears that the communities of the networks of interest are

integrated in a core-periphery structure, where the periphery consists of the so-called

“whiskers”, densely connected subgraphs (of size in the order of 100 vertices) that are

connected to the rest of the network by only few (typically one or two) edges. A pictorial

representation of this structural pattern is depicted in Figure 8. The study revealed

that such peripheral communities can collectively constitute even more than half the

size of the network and are responsible for the “best” conductance values achieved by

graph partitioning schemes. As communities get larger, they tend to blend in with the

core of the network and it is harder to separate them by means of graph partitioning.

6.1.2 Temporal analysis of Social Media communities

Thanks to the recent development of numerous methods for discovering and dynami-

cally tracking the community structure of networks (subsection 4.3), the focus of com-

munity detection studies on Social Media has begun to shift from static community

15 The reason for using two methods is that the global one focuses on minimizing the conduc-
tance over the whole graph, while the second also makes sure that local community properties,
such as compactness, are preserved even at the expense of conductance minimization.
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(a) 1-1 (b) 1-M / M-1

(c) 1-0 / 0-1

Fig. 9 Basic primitives of community structure evolution: (a) growth and contraction, (b)
merge and split, (c) emergence and extinction.

structure analysis to their temporal evolution and dynamics. Consequently, there have

been several efforts to understand the evolving phenomena that characterize Social

Media communities. For instance, Lin et al. study the evolution of blog communities

forming around real-world events by analyzing the temporal correlations of interactions

between bloggers of the same community through observation of their mutual links [64].

Schlitter and Falkowski study the community dynamics of an online music listening

application (last.fm) by use of their dynamic community detection framework [95].

The aforementioned works observed the formation of new communities, the evolu-

tion (growth or contraction) of persistent ones, as well as more complicated community

dynamics (merging, splitting). Comparing these studies with the seminal work by Palla

et al. [79], it appears that some consensus is formed regarding the possible transforma-

tions that communities may undergo. Figure 9 illustrates six basic transformations that

have been identified in a number of studies (Lin et al. [64], Palla et al. [79], Schlitter

and Falkowski [95]). Basically, there are three types of transformations: (a) one-to-one

(subfigure 9(a)), which involves community growth or contraction, (b) one-to-many

(subfigure 9(b)), which involves one community splitting to many or many communi-

ties merging to one, and (c) one-to-zero (subfigure 9(c)), which involves the emergence

or the extinction of a community.

6.2 Applications

6.2.1 Topic detection in collaborative tagging systems

The huge amount of tags attached to online content by users of Social Media applica-

tions creates the need for imposing organization on the flat tag spaces of collaborative

tagging applications. This can be directly achieved by grouping tags based on the topic

they are associated with. There have been several recent works that attempt to derive

meaningful clusterings of tags that correspond to topics of social interest (Begelman

et al. [11], Papadopoulos et al. [80–83], Simpson [101]). For instance, Begelman et

al. [11] were among the first to apply community detection methods, namely spectral
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modularity maximization, to identify interesting tag clusters. Similarly, tag clustering

is pursued by means of a variant of the modularity maximization method of New-

man [74] on enterprise folksonomies (Simpson [101]). A problem that the latter study

pinpointed is that the employed modularity maximization method led to the discov-

ery of disproportionately large communities when the underlying tag co-occurrence

network was dense (e.g. the tag network formed from delicious data).

Alternative tag community detection schemes were employed by Papadopoulos et

al. [80–82]. In the first work [80], an efficient local community detection scheme was

devised that could discover the community around a seed tag. Figure 10 presents

several examples of tag communities discovered on a tag network created from the

LYCOS iQ community question answering application (similar to Yahoo! Answers).

Such communities can contribute to understanding the interests of the users of Social

Media applications. For instance, by observing the community structure for the topics

Music (subfigure 9(c)) and Science (subfigure 9(d)), it becomes obvious that in LYCOS

iQ there is more interest and a more sophisticated topic structure with respect to the

topic of Science than to Music.

