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Collaborative recommenders rely on the assumption that similar users may exhibit similar tastes while
content-based ones favour items that found to be similar with the items a user likes. Weak related enti-
ties, which are often considered to be useful, are neglected by those similarity-driven recommenders. To
take advantage of this neglected information, we introduce a novel dissimilarity-based recommender
that bases its estimations on degrees of dissimilarities among items’ attributes. However, instead of using
the proposed recommender as a stand-alone method, we combine it with similarity-based ones to main-
tain the selective nature of the latter while detecting, through our recommender, information that may
have been overlooked. Such combinations are established by IANOS, a proposed framework through
which we increase the accuracy of two popular similarity-based recommenders (Naive Bayes and
Slope-One) after their combination with our algorithm. Improved accuracy results in experimentation
on two datasets (Yahoo! Movies and Movielens) enhance our reasoning. However, the proposed recom-
mender comes with an additional computational complexity when combined with other techniques. By
using Hadoop technology, we developed a distributed version of IANOS through which execution time
was reduced. Evaluation on IANOS procedures in terms of time performance endorses the use of distrib-
uted implementations.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recommenders search in collections of items (e.g. products,
services or people) and suggest to users the most relevant ones
(Resnick and Varian, 1997). The level of relevance of an item for
a user is usually expressed by a rating, i.e. a degree of user’s appre-
ciation on it. By utilizing users’ ratings, a recommender aims at
estimating relevance of items towards extracting suggestions. In
this direction, recommenders act as predictors which, based on
their approach of estimating ratings, can be classified into the three
following types: (a) content-based methods (Lops et al., 2011)
where a user receives items similar to the ones preferred in the
past, (b) collaborative methods (Su and Khoshgoftaar, 2009) where
a user gets recommendations extracted by other users with similar
preferences, and (c) hybrid methods (Burke, 2002) where content-
based and collaborative types are combined.

A way to assess the predictive power of a recommender is to use
a set of pre-rated items for which the recommender will provide
estimations. In such a case, the recommender’s success is based
on how close its estimations are to the actual ratings the users
gave—the more close, the more accurate the estimations are.
Therefore, we can evaluate a recommender by calculating the accu-
racy (i.e. closeness) of the provided estimations. Towards increas-
ing accuracy, many recommenders exhibit several limitations
that negatively affect their estimations (Adomavicius and Tuzhilin,
2005). One limitation that is common to all the three aforemen-
tioned types is the new-user problem (a special case of cold-start
problem) where a user has rated a limited number of items. In this
case, a recommender is incapable of building models that repre-
sent users’ real preferences which may result into poor (inaccu-
rate) recommendations. Although accuracy has been criticized for
its role in evaluation purposes (Bobadilla et al., 2011; McNee
et al., 2006), it still remains a significant metric that has been
extensively used in other studies to estimate recommender’s pre-
dictive power. In this work, we provide solutions that deal with
the accuracy and also alleviate the new-user limitation that nega-
tively affects it.

Accuracy is reached typically by looking at similarities among
entities (e.g. users, items) and the notion of similarity is highly
used in all types of recommenders for providing suggestions. For
instance, in collaborative methods, Pearson Correlator and Cosine
Distance are two well-known functions which consider users’ rat-
ings to assess similarities either between users (Resnick et al.,
1994) or items (Linden et al., 2003). Similarity is also apparent in
content-based methods where similarities between items are esti-
mated by taking into account their attributes (e.g. genres in mov-
ies, categories in articles, authors in books). Similarity-driven
ications
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recommenders neglect weak related entities such as users of dif-
ferent tastes or items with different attributes, which may often of-
fer useful information.

To take advantage of this overlooked information, we present a
novel recommender that incorporates the notion of dissimilarity as
a metric which takes into account users’ ratings and calculates
pairwise degrees of difference between items’ attributes. For in-
stance, from users’ rating actions we may observe that movie gen-
res Romance and Adventure are quite dissimilar (i.e. users who like
‘‘Romance’’ movies do not show the same appreciation to the
‘‘Adventure’’ ones). Those degrees of difference indicate character-
istic, consistent and representative negative relations among attri-
butes utilized by the proposed recommender towards rating
estimations.

Instead of using our dissimilarity recommender as a stand-
alone predictor, in this work, we combine it with similarity-based
techniques. With that, we both maintain the selective nature of the
similarity-based methods and utilize our recommender to detect
information that they may have overlooked. To achieve that, we
present a new framework, called IANOS,1 which integrates the
two ‘‘faces’’ of similarity and dissimilarity by providing a post-hybrid-
ization way of combining rating estimations from different
recommenders.
1.1. Motivation for dissimilarity

The rationale behind the combination of similarity and dissim-
ilarity is driven by studies of cognitive psychology which state that
in comparison processes (judgements) both concepts of similarity
and dissimilarity share equal importance. Mussweiler’s study
(Mussweiler, 2003) explains the significance of putting dissimilar-
ity along with similarity when it comes to judging. Mussweiler
supports that every judgement can be an outcome of a comparison
process which involves the selection of an example to be compared
with a target. He also suggests that while some people tend to se-
lect examples similar to the target, others may choose quite dissim-
ilar ones. These two different comparison processes (similarity and
dissimilarity) can be seen as important sources of knowledge when
it comes to reaching a final decision. In the context of recommen-
dations, by assuming that a rating from a user is actually a judge-
ment on an item, it might be interesting to treat similarity and
dissimilarity as two supplementary concepts rather than as two
contradictory sources of knowledge that can be utilized
independently.

