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M assive user involvement in Web applica-
tions renders the Web a huge, constantly 
evolving social data repository that 

embeds associations among different modes. 
Such modes represent types of social applica-
tion “actors,” such as users, resources, metadata, 
and groups. Evolving social data clustering has 
two seminal objectives: to identify clusters of 
latent entities and to track their evolution by 
efficiently modeling and analyzing associations 
across time. Achieving these objectives requires 
that we address the challenges inherent in mas-
sive data sizes, heterogeneous coevolving data, 
complex structure data associations, and fre-
quent data updates.

Uncovering hidden relations and entity clus-
ters based on their interaction patterns is chal-
lenging on its own and is typically addressed via 
static social data clustering. This approach aggre-
gates interactions from a specific time period in 
a unique dataset and detects groups of entities 
with similar activity or usage patterns based 
on some optimization criterion. Given today’s 
fast social (Web) data streams, we need efficient 
methods for exploiting more fine-grained and 
ultimately richer information to capture such 
patterns’ changes and important aspects about 
their evolution. The problem encompasses a 
wide audience, including computer scientists; 
developers and market entrepreneurs, who can 
leverage results for more accurate recommen-
dations, user behavior prediction, and social 
media monitoring for strategic marketing; and 
policy makers and journalists, who can harvest  

valuable insights about the evolution of user 
interaction patterns with regard to real-world 
events. In parallel, drastic cluster changes can 
indicate special events (for example, a shift in 
users’ activity patterns might reflect the emer-
gence of a new popular topic).

Here, we brief ly survey approaches for the 
evolving social data clustering problem, focus-
ing on how they interpret social data evolution 
and highlighting their seminal characteris-
tics, rather than providing a detailed cluster-
ing algorithm survey. Based on this main axis, 
we identify four seminal evolving clustering 
methodologies: sequential mapping, temporal 
smoothing, milestone detection, and incremen-
tal adaptation. Because we focus on social rela-
tional data, we discuss graph-based clustering 
algorithms — known as community-detection 
algorithms — that represent associations on a 
graph or tensor model and also identify evolv-
ing communities as latent groups that usually 
span a finite time frame while undergoing vari-
ous structural and contextual changes.

Social Associations, Time  
Granularity, and Graph Structures
Social networking applications engage users in 
multiple activities with other entities, gener-
ating associations among them that are either 
explicit (for example, a “friend of” relationship 
between users) or implicit (such as an “uploaded 
by same user” relationship among resources). 
Associations are often multipartite — that is, 
they involve multiple entities (user u1 comments 
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on user u2’s post p). For simplicity, 
however, these associations are often 
projected onto typical bipartite asso-
ciations between pairs of entities 
from the same or different modes.

We can best capture social data 
with a graph G (V, E) that repre-
sents social entities with a set of 
nodes (V ) and their associations 
with a set of edges (E). Connectiv-
ity can be encoded in an adjacency 
or similarity matrix. Hypergraphs —  
generalized graphs representing  
multipartite relationships with hyper-
edges connecting more than two 
nodes — and their projections on 
usually unipartite or bipartite simple 
graphs are common static structures 
for complex social data modeling.1

Social data change states across 
time through processes such as the 
introduction of new social entities or 
associations. Successive states can 
aggregate such information, but we 
often model data under the hypoth-
esis that entities disappear if they’re 
not involved in recent activities or, 
similarly, that associations disap-
pear or are less intense. Evolving 
social data representation structures, 
unlike static ones, model different 
states in successive time steps, often 
defined by the data’s sampling rate. 
As Figure 1 shows, we can model 
evolving social data as a three- 
layered stream G of successive snap-
shot graphs representing data asso-
ciations at a given time-granularity 
setting.