An alternative tag community detection scheme was presented in in [81]. The pro-

posed scheme relied on a two-step process that involved the selection of densely con-

nected groups of tags by use of SCAN (Xu et al. [110]) and the expansion of these

groups with the goal of maximizing the subgraph modularity of Luo et al. [68], which

could be efficiently computed in an incremental fashion. A refinement of this method

appeared in [82] solving the problem of parameter selection introduced by the first step

of the algorithm. A limitation of this approach was the topic blending problem, i.e. the

situation in which some tag communities contained tags related to different topics due

to some polysemous tag that acted as bridge between them. This has been addressed

by tag disambiguation methods that are discussed below.

6.2.2 Tag disambiguation

Due to the unrestricted and informal nature of tagging, there are numerous cases where

the use of a single tag in isolation is not sufficient to convey the intended semantics.

For that reason, tags need to be considered in context in order to disambiguate their

meaning. Recently, several research efforts (Au Yeung et al. [6], Specia and Motta [102])

attempted to address the problem of tag disambiguation by use of community detection.

Starting from a particular tag, Au Yeung et al. [6] derive several Social Media networks,

e.g. a network of documents that have been tagged with the particular tag by the

same user, and the community detection method of Newman [76] is applied to extract

communities of tags or documents (that eventually lead to tags) that correspond to the

different senses of a tag. This approach was demonstrated to yield superior performance

compared to consulting some static external source of information such as WordNet.

Specia and Motta [102] employ tag clustering within a tag-to-ontology mapping

framework. They achieve this by first clustering tags through a heuristic scheme similar

to seed-based local community expansion (as described in subsection 5.2) in order

to identify tag communities around pairs of tags that co-occur frequently with each

other. This tag clustering scheme is extended by a cluster post-processing step to

remove redundant clusters and the resulting clusters are used for mapping tags to

ontology concepts and relations, as well as to Wikipedia entries. Experimental results

on Flickr and delicious demonstrated the feasibility of this approach to semantify user-

contributed content.
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(c) Music

(a) Computers (d) Science

(e) Film

(b) History (f) Animals

Fig. 10 Examples of tag communities discovered by the local method of [80]. The presented
communities were created using “computers”, “history”, “music”, “science”, “film” and “an-
imals” as seed nodes. For subfigures 9(a) and 9(b), the tags are depicted. For the sake of
brevity, only the network structure is illustrated for the rest of the cases. Edges are weighted
by cooccurrence frequency and only those exceeding a certain threshold are drawn for clarity.
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6.2.3 User profiling

Personalized search and recommendation constitute an additional information retrieval

problem that can benefit from the use of community detection. More specifically, clus-

ters of tags have been demonstrated to act as effective proxies of users’ interests. Gemell

et al. [41] base the ranking performance of a personalized search mechanism on tag clus-

ters outperforming conventional ranking schemes. The tag clusters were extracted by

use of a variant of hierarchical agglomerative clustering. However, since this scheme

requires manual parameter tuning that may have significant impact on performance

(as remarked by the authors), a viable alternative would be to use some community

detection to identify tag clusters.

Tsatsou et al. [105] integrate the results of tag community detection in a personal-

ized ad recommendation system and compared against conventional nearest-neighbor

tag expansion schemes. More specifically, tags belonging to the same community are

used as a terminological description of semantic concepts within a domain ontology. It

was found that the use of tag communities discovered by a local community detection

algorithm (Papadopoulos et al. [81]) led to increased recall performance and faster

convergence of the personalized profiles. This is due to the fact that the rich associa-

tions among tags that emerge through the identified community structure may partly

alleviate the vocabulary impedance problem that is known to trouble online advertising

(Ribeiro-Neto et al. [91]).

6.2.4 Photo clustering

The huge increase in the amounts of user contributed content in Social Media sharing

applications such as Flickr creates the need for automatically organizing content. For

instance, clustering the photos in such an application may help users to navigate larger

parts of the photo collection more efficiently (i.e. by looking at one representative photo

per cluster instead of all cluster photos). Moëllic et al. [73] pursue photo clustering

by use of a shared nearest neighbors approach on two graphs of photos where edges

between photos are considered either by use of shared tags (tag-based graph) or due to

visual similarity (visual graph). The employed clustering technique is shown to achieve

improved clustering performance compared with conventional clustering algorithms (k-

means and one of its speeded-up variants). Also, comparing the results of their methods

with the clusters available from Flickr, the authors noted similar clustering quality.