Dissimilarities relevance with a recommender’s accuracy
improvement is obvious in real-world cases such as in movie rec-
ommenders. In such cases, users could be divided into two distinct
groups: the open-scope users that rate movies of various genres
without being definitively in favour of a particular ones, and the
narrow-scope users that their ratings show favour to a subgroup
of genres. In this context, we consider two scenarios. In a scenario
with a collaborative recommender, we consider an open-scope
user and a narrow-scope one with common ratings to each other
which means that rated items from the former are candidates to
be suggestions to the latter. In such a case, it is likely a movie to
be recommended to narrow-scope user who show either no prefer-
ence or negative preference to the genre the movie belongs to. In
another scenario with a content-based recommender, a narrow-
scoped user could give a positive rating on a movie with a genre
which is not in line with her preferences. If there are none prior
negative ratings for this genre, the recommender would be affected
by this ‘‘outlier’’ rating and suggest movies with this genre to the
user.
1 IANOS is the name of a Greek God with two opposite looking faces.
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It is likely that accuracy to be reduced in both of the aforemen-
tioned indicative scenarios, because both recommenders will sug-
gest movies with genres that are not positively preferred by the
users. This fact may result in poor suggestions with negative effects
on accuracy. This work is motivated by the fact that such poor sug-
gestions can be prevented, once we identify items that belong to
genres that are not in line with the users preferences. By not pro-
viding such suggestions, we can positively affect the accuracy.

1.2. Main contributions

The main contributions of this work are summarized into three
major tasks: (i) we introduce a metric for calculating pairwise dis-
similarity values among items’ attributes, (ii) we propose a novel
dissimilarity-based recommender, and (iii) we develop the IANOS
framework through which we can combine existing similarity-
based recommenders with the proposed one. Each task is high-
lighted in more detail in the next paragraphs.

1.2.1. A new metric for dissimilarity values between attributes
In this work, we search for underlying relations that indicate

characteristic and consistent pairwise degrees of dissimilarities be-
tween items’ attributes. In order to quantify these relations, we
introduce a metric which takes users’ preferences as input and ex-
tracts numeric values that express degrees of dissimilarity. To cal-
culate a dissimilarity value between two attributes, we take the
items that include them and by analyzing users’ preferences on
these items we conclude to a single value which indicates a sum-
marized difference of preference between the two attributes. All
those pairwise values form an attribute-based pairwise dissimilar-
ity matrix.

1.2.2. A novel dissimilarity-based recommender
We introduce a new recommender in which, with the use of the

aforementioned dissimilarity matrix, we build a training model
characterized by a set of attribute-based vector spaces. Each space
is intended for one attribute and the rated items with that attribute
are mapped into the space through the use of two new features that
we propose. One feature is extracted from the dissimilarity matrix
and the other from user’s atomic preferences. The rationale behind
these features is that when it comes to estimating a rating for an
item for a single user, our recommender discovers the relation of
the item’s attributes with both the user’s preferences (local view)
and all users’ preferences (global view) in those attributes. These
vector spaces act as input for our recommender’s process of rating
estimations which involves search operations for nearest rated
items and make use of their rating information in order to provide
estimations.

1.2.3. The IANOS framework
IANOS combines our recommender with existing similarity-

based recommenders. It follows a post-hybridization way of com-
bining results, a common process in the weighted hybrid recom-
menders (Burke, 2002). In such cases, each recommender
provides its own rating estimations which are then combined into
one final estimation for each unrated item. This virtual-based com-
binations of recommenders (Karagiannidis et al., 2010) enables us
to evaluate our recommender when combined with different sim-
ilarity-based ones. Although IANOS aims to improve the accuracy
of the suggested estimations, we do not intent to achieve that at
the expense of computational complexity. Since our recommender
adds additional computational cost to the whole process, we have
implemented a distributed version of IANOS through which we
split the load into many work stations and reduce the overall time
the framework needs to complete a run.
dissimilarity notions in recommenders. Expert Systems with Applications
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To test the effectiveness of IANOS, we make use of two movie
datasets (Yahoo! Movies2 and Movielens3) on which we apply the
proposed recommender along with two popular similarity-based
techniques, Naive Bayes (Duda and Hart, 1973) and Slope-One (Le-
mire and Maclachlan, 2007). To assess the predictive power of the
recommenders, we make use of the RMSE (Root Mean Square Error)
metric (Gunawardana and Meek, 2009) which enables us to measure
the differences between their rating estimations and the actual rat-
ings the users gave. With our combined approach we intent to re-
duce the overall error in rating estimations and provide more
accurate recommendations. Moreover, we evaluate IANOS distrib-
uted implementation in terms of time performance in order to test
its scalability in situations where different sizes of data are applied.