The snapshot layer captures 
evolving social data as a sequence 
of (static) graph snapshots. We can 
analyze each snapshot individually 
and then perform joint analysis on 
all the snapshot results to infer how 
data is evolving.2,3

The segment layer has a more 
compact representation structure, 
with an online graph stream par-
titioned into segments4 comprising 
successive similar snapshots. These 
snapshots’ similarity depends on fac-
tors such as the number of common 

nodes or edges and the encoding cost 
for graph stream compression. Seg-
ment connectivity is often captured 
by tensors — that is, generalized 
matrices with more than two dimen-
sions. In Figure 1, for example, repre-
senting segment seg1 with snapshots 
G1, G2, and G3 as members, we can 
use a 3D tensor to store associations 
among a given snapshot’s nodes in 
two dimensions and represent asso-
ciations across different time step 
snapshots with the third dimension. 
More coarse-grained 2D adjacency/
similarity matrices can represent 
segments, but could sacrifice snap-
shot individuality in favor of stor-
age space efficiency and analysis 
complexity. In such matrices, two 
nodes are connected once they’re 
associated in any segment’s snap-
shot, with edges weighted based on 
their aggregated activities’ intensity. 
We can place different emphasis on 
links on the basis of their creation 
date, thus promoting the most recent 
link and leading to a time-aggregate 
adjacency matrix.5

Finally, the stream layer directly 
represents the graph stream. Using 
appropriate edge aggregation tech-
niques,5 we can model a graph 
stream as a tensor updated on an 

upcoming snapshot or as a simple 
matrix. Another relevant struc-
ture is the multigraph, whose edges 
encode both associations and tempo-
ral information.6 The multigraph is 
updated upon a new association’s 
arrival (single update) rather than 
on a graph snapshot (batch update). 
Because updates arrive arbitrarily, 
no predefined time steps exist in a 
mutligraph.

An alternative streaming approach 
many incremental adaptation-driven 
algorithms follow involves model-
ing associations up to a point with a 
graph, deriving a data’s clustering, 
and then directly updating the clus-
tering structure instead of the graph 
on an unbounded individual update 
stream (change stream).

Evolving Social  
Data Clustering
Researchers have addressed evolv-
ing social data clustering via differ-
ent methodologies that share some 
common ground. That is, they all 
approach social data clustering as 
an evolving process across time, 
assuming that social data continu-
ously undergo changes that gener-
ate successive correlated clustering 
states and aiming to extract some 

Figure 1. Layers for evolving social data graph structures. We can model 
evolving social data as a three-layered stream G of successive snapshot  
graphs representing data associations at a given time-granularity setting.
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kind of knowledge about identified 
patterns’ evolution.

To address different aspects of evo-
lution, we can formulate the evolving 
social data clustering problem in a 
generic context as follows: In a given 
social application’s context, consid-
ering a set of relevant entities and 
an unbounded stream of new entity 
associations, we define an appropri-
ate data model and updating scheme 
(for example, single/batch). The prob-
lem is to support an “evolving” data 
clustering structure by capturing 
latent data patterns at any given time 
based on some optimization criterion, 
while “exploiting” the data’s evolu-
tion under some hypothesis.

To address this seminal problem 
for each methodology, we look at 
the following characteristics: data 
model, updating scheme, evolution 
aspect, the temporal dependency of 
clusters, and clusters’ recomputation 
requirement (see Table 1). We can 
use these characteristics to create 
the following classifications for the 
methodologies we surveyed.

Sequential Mapping-Driven 
Evolving Clustering
SM-EC occurs in two steps: the 
f irst clusters data on individual 

graph snapshots, and the second 
uncovers transitions across time 
by analyzing correlations between 
successive snapshot clusters. This 
method addresses data evolution 
by mapping each community to its 
predecessor and successor using spe-
cial similarity measures and assum-
ing relatively “smooth” community 
evolution. SM-EC adopts traditional 
static community-detection algo-
rithms, such as clique percolation2 
(CP) and random walks (RW).3 It 
identifies transitions in communi-
ties (such as birth, death, merge, 
or split) using node-centric, cross-
community similarity measures (for 
example, node overlap). Because 
real-world data are often ambigu-
ous and noisy, SM-EC’s process of 
extracting communities at each time 
step independently results in com-
munity structures with high tempo-
ral variation.