A more sophisticated application of graph clustering is presented by Li et al. [63].

Their goal is to collect different representative (iconic) photos for popular landmarks

and use the massive visual content that is associated with them in order to create 3D

landmark models. They devise a multi-stage photo processing framework, in which an

important task is to group iconic photos together in order to reduce the amount of

photos that are processed by the computationally intensive 3D reconstruction step.

They achieve photo grouping by creating an iconic photo graph where photos are

connected by edges when they are visually similar (by use of SIFT descriptors) and by

applying the N -cut graph clustering algorithm by Shi and Malik [99] on this graph.

In that way, they managed to reconstruct the major views of three famous landmarks

(Statue of Liberty, Notre Dame and San Marco).

Papadopoulos et al. [84] identify real-world landmarks and events in large tagged

photo collections by use of photo cluster classification. They apply the SCAN algorithm

(Xu et al. [110]) on a hybrid photo similarity graph that encodes both visual and tag
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Fig. 11 Five sample landmarks and events in Barcelona as identified by the cluster-based
landmark and event detection framework of [84]. Thanks to the geotagging information of the
photos, the landmarks and events can be localized with high precision.

similarity between photos. Subsequently, the derived photo and tag communities are

classified as landmarks or events based on cluster features similar to the ones used

by Quack et al. [87]. Figure 11 illustrates five sample landmarks and event found for

the city of Barcelona by use of this method. Manual inspection of the results reveals

that most of the clusters correspond either to famous landmarks of the city or to

real events (e.g. music concerts). Furthermore, the automatically selected cluster tags

provide meaningful descriptions for them.

6.2.5 Event detection

Events constitute an important unit of organization for Social Media content, since a

large part of user contributed content revolves around real-world events. Community

detection has found applications in the detection and tracking of events from social

text streams. For instance, the framework presented by Zhao et al. [116] incorporates

textual, social and temporal aspects of blog feeds with the goal of tracking events. The

N -cut graph partitioning method of Shi and Malik [99] is used twice in this framework:

once to cluster a graph of blog posts connected by their textual similarity into topics,

and at a second level, to cluster a graph of temporal activity profiles among users

(created by their comments) into communities that correspond to real-world events.

They tested their approach on a sample of 250 thousand posts from the Dailykos

political blog, from which they could extract well-recognizable real-world events.

An even simpler approach for the extraction of events from blog streams is described

by Sayyadi et al. [93]. A keyword graph is built by extracting important keywords

(named entities, noun phrases) from text documents and associating them through

their co-occurrence. Then, the authors employ the divisive community detection ap-

proach of Girvan and Newman [43] with a slight variation that enables overlap be-

tween communities: keywords that are estimated to belong to many communities are
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split into multiple vertices. They also use the efficient sample-based version of the al-

gorithm (Tyler et al. [106]) and observe that the derived communities are the same.

Subsequently, they use the extracted keyword communities as prototype vectors for

clustering the news articles. With the help of some additional cluster filtering and

merging, they end up with document clusters corresponding to real-world events.

7 Conclusions

7.1 Summary of main findings

The paper provided an overview of the emerging topic of community detection on So-

cial Media with a focus on scalability aspects and applications. Due to the huge number

of related works on the topic, the discussion focused on the most established notions of

community on networks and widely used methodological paradigms of community de-

tection, including their performance characteristics in terms of complexity and memory

usage. Furthermore, several strategies were presented that can be used by community

detection frameworks for scaling their applicability to real-world datasets. Finally, the

paper presented a series of observational studies and applications, where the results of

community detection have been exploited.