The rest of the paper is structured as follows. Section 2 briefly
discusses several related studies. In Section 3, we present the data
modeling process of our recommender while in Section 4 our new
metric for the extraction of dissimilarity matrix is described. Sec-
tion 5 presents both the training model and the process of estimat-
ing ratings of the proposed recommender. Section 6 describes the
design of IANOS framework and the post-hybridization way of
combining the estimations from different recommenders. Section 7
shows our experimental results and in Section 8 the conclusions
and future work are highlighted.
2. Related work

This paper leverages existing work from recommenders which
deal with the concept of dissimilarity and it is moreover relevant
with research efforts which utilize the weighted-hybrid
techniques.
2.1. Dissimilarity in recommenders

The dissimilarity concept has previously been used in recom-
menders typically via a metric which calculates degrees of dissim-
ilarity among entities such as users and/or items. Those
dissimilarities are used as helpful hints towards providing more
suitable recommendations.

Dissimilarities among users are apparent in group recommend-
ers (McCarthy et al., 2006) in which suggestions are extracted for a
group of users instead of individuals. For example, in Gartrell et al.
(2010), the authors introduce a novel group consensus function
that integrates social, expertise and interest dissimilarity among
the members of the group in order to enhance group recommenda-
tions. Moreover, in Amer-Yahia et al. (2009) the incorporation of
disagreements on the same items among group members is con-
sidered to be critical for the effectiveness of group
recommendations.

Dissimilarities among items have also been utilized in recom-
menders. For instance, in Kagie et al. (2008) the authors introduce
a weighted dissimilarity measure to find item-to-item differences
with attribute weights being determined by the clickstream data
of an e-commerce site. In addition, in De et al. (2012) the authors
approach the problem of finding similar items for the recommen-
dation task by creating a graph network of items where edges indi-
cate the existence of common ratings for two items by a certain
number of users. In the process of finding a degree of difference be-
tween two items, the authors propose a learning dissimilarity
function that takes the different attributes of the two items and as-
signs weights on them. The less dissimilar items to a target one are
presented as suggestions.
2 Yahoo! Movies R4—http://webscope.sandbox.yahoo.com/
3 Movielens 10 M—http://www.grouplens.org/node/73
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In another study (Bezerra and de Carvalho, 2004), the authors
propose a recommender which creates user profiles with symbolic
descriptions (Leite Dantas Bezerra and Tenorio de Carvalho, 2011)
that summarize information from previously rated items. A dissim-
ilarity metric is used in order to calculate degrees of difference be-
tween user profiles and items. Eventually, the recommender
suggests items that have low degree of dissimilarity.

In our approach, relations between items’ attributes play a sig-
nificant role towards estimating a rating for an item for a single
user where this estimation is carried out by discovering the rela-
tion of the item’s attributes with all users’ preferences in them.
Therefore, our new metric, contrary to the aforementioned studies
where users and items are the main entities, focuses on attributes
and their dissimilarities with the objective to find informative rela-
tions that would help in the rating estimation process.
2.2. Weighted hybrid recommenders

Hybrid recommenders are further categorized into three types,
the weighted, the switching and the mixed ones (Burke, 2002). A
weighted hybrid recommender uses a weighted function to com-
bine the estimations coming from the different recommenders, a
switching hybrid recommender uses criteria to switch between
recommendation techniques and in a mixed hybrid recommender
the list of suggestions contains items coming from several different
recommenders. Here, we focus on weighted hybrid recommenders,
because their post-hybridization approach in combining results is
tailored to the IANOS approach in combining the two ‘‘faces’’ of
similarity and dissimilarity. The next indicative research efforts
summarize relevant work in weighted-hybrid recommenders to-
wards solving the accuracy problem.

The simplest weighted hybrid recommender uses a linear com-
bination over rating estimations from different recommenders.
Claypool et al. (1999) presented P-Tango, a system that initially
gives collaborative and content-based recommenders equal
weights, but gradually adjusts the weighting as estimations about
ratings are confirmed. A linear-weighted hybrid method is also
proposed by Gemmell et al. (2012) in online resources from social
annotation systems, where multiple complementary components
are combined into a single integrated model that provides flexibil-
ity while it takes into consideration the characteristics of items
across different social annotation systems. Furthermore, in Kunav-
er et al. (2007), a weighted hybrid system is proposed based on
three different collaborative recommenders which although they
can separately provide adequate results, their combination into a
unified system shows greater stability as precision and recall re-
sults indicate.

In most cases, the weights assigned to different recommenders
are based either on their previously recorded accuracy (i.e. accu-
racy when they are applied separately) or they are dynamically de-
fined as in Bellogin et al. (2011) study. These post-hybridization
ways of combining results aim to finally achieve better rating esti-
mations by giving higher weights to recommenders that are more
accurate than the others. In our case, we make use of predefined
weights in order to examine how the accuracy is affected when
more emphasis is given to either the similarity-based or the dis-
similarity-based method. With this way, we test whether the com-
bination of the similarity and dissimilarity recommenders has a
practical use which means that the accuracy is improved after such
a combination.
3. Data modeling

We consider a set of items I = {item1, item2, . . . , itemK} along with
their attributes identified by a set of categories C = {c1,c2, . . . ,cL}.
dissimilarity notions in recommenders. Expert Systems with Applications
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Each item is described by a subset of categories, thus itemi = {c1,c2,
. . . ,cm} # C where i = [1,2, . . . ,K] and m 6 L. Here, we consider cat-
egories as the only set of attributes to facilitate discussion on the
proposed approach, but any other distinct valued set of attributes
(e.g. actors, directors, tags) can be supported by our work. More-
over, we maintain both a set of users U = {u1,u2, . . . ,uN} and their
preferences P = {p1,p2, . . . ,pM}. Each preference is a triplet with a
rating of a user on an item, thus pi = {ua, itemb,ri} where
i = [1,2, . . . ,M], ua 2 U, itemb 2 I and ri 2 R.