Temporal-Smoothing-Driven 
Evolving Clustering
TS-EC (also known as evolutionary 
clustering) assumes that the clus-
tering of new data shouldn’t devi-
ate much from previous clustering 
structures. Thus, it leverages clus-
tering history to maximize temporal 

smoothness and results in a “smooth” 
cluster evolution that’s more robust 
to noise. This methodology encom-
passes some significant indicative 
approaches.

Traditional clustering revisited for 
an evolutionary setting (TCR) refers to 
initial evolutionary clustering efforts 
that modify existing static cluster-
ing algorithms (such as k-means) to 
remember previous data states.7

Spectral clustering (SC) intro-
duces and minimizes clustering cost 
functions by combining graph-based 
measures (such as a normalized 
graph cut) with temporal smoothness 
regularization terms.8 This approach 
derives soft (that is, having continu-
ous values) clustering matrices that 
comprise the eigenvectors of some 
history-aware similarity matrix ver-
sion, and applies k-means clustering 
in a lower-dimensional space.

Block-model approximation (BM) 
acts in multimode networks with 
cross-mode interactions to approxi-
mate the interactions among nodes 
as interactions among blocks com-
prising nodes of the same mode 
(that is, single-mode communities).9 
This is similar to block modeling. 
Nodes’ soft (probabilistic) commu-
nity membership is expressed in the  

Table 1. Overview of data clustering methodologies.

Methodology Data model
Updating  
scheme Evolution aspect Temporal dependency

Recomputation 
requirement

Sequential 
mapping-driven 
evolving clustering

Snapshot graphs/
tensors

Batch Tracks individual cluster 
evolution

Independent clustering at 
each time step

Required

Temporal-
smoothing-driven 
evolving clustering

Snapshot graphs/
tensors

Batch Assumes clusters 
evolve smoothly from 
the previous model and 
incorporates deviation 
as a regularization term

Captures long-term 
changes in clusters’ 
composition and ignores 
short-term concept drifts

Required

Milestone 
detection-driven 
evolving clustering

Snapshot graphs/
tensors and 
segments

Batch Generates a new 
clustering model on an 
identified drastic change 
in the data structure

Identifies time points when 
the clustering structure 
drastically changes

Required

Incremental 
adaptation-driven 
evolving clustering

Snapshot graphs/
tensors and 
change stream

Single/
batch

Builds new clusters by 
adapting the previous 
ones

Identifies individual 
clusters’ evolution through 
new data-dependent 
adaptation processes

Not required
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community indicator matrix, which 
is iteratively approximated using the 
previous time step’s matrix as a reg-
ularization term.

Nonnegative-matrix/tensor factor-
ization (NTF) discovers communities 
as latent variables by jointly maxi-
mizing the fit to the observed data 
and the temporal evolution.10 It oper-
ates on multiple tensors that capture 
cross-mode entities’ interactions. 
Unlike the BM approach, it simulta-
neously approximates these interac-
tions using a common nonnegative 
core tensor (that is, multimode com-
munities) and nonnegative factors — 
one for each mode — thus expressing 
soft community membership.

Recomputing a clustering struc-
ture for each new graph snapshot, 
however, could result in numer-
ous intermediate clustering models, 
some with insignificant differences.

Milestone Detection-Driven 
Evolving Clustering
MD-EC operates on a graph stream 
by trying to f ind character istic 
change points in time to segment 
it and identify communities within 
each segment. This lets the algo-
r ithm maintain cluster ing struc-
tures for each segment rather than 
for each snapshot. Detecting a new 
change point indicates a discontinu-
ity in time, signaling a new seg-
ment that comprises snapshots with 
similar connectivity according to 
some criterion. Important relevant 
approaches include information-
theory-based clustering (ITC4), which 
operates on a bipartite graph stream, 
and modularity-optimization cluster-
ing (MOC11), which targets weighted 
directed graphs. 

Previous methodologies require 
recomputing each snapshot’s com-
munity structure, which could prove 
inefficient considering social data’s 
f requent update rates and large 
sizes, not to mention the data mod-
el’s complexity (for example, high-
order tensors).