A first conclusion pertains to the very concept of community. There are numer-

ous network-based definitions and perceptions of community. In the context of Social

Media, communities comprise entities, such as online users, content items and meta-

data associated with content, that revolve around particular topics or events of social

interest. The association of such entities through their contextual co-occurrence leads

to the formation of Social Media networks. Analyzing the structure of such networks

leads to the discovery of Social Media communities.

Due to the graph partitioning heritage of community detection, many of the avail-

able definitions are based on a global network perspective, i.e. they consider community

structure as a property of the whole network. However, a local perspective on the prob-

lem may be more meaningful in the context of Social Media, since one can only have

partial knowledge of the network under study. In addition, the possibility of overlap

among Social Media communities and weighted membership to them are especially

important attributes. Finally, the support for leaving noisy data out of the discov-

ered community structure and considering multiple levels of community organization

constitute significant aspects of the problem in this domain.

In addition, this survey acknowledged the remarkable proliferation of community

detection methods developed in the last years. Due to the diversity of research dis-

ciplines spawning the development of these methods, namely social network analysis,

computer science and statistical physics, there is no widely accepted terminology and

methodological classification of existing methods. For that reason, we attempted to

provide such a classification in Section 4.1. Despite the large number of community

detection methods abounding in literature, in practice most applications are limited

to a few seminal ones (or variants of them): the divisive scheme by Girvan and New-

man [43], the modularity maximization method of Newman [74] and its computation-

ally efficient implementation (Clauset et al. [23]), the N -cut graph partitioning scheme

by Shi and Malik [99], and spectral partitioning by use of the graph Laplacian (Von

Luxburg [69]). However, as it became clear from the performance analysis of subsec-
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tion 4.2, these methods are not the most efficient, neither in terms of complexity nor

in terms of memory usage.

We believe that there are some under-exploited categories of community detection

methods. For instance, local density-based schemes, such as the SCAN algorithm (Xu

et al. [110]), are particularly important in the context of Social Media due to their sup-

port for leaving spuriously connected vertices (i.e. noise) out of the detected community

structure. In addition, iterative dynamic processes, such as the label propagation algo-

rithm by Raghavan et al. [89] are also promising due to their computational efficiency

and their conceptual simplicity, which facilitates the development of method extensions

or adaptations that are catered for particular problems.

A final note concerns the relation of community detection to the emergence of

core-periphery structure in Social Media networks. While acknowledging the existence

of such structure from a macroscopic perspective, one should understand its implica-

tions on the exploitation of community detection in Social Media mining. Established

community detection methods that rely on the optimization of some quality measure

(modularity maximization, conductance/N -cut minimization) result in the extraction

of disproportionately large communities from the core of Social Media networks. Such

gigantic communities are of limited use within information retrieval tasks, such as

online content recommendation and retrieval. Therefore, we deem that appropriate

methods capable of extracting fine-grained community structure within such gigantic

components are the most relevant in the context of Social Media mining applications.

7.2 Outlook

Given the growing interest in the problem of community detection and the paramount

importance of Social Media for business and society in whole, it is only natural to expect

that exciting developments will take place on this field in the years to come. We foresee

significant progress on several methodological issues faced by existing methods, but

most importantly we expect that community detection results will be further exploited

in several online scenarios and will attain a sufficiently mature state in order to be

deployed in real-world Social Media applications.

On a methodological level, one should expect further refinement of methods to

cope with the increasing scale of Social Media data. Method parallelization and fin-

gerprinting or summarization techniques are deemed as promising strategies to achieve

scalability. Moreover, the development of new methods that will enable the study of

k-partite, multi-relational and hyper networks is likely to attract considerable interest.

Currently, there is a clear preference towards applying community detection on simple

one-mode networks (even when it is necessary to employ some lossy transformation on

the original data) due to the conceptual and computational simplicity of these meth-

ods. It remains to be seen whether such methods will be replaced by more sophisticated

that are applicable directly to the “raw” (implying k-partite, multi-relational) form of

Social Media networks.