A recommender-predictor can be abstractly defined by three
parts: the data modeling, the training model and the rating estima-
tion part. The first two parts make use of a subset of rated items to
build the algorithm’s training model utilized by the last one to pro-
vide rating estimations for the rest of the items (i.e. the ones which
were not used in the training phase). This data splitting is inspired
by the leave-n-out approach (Breese et al., 1998) where a percent-
age of the dataset is withheld from a recommender and used as
test data. Here, we follow a user-centric leave-n-out approach
where we partition the preferences of each user into two comple-
mentary parts the size of which is determined by a predefined per-
centage of preferences we want to keep for training. Therefore, we
have the training set Ptrain and the test set Ptest of preferences where
Ptrain [ Ptest = P and Ptrain \ Ptest = ;.

Regarding the data modeling, we present two processes, one for
users and one for categories. Modeling users’ preferences involves
users’ level of interest in the categories, while categories modeling
embeds grouping of users and preferences. Both processes facili-
tate the extraction of dissimilarity matrix and the training model
of our recommender as described in Sections 4 and 5 respectively.

3.1. Users modeling

The primary objective here is to determine for each user the de-
grees of interest in the available categories. To extract those de-
grees, we initially focus on a single user’s preferences and then
proceed to their category-based grouping:

� User’s Preferences in training data: The preferences for a
single user ua in Ptrain are represented by the subset
Ptrain(ua) = {"pi 2 Ptrainjpi = {ua, item,ri}} where item 2 I.
� User’s Preferences on a category in training data: Here,

along with the user ua, we filter the Ptrain set with a
predefined category (i.e. cl 2 C). Thus, we have Ptrain(ua, cl) =
{"pi 2 Ptrainjpi = {ua,cl 2 item,ri}} where item 2 I.

From the last set of preferences we can extract a user’s average
rating in a category. For the category cl 2 C, we have:

Aðua; clÞ ¼
PjPtrainðua ;clÞj

i¼1 fdðuaÞ � rig
jPtrainðua; clÞj

ð1Þ

"pi 2 Ptrain(ua,cl)jpi = {ua, item, ri}.
In Eq. (1), the d(ua) factor characterizes a user’s level of pessi-

mism (or optimism) (Schafer et al., 2007) by comparing her ratings
with all the ratings in training data. It is calculated by the average
value of all ratings from all users in training data divided by the
average value of user’s ratings:

dðuaÞ ¼
P

pj2Ptrain
frjg=jPtrainjP

pi2PtrainðuaÞfrig=jPtrainðuaÞj
ð2Þ

"pj 2 Ptrainjpj = {u, item, rj} and "pi 2 Ptrain(ua)jpi = {ua, item,ri}.
Before utilizing a rating contained in preferences of Ptrain or Ptest

sets, we multiple it first with this factor of the user who gave the
rating. This is done due to the fact that a rating might have differ-
ent meanings for each user. For instance, whilst a 3 out of 5 rating
might mean ‘‘good’’ for a pessimistic user whose ratings are gener-
Please cite this article in press as: Zigkolis, C., et al. Integrating similarity and
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ally low, it could mean ‘‘average’’ for a optimistic user who usually
gives high ratings. These multiplications are normalizations which
eliminate the variance of ratings by bringing them closer to the
average one in order to provide a common base for all users (Le-
mire and Maclachlan, 2007).

Inspired by the work of Braak et al. (2009), we capture users’
interest in categories with the combination of two factors, the pop-
ularity and the likeness. Popularity is determined by the percent-
age of items with a particular category in all user’s rated items:

Popðua; clÞ ¼
jPtrainðua; clÞj
jPtrainðuaÞj

ð3Þ

Likeness is extracted by user’s average rating value in a category di-
vided by the summarized average rating values in all categories:

Likðua; clÞ ¼
Aðua; clÞPL
i¼1Aðua; ciÞ

ð4Þ

Contrary to the combination presented in Braak et al. (2009)
where both factors share the same importance, we favoured an f-
measure equation in order to calculate the overall category interest
value of a user. We define an integrating function through which
we can put more emphasis on either popularity or likeness:

Definition 3.1 (The Category-Interest Integrator).

CIðua; clÞ ¼
ð1þ b2

1Þ � Likðua; clÞ � Popðua; clÞ
b2

1 � Likðua; clÞ þ Popðua; clÞ

where b1 > 0 parameter depicts to which factor we put more
emphasis on (i.e. as b1 increases, popularity is emphasized against
likeness). The Category-Interest integrator indicates not only how
well the category is rated, but also how often items of that category
are rated by the user. Its flexible way of favouring factors enables us
to test which one leads to improved accuracy results. Finally, we
proceed to a normalization step on category interest values:

nCIðua; clÞ ¼
CIðua; clÞPL
i¼1CIðua; ciÞ

After the calculation of normalized category interest values for a
user, we extract the predominant category (i.e. the one with the
highest value):

pCðuaÞ ¼ argmaxcl2CðnCIðua; clÞÞ

Table 1 contains all the users modeling variables.