Incremental Adaptation-Driven 
Evolving Clustering
IA-EC addresses the aforementioned 
challenge under a streaming data 
scenario by incrementally creat-
ing and maintaining a time-aware 
model that best approximates the 
original data. IA-EC updates clusters 
by exploiting the current cluster-
ing structure and newly observed 
data under a single or batch update 
scheme. IA-EC encompasses several 
approaches.

Incremental-tensor factorization  
(ITF12) summarizes complex data 
streams under a batch update scheme. 
Such data streams are characterized 
by multipartite relations in some 
updatable, lower-order core tensors, 
along with their respective transfor-
mation projections.

Incremental-spectral clustering 
(ISC13) maintains and incrementally 
updates a generalized eigenvalue 
system for graph partitioning based 
on normal i zed cut . At a micro-
scopic level, it focuses on the effect 
single updates (node addition/dele-
tion or similarity changes) have on 
eigenvalues and eigenvectors, and 
on how these can be approximated 
to decrease cluster recalculation  
costs.

Incremental k-clique clustering  
(ICC14) detects communities by find-
ing the maximal k-clique set of the 
data’s association graph and con-
structing a depth-first search (DFS)  
forest on a k-c l ique adjacency-
derived graph. Based on a change 
stream, this approach incrementally 
updates the clique set and DFS forest  
locally.

Table A in the Web appen-
dix at //URL to come// gives 
a more comprehensive v iew of 
these evolving social data clus-
tering approaches. It highlights 
the crucial issues of algorithms 
and scope, structures and models, 
required parameters, supported 
update types, and datasets used for  
demonstration.

Current Practices  
and Future Trends
Each of the existing approaches is 
more effective at addressing differ-
ent evolving social data clustering 
challenges. Here, we briefly discuss 
their current state and future trends 
based on some seminal challenge 
axes.

The complexity of social data in 
today’s Web demands methods that 
can efficiently exploit multiple modes 
and multipartite associations.9,10,12 
Moreover, engaging in joint analysis 
for different coevolving associations 
seems to be a promising approach for 
uncovering more realistic patterns, 
as indicated by the NMF approach’s 
application to a user-interest pre-
diction task.10 Derived communi-
ties’ interpretations vary, given that 
associations can be jointly analyzed 
to detect single9 or multimode10,12 
and hard or soft membership com-
munities. The tensor model emerges 
as a graph’s natural extension for 
multipartite associations, and tensor 
decomposition is often employed for 
complex data clustering. Identifying 
the most suitable explicit and implicit 
associations in a social application 
context and jointly analyzing them 
are challenging future steps.

The large sizes of social data make 
clustering algorithms’ scalability  
critical. From the datasets used in 
the referenced works, we observe 
that the largest number of edges cor-
responds to the NMF approach (up 
to a million relations).10 However, 
this doesn’t prove its superiority 
over the other approaches, because 
some approaches provided informa-
tion only on the number of nodes 
(and didn’t discuss time complex-
ity). Initial TS-EC approaches7 seem 
inefficient for large datasets owing 
to their O(n2) complexity, whereas 
some recent iterative tensor/matrix 
decomposition approaches are effi-
cient for sparse tensors or matrices. 
For example, in the NMF approach,10 
the complexity per iteration is linear 
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as regards the number of nonzero 
entries in all tensors. For settings 
in which the sparseness hypothesis 
is unrealistic, iteration steps might 
prove too t ime consuming, and 
different approaches are needed. 
Possible future directions involve 
calculating approximate solutions, 
such as an extension to the NMF 
approach in which the size of enti-
ties’ interaction tensors is bounded 
by some fixed threshold, based on a  
sampling scheme devised to “forget” 
long-term inactive entities.15 Also, 
some researchers have proposed 
matrix factorization on a small sub-
set of high-degree nodes exploiting 
social networks’ power-law prop-
erty.9 As we discuss next, IA-EC is 
also generally scalable.