In terms of application, one should expect that recent community detection meth-

ods will displace conventional clustering and partitioning schemes, such as k-means

and hierarchical agglomerative clustering, which are still very popular in a series of

domains, e.g text and photo clustering. In addition, as noted above, even within the

space of community detection methods, one should expect a shift in their adoption:

the currently established global optimization algorithms will give their place to local
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density-based methods and iterative approximation schemes. Finally, one may look

forward to the wide adoption of dynamic community detection and tracking methods

in real-world contexts and applications. In conclusion, the forthcoming developments

in the field of community detection are expected to have a transformational impact on

mining and understanding the realm of Social Media.
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55. Kovács, I.A., Palotai, R., Szalay, M.S., Csermely, P. (2010) Community Landscapes: An
Integrative Approach to Determine Overlapping Network Module Hierarchy, Identify Key
Nodes and Predict Network Dynamics. PLoS ONE 5(9): e12528

56. Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. (1999) Trawling the Web for
emerging cyber-communities. Computer Networks 31(11-16): 1481-1493

57. Kumar, S.R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E. (2000)
The Web as a Graph. ACM Symposium on Principles of Database Systems (Dallas, Texas)

58. Lancichinetti, A., Fortunato, S., Radicchi, F. (2008) Benchmark graphs for testing com-
munity detection algorithms. Physical Review E 78, 046110

59. Lancichinetti, A., Fortunato, S. (2009) Community detection algorithms: A comparative
analysis. Physical Review E 80, 056117

60. Leskovec, J., Faloutsos, C. (2006) Sampling from large graphs. In Proceedings of the
12th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining
(Philadelphia, PA, USA, August 20 - 23, 2006). KDD ’06. ACM, New York, NY, 631-636

61. Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M. (2008) Community Structure in Large
Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters. Eprint
arXiv: 0810.1355

62. Leung, I. X. Y., Hui, P., Lio, P., Crowcroft, J. (2009) Towards real-time community de-
tection in large networks. Physical Review E 79, 066107

63. Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J. (2008) Modeling and Recognition of
Landmark Image Collections Using Iconic Scene Graphs. Lecture Notes In Computer Science,
vol. 5302. Springer-Verlag, Berlin, Heidelberg, 427-440

64. Lin, Y., Sundaram, H., Chi, Y., Tatemura, J., Tseng, B. L. (2007) Blog Community
Discovery and Evolution Based on Mutual Awareness Expansion. In Proceedings of the
IEEE/WIC/ACM international Conference on Web intelligence. IEEE Computer Society,
Washington, DC, 48-56

65. Lin, Y., Chi, Y., Zhu, S., Sundaram, H., Tseng, B. L. (2008) Facetnet: a framework for
analyzing communities and their evolutions in dynamic networks. In Proceeding of the 17th
international Conference on World Wide Web (Beijing, China, April 21 - 25, 2008). WWW
’08. ACM, New York, NY, 685-694

66. Lin, Y., Sun, J., Castro, P., Konuru, R., Sundaram, H., and Kelliher, A. (2009) MetaFac:
community discovery via relational hypergraph factorization. Proceedings of KDD ’09, ACM,
pp. 527-536

67. Lorrain, F., White, H. (1971) Structural equivalence of individuals in social networks.
Journal of Mathematical Sociology 1, 49-80

68. Luo, F., Wang, J. Z., Promislow, E. (2006) Exploring Local Community Structures in
Large Networks. Proceedings of Web Intelligence 2006. IEEE Computer Society, pp. 233-239

69. Von Luxburg, U. (2006) A tutorial on spectral clustering. Technical Report 149, Max
Planck Institute for Biological Cybernetics, August 2006



36

70. Maiya, A. S., Berger-Wolf, T. Y. (2010) Sampling community structure. In Proceedings
of the 19th international Conference on World Wide Web (Raleigh, North Carolina, USA,
April 26 - 30, 2010). WWW ’10. ACM, New York, NY, 701-710

71. Massen, C.P., Doye, J. P. K. (2005) Identifying ”communities” within energy landscapes.
Physical Review E, 71

72. Mika, P. (2005) Ontologies Are Us: A Unified Model of Social Networks and Semantics.
Proceedings of ISWC 2005, Springer Berlin/Heidelberg, 522-536
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