3.2. Categories modeling

Aiming to extract degrees of dissimilarity between pairs of cat-
egories, our primary goal in this part is to group users that shares
preferences regarding such pairs. Considering a pair of categories
cl1 and cl2 , we first create two sets of users, the one contains users
who have rated items with cl1 category, while the second consists
of users for cl2 category. Then, by taking the intersection of these
two sets, we gather all the users that have expressed preference
in both categories. In particular, we have:

� Category’s set of users: This set holds a subset of users that
have rated items with the category in question. Thus, we have
U(cl) = {"ua 2 Ujpi = {ua,cl 2 item,ri}} where pi 2 Ptrain and
item 2 I.
� Set of users for a pair of categories: This is a set of those users

that have rated items of both of the pair’s categories. Thus, we
have the intersection set Uðcl1 ; cl2 Þ ¼ Uðcl1 Þ \ Uðcl2 Þ# U.

We consider those sets of users as containers from which we
start the procedure of extracting the values of the dissimilarity
dissimilarity notions in recommenders. Expert Systems with Applications
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Table 1
Users modeling variables.

Variables Definition

Ptrain(ua) # Ptrain Subset of preferences for the ua

Ptrain(ua,cl) # Ptrain Subset of preferences for the ua for the category cl

Aðua; clÞ 2 R Average value of the user ua for the category cl

dðuaÞ 2 R Ratio value for the user ua

nCI(ua,cl) 2 [0,1] Normalized category interest value for category cl of
user ua

pC(ua) 2 C The predominant category of user ua
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matrix (see Section 4). Finally, we also group users’ preferences
per category for a later stage when the category-based vector
spaces of our recommender’s training model are formed (see Sec-
tion 5.1). More specifically, for each category we define a set of
preferences: Ptrain(cl) = {" pi 2 Ptrainjpi = {u,cl 2 item,ri}} where
item 2 I and u 2 U. All variables of categories modeling are in-
cluded in the Table 2.
Table 2
Categories modeling variables.

Variables Definition

U(cl) # U Subset of users that have rated at least one item with the
category cl

Uðcl1 ; cl2 Þ# U Subset of users that have rated items that contain either
the one cl1 or the other category cl2

Ptrain(cl) # Ptrain Subset of preferences on items with the category cl
4. Estimating pairwise category-based dissimilarities

Here, we introduce a new metric which discovers pairwise neg-
ative relations in terms of preferences between items’ categories.
To quantify these relations, we take into account users’ normalized
category interest values from which summarized differences in
interest for pairs of categories can be calculated. The proposed
metric is applied to each pair and populates a dissimilarity matrix
D[L�L].

Considering two arbitrary categories ci and cj, we start the pro-
cess of calculating their dissimilarity value starts with the set of
users U(ci,cj). Then, we take into account only those users who
have shown greater interest in the category ci than the category
cj. Thus, we end up with a smaller set of users UnCI(ci,cj) # U(ci,cj).
Note that, UnCI(ci,cj) – UnCI(cj,ci) which indicates that D matrix is
not symmetric.

For each user ua 2 UnCI(ci,cj) we calculate the difference between
the category interest values (i.e nCI(ua,ci) � nCI(ua,cj) > 0). The
greater the difference, the more dissimilar those two categories
are for the user ua. At the end, a summarized difference between
the two categories is calculated and eventually normalized by
the number of users in UnCI(ci,cj). The proposed metric is defined
by the following formula:

Dðci; cjÞ ¼
P

ua2UnCIðci ;cjÞðnCIðua; ciÞ � nCIðua; cjÞÞ
jUnCIðci; cjÞj

2 ½0;1� ð5Þ

The main idea behind this group-based approach of calculating dis-
similarity values is that we want to see users’ opinion on one cate-
gory (i.e. cj) when they show a stronger interest on another category
(i.e. ci). If, on the whole, our users show an analogous interest on the
category in question then the two categories are similar (i.e. low va-
lue in D matrix). On the other hand, if their opinion differs, we have
just discovered a significant difference between the two categories.
We describe the whole algorithmic procedure below (Algorithm 1)
where all the values of D matrix are calculated.
Please cite this article in press as: Zigkolis, C., et al. Integrating similarity and
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Algorithm 1. Dissimilarity Values Estimation

Require: U(cl,cm) where cl, cm 2 C and cl – cm

Ensure D matrix
for all ci 2 C do

for all cj 2 C do
if ci – cj then

summarizedCIdiff = 0
userCounter = 0
for all ua 2 U(ci,cj) do

if nCI(ua,ci) > nCI(ua,cj) then
summarizedCIdiff += (nCI(ua,ci) � nCI(ua,cj))
userCounter++

end if
end for

Dðci; cjÞ ¼ summarizedCIdiff
userCounter

� �
end if

end for
end for

The computational complexity of the extraction of D matrix is
affected by both the number of categories and the number of users
included in the intersected groups for category pairs. In particular,
we have:

OððL� L� LÞ � usersavg � eÞ

where L � L � L are the number of pairs of categories and usersavg is
the average number of elements of the intersected groups of users
belonged to those pairs (i.e. jU(ci,cj)j where i, j = 1,2, . . . ,L, i – j).
The e cost represents the time for the calculation of the dissimilarity
value of a pair. In terms of memory usage, we need space for
L � L � L values. The algorithm’s scalability is evaluated in terms
of time performance in Section 7.5.