Frequent data updates are best 
addressed by IA-EC, which aims 
mainly to eff iciently adapt clus-
ters rather than recalculate them, 
while sometimes sacrificing clus-
tering quality.13 The scalability of  
IA-EC approaches varies. The ISC 
approach,13 for example, has a  
cluster-updating complexity of O(n), 
linear to the number of nodes. The 
complexity of the more efficient 
ICC approach14 varies — depending 
on the update’s type — from O(1) to 
O(max(log L,|CN|3|CN|/3), where L is 
the maximal number of cliques and 
CN is the number of common neigh-
bors between the new edge’s source 
and destination nodes. Unlike these 
approaches, the ITF approach sup-
ports heterogeneous networks, but 
its complexity depends on the prod-
uct of the number of nodes for each 
mode. To improve scalability, the 
approach’s authors propose an inter-
action sampling strategy.12

The detected evolution of com-
munities differs signif icantly in 
snapshot-based and change-stream-
based approaches. Snapshot-based 
approaches require setting the snap-
shot’s time interval to track commu-
nities at a more macroscopic level. 
In change-stream-based approaches, 

individual changes directly affect 
clustering, thus identifying fine-
grained cluster dynamics on observ-
ing successive clustering structures 
(for example, a new association could 
cause a cluster to split, whereas other 
changes might have insignificant 
effects). MD-EC offers a compro-
mise between the two approaches 
in that, although time-step dura-
tion is prespecified, granularities 
are “adjusted” over time into more 
meaningful ones (via segmentation) 
based on observed data fluctuations.

Finally, algorithm evaluation as 
regards real-world datasets is chal-
lenging even for static clustering 
owing to a lack of explicit labels 
(ground truth). Communities are 
often evaluated in terms of cohesion, 
applying metrics such as conduc-
tance,3 coverage,2,3 and modularity3 
based on the assumption that inter-
actions are much denser among 
community members than between 
different communities’ members. It’s 
even more challenging to evaluate an 
algorithm’s ability to identify evolu-
tion in real-world communities; the 
most common approach is to verify 
the validity of identified evolution 
patterns by manually inspecting a 
community’s members or combining 
predefined facts. IA-EC approaches are 
evaluated against static approaches 
in terms of time efficiency per clus-
ter adaptation, while approximate 
IA-EC approaches are also evaluated 
in terms of clustering quality. TS-EC 
approaches are generally evaluated 
by proving their robustness to noise, 
by calculating measures such as the 
entropy between successive cluster-
ing distributions.3

Another common TS-EC evalua-
tion technique involves generating 
synthetic datasets with predefined 
community structure, simulating  
nodes’ community membership changes 
and new interactions across differ-
ent time steps, and inserting random 
noise.8 Clusters identified on these 
synthetic datasets are evaluated  

against ground truth based on accu-
racy metrics such as normalized 
mutual information,9 which aims 
to differentiate between short-term 
concept drifts and long-term com-
munity changes. A promising future 
direction is to combine knowledge 
acquired through social network 
dynamics research to produce more 
realistic synthetic datasets for evalu-
ation, based on typical network evo-
lution patterns.

R aw social Web data encompass 
valuable latent information that’s 

relevant with users’ societal percep-
tions and reactions to regular as 
well as to groundbreaking events. 
Here, we’ve formulated the problem 
of evolving social data clustering  
and presented the data’s evolution 
aspects as revealed by different 
relevant existing approaches. The 
concept of evolving communities is 
dominant in the presented work, and  
an overview of community detec-
tion algorithms highlights advan-
tages and shortcomings in the different 
approaches.

Several issues should be consid-
ered in terms of evolving social data 
clustering algorithms, including user 
activity fluctuations across time, large 
data volumes and storage space con-
straints, data complexity, and demand 
for real-time-streaming-data-oriented  
applications. Evolving social data clus-
tering via graph models can greatly 
assist application providers in offering 
end users valuable services that are 
adaptive to trends (for example, recom-
mendations). Moreover, evolving social 
data clustering can greatly enhance 
users’ interests and opinion mining and 
support opinion makers and authori-
ties in understanding the public pulse. 
Future work in this area could lever-
age social data from different types 
of social Web applications jointly to 
obtain a global and more reliable con-
clusion in terms of Web and real-world 
phenomena and events. 
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