5. Dissimilarity recommender: training model & rating
estimation process

When it comes to suggesting a new item to a user, our recom-
mender discovers the relation of the item’s categories with both
the user’s interest and all users’ interest in them. To support this,
the training model of our recommender follows a category-based
approach represented by a set of vector spaces, one for each cate-
gory. Our process of estimating ratings utilizes these spaces by
searching for nearest rated items where their rating information
is taken into account.

5.1. Category vector spaces

Inspired by Naive Bayes’s strong independence assumptions
among attributes, we create one space for each category instead
of forming spaces for all the possible category combinations (i.e.
power set of C). Each vector space contains information from train-
ing data characterized by users’ preferences for the category in
question (i.e. Ptrain(cl)). Each object in this space depicts a prefer-
ence (i.e. rated item) defined by two features: (a) the global feature
extracted from values of D matrix and (b) the local feature ex-
tracted by using the normalized category interest values of the
user who gave the rating. By using these two features together,
we combine information regarding local and global degrees of
interest for categories.

In this part, our main goal is to populate L vector spaces
S ¼ fSc1 ; Sc2 ; . . . ; ScLg in order to make use of them for rating estima-
tions in a later stage. For each pi 2 Ptrain we proceed to the following
four tasks:
dissimilarity notions in recommenders. Expert Systems with Applications
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1. Estimate the global feature: This feature depicts the relation
between a rated item’s categories and the predominant cate-
gory of the user who gave the rating. Its ‘‘global’’ meaning
comes from the fact that we utilize the predominant category
to find the opinion of users who have also shown greater inter-
est in this category than the categories of the item in question.
Such opinions are expressed by the values of the dissimilarity
matrix. Therefore, we utilize these values to quantify the afore-
mentioned global-scale relation. In particular, we summarize
the dissimilarity values between item’s categories and the pre-
dominant category and proceed their normalization:
Please
(2013
globali ¼
P

cj2itemb
DðpCðuaÞ; cjÞP

cl2CDðpCðuaÞ; clÞ
2 ½0;1� ð6Þ
where $pijpi = (ua, itemb,ri).
2. Estimate the local feature: Here, we search for the relation

between a rated item’s categories and the user who gave the
rating. By summing the user’s normalized interest values in
the categories of the item in question we can calculate an over-
all user’s interest in those categories. Note that, we take into
account only the categories that the user showed activity in
the training data (i.e. nCI(ua,cl) > 0 where cl 2 C). The local fea-
ture value for pi is defined as follows:
locali ¼
Pm0

j¼1nCIðua; cjÞ
m0 � nCIðua;pCðuaÞÞ

2 ½0;1� ð7Þ
where $pijpi = (ua, itemb, ri), nCI(ua,cj) > 0, j = 1,2, . . . ,m0, m0 < = m and
m is the number of itemb’s categories.
3. Create Object: We utilize the two aforementioned feature val-

ues to create a two-dimensional representation of a preference
pi. Apart from that, we also keep the rating included in pi in
order to be used in the rating estimation process. Therefore,
an object in a vector space is defined as follows:
Oi ¼ fri; ½globali; locali�g
where $pijpi = (ua, itemb,ri).
4. Employ Object Mapping: Finally, we make use of the two-

dimensional representation of the Oi object to map it into the
vector spaces defined by the categories of the item. Note that,
the rating ri is not used as a feature of Oi in its mapping into
the vector spaces. All in all, we have:
8cj 2 itemb ! Scj
] Oi
Fig. 1. Object creation and its mapping to vector spaces.
where $pijpi = (ua, itemb,ri).

Fig. 1 shows the process of both creating and mapping of Oi ob-
ject derived from pi preference. Its left part depicts the process of
calculating the global and the local feature values through Eqs.
(6) and (7) as long as the creation of Oi with the addition of the rat-
ing of pi. Fig. 1 right part represents Oi’s mapping into the vector
spaces defined by the categories of pi’s item.

Intuitively, the two features act as two different sources of opin-
ion when it comes to suggesting an item to a user. As described
earlier, the local feature captures the personal opinion of the user
on item’s categories, while the global feature captures the opinion
on these categories from all the users that show similar interests
with the user in question. Consider the following three scenarios
where there is a consensus in both types of opinion:

� Weak Interest: The categories of an item are not preferred by
both the user and by those who have similar tastes with her.
This item will be represented by low local and high global fea-
ture values in the vector spaces defined by its categories (see
Fig. 2(a)). Note that, such cases indicate strong dissimilarity
observed by both views.
cite this article in press as: Zigkolis, C., et al. Integrating similarity and
), http://dx.doi.org/10.1016/j.eswa.2013.03.018
� Moderate Interest: Both the user and the ones with similar
tastes have shown moderate interest in an item’s categories.
This leads to moderate values in both features (see Fig. 2(b)).
� Strong Interest: The item’s categories are preferred by both the

user and the ones with similar tastes. Such opinions are charac-
terized by high local and low global values (see Fig. 2(c)).

Although these two features may seem contradictory, they
could be considered complementary and helpful in our case due
to the fact that with their combination we try to discover the right
balance between the global and the local view. The algorithmic
version (Algorithm 2) of the whole procedure of forming the dis-
similarity spaces is presented below.

Algorithm 2. Populate vector spaces

Require: D matrix
Ensure: S ¼ fSc1 ; Sc2 ; . . . ; ScLg

for all pi = {ua, itemb,ri} 2 Ptrain do
usernCI = nCI(ua,cl), "cl 2 C
Oi = createObject(pi,pC(ua), D, usernCI)
for all cj 2 itemb do

Scj ¼ Scj [ Oi

end for
end for

Algorithm 3. Create Object

Require: pi = {ua, itemb,ri}, D matrix, pC(ua) and nCI(ua,cl)
"cl 2 C

Ensure: Oi

totalGlobalSum ¼
P

cl2CDðpCðuaÞ; cjÞ
counter = 0
globalSum, localSum = 0
for allcj 2 itemb do

globalSum += D(pC(ua),cj)
localSum += nCI(ua,cj)
counter++

end for
globali = globalSum/totalGlobalSum
locali = localSum/counter⁄nCI(ua,pC(ua))
Oi = {ri 2 pi, [globali, locali]}
dissimilarity notions in recommenders. Expert Systems with Applications
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As we present in Section 5.2, the rating estimation process of
our recommender involves searches for nearest objects in vector
spaces in order to take into account their rating information to-
wards providing estimations. We need an efficient method to get
the nearest objects, especially when their number in these spaces
increases. Instead of using the simple implementation of the k-
nearest neighbor algorithm, we choose to create kd-trees struc-
ture4 (Bentley, 1975). For each vector space we insert the two-
dimensional representations of its objects into a kd-tree structure
and we end up with an indexed space indexedScl

¼ kdtreeðScl
Þ where

Scl
2 S.
In the process of creating those indexed spaces, the computa-

tional complexity is affected by the number of preferences in Ptrain

as long as the number of categories. In particular,

OðjPtrainj � ðe1 þmavgÞ þ L� e2Þ

where e1 cost is for calculating the global and local feature values
for each pi 2 Ptrain and mavg denotes the mean number of categories
of the items in training data. The L � e2 cost indicates the time for
the creating a kd-tree structure for each category. For memory
usage we have,

OðjPtrainj �mavg � eÞ

where e cost depicts the size of an object determined by the two
feature values along with the rating of the preference from which
the object came. The process of creating the indexed vector spaces
is evaluated in Section 7.5 where we record changes in execution
time when applying different sizes of training data.
5.2. Rating estimation process

We make use of the indexed category-based vector spaces to
estimate ratings for items. For each pi 2 Ptest an object Oi = {ri, [-
globali, locali]} is created and mapped in those vector spaces defined
by the categories of itemb by using the two feature values. Each
space gives one estimation which is the average of the actual rat-
ings retrieved from the k nearest objects of Oi. The process of
extracting the k nearest objects in a vector space involves the uti-
lization of the kd-tree for this space created in the training phase
(see Section 5.1).

After all the category-based rating estimations are made, we
proceed to their combination into a single one by calculating their
average value. This averaged value denotes the rating estimation of
our recommender for the itemb—the more close to ri, the more
accurate the estimation is. At the end, we conclude with a set of
4 Kd-tree implementation for Java language, https://bitbucket.org/rednaxela/knn-
benchmark/overview
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estimations EDis ¼ festDis
1 ; estDis

2 ; . . . ; estDis
jPtest jgwhere estDis

i 2 R. Below,
we describe the algorithm procedure (Algorithm 4):

Algorithm 4. Rating estimations based on dissimilarity
recommender

Require: Ptest, D matrix, k:#neighbors, indexedScl ;8cl 2 C
Ensure: EDis

for allpi = {ua, itemb,ri} 2 Ptest do
usernCI = nCI(ua,cl), "cl 2 C
Oi = createObject(pi,pC(ua),D,usernCI)
counter = 0
sum = 0
for allcj 2 itemb do

sum += nearestObjectsAvgRatingValue(indexedScj
, Oi, k)

counter++
end for
estDis

i ¼ sum=counter

EDis ] estDis
i

end for

Regarding the rating estimation process, the computational
complexity is mainly affected by the number of nearest objects.
In particular, we have,

OðjPtestj � ðe1 þm0avg � ðNNðkÞ þ e2Þ þ e3ÞÞ

where the e1 cost denotes the time needed for the calculation of the
two feature values for each pi 2 Ptest and m0avg is the mean number of
categories of items in test data. For each one of these categories, we
need NN(k) time to find the k nearest objects in its indexed vector
space, while the cost e2 denotes the time for the calculation of a cat-
egory-based rating estimation. The cost e3 is for the calculation of
one item’s overall rating estimation. For memory usage we have,

OðjPtestj �m0avg � eÞ

where e cost denotes a category-based rating estimation value. The
time performance of this process is affected by the number of near-
est objects as long as different sizes of test data. Process’s evaluation
in terms of time is presented in Section 7.5.

6. The IANOS framework

Aiming to approach the recommendation problem from both
similarity and dissimilarity perspective, we propose IANOS frame-
work where two separate recommenders, a similarity-based rec-
ommender and our dissimilarity-based one, are applied. As Fig. 3
shows, IANOS starts with a data splitting process where data are
separated into a training and a test part. Then, we have two com-
ponents, the ‘‘Training Models Component’’ and the ‘‘Ratings Esti-
mation Component’’.
dissimilarity notions in recommenders. Expert Systems with Applications
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6.1. Training models component

In this component, we make use of the training data to build the
training models for the two recommenders. Therefore, we split the
component into two segments, one for each recommender.

Regarding similarity-based recommenders, IANOS is not re-
stricted to a specific type and it is flexible in utilizing existing ones
as long as they provide rating estimations. We consider both the
training model (‘‘Build Model’’ in Fig. 3) and the process of rating
estimations (‘‘Similarity-based Recommender Estimator’’ in
Fig. 3) of similarity-based techniques as black-box procedures.
However, there might be a need to prepare the input data (‘‘Data
Modeling’’ in Fig. 3) in order to be used from the algorithm. For in-
stance, in this work, we incorporated two recommenders, Naive
Bayes and Slope-One (see Section 7.2). Those recommenders follow
different data modeling processes which was the only part that we
implement.

For the remainder of this work, we will refer to the training
model of the similarity-based recommenders that we make use
of as SimModel. Note that, the ratings in data used by those recom-
menders are affected by the user-based normalization factors
(d(ua), see Section 3) just as in our recommender. This offers a com-
mon starting point for both recommenders with regard to input
data.

As for our recommender, this component includes the data
modeling process, the extraction of dissimilarity patterns and the
formation of the indexed category-based vector spaces all of which
were described in Sections 3, 4 and 5.1 respectively.
6.2. Ratings estimation component

IANOS uses the test data coming from the splitting process (i.e.
Ptest) and proceeds to two separate rating estimation processes. The
Fig. 3. Framework’s architecture.
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first estimator comes from the similarity-based recommender that
we trained earlier. Based on the SimModel, a rating for each item in
test data is estimated and a set of estimations ESim ¼ festSim

1 ;

estSim
2 ; . . . ; estSim

jPtest jg is created where estSim
i 2 R. The second estimator

is from our recommender’s training model the procedure of which
was described in Section 5.2. From this estimator, we get another
set of estimations EDis ¼ festDis

1 ; estDis
2 ; . . . ; estDis

jPtest jg.
Having extracted the two lists of estimations (i.e. ESim and EDis),

we form a third estimator by combining the estimations that cor-
respond to the same items and produce one final estimation for
each one of them. We make use of an f-measure equation due to
the fact that it enables us to effortlessly put more emphasis on
either the one or the other estimation through a b2 > 0 parameter
(as b2 increases, estimations from our recommender are
emphasized).

estDis&Sim
i ¼ ð1þ b2

2Þ � estDis
i � estSim

i

b2
2 � estDis

i þ estSim
i

ð8Þ

where i = 1,2, . . . , jPtestj. Therefore, we end up with a set of the com-
bined rating estimations EDis&Sim ¼ festDis&Sim

1 ; estDis&Sim
2 ; . . . ; estDis&Sim

jPtest j g.
To evaluate the performance of IANOS we compare the estimations
contained in ESim and EDis&Sim in terms of accuracy through the use
of RMSE metric (Gunawardana and Meek, 2009). Thus, we have
two RMSE calculations, one that measures the error between real
values and estimations coming from the similarity-based recom-
mender and one with the estimations of our recommender com-
bined with the similarity-based ones. More specifically, we have:

RMSESim ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPjPtest j
i¼1 ðestSim

i � riÞ
jPtestj

s
ð9Þ

RMSEDis&Sim ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPjPtest j
i¼1 ðestDis&Sim

i � riÞ
jPtestj

s
ð10Þ

where ri is the normalized rating that belongs to the item for which
the two predictions were made. By comparing the two aforemen-
tioned RMSEs, we can conclude whether the combined estimations
are more accurate than the estimations extracted from the similar-
ity-based recommender (i.e. RMSEDis&Sim < RMSESim).
7. Experimentation

We carried out experiments on real-world datasets to ascertain
the usability of the proposed dissimilarity recommender when it is
combined with similarity-based ones. For the experiments, we uti-
lized three different 64-bit Linux-based work stations on which we
installed Hadoop 1.1.0 version. The master node, which was also a
slave, has 8 cores with 12 GB physical memory. The second slave
has 4 cores with 4 GB memory while the last one has the same
amount of memory but 2 CPUs. Here, we present the datasets
and the similarity-based recommenders we made use of. More-
over, we describe our experimentation steps and comment upon
the results with regard to accuracy and time performance.

7.1. Datasets description

To test IANOS, we made use of two datasets, Yahoo! Movies and
Movielens, which contain user ratings on movies accompanied by
genres as their attributes. Although the nature of data in both data-
sets is the same, they greatly differ in term of size (i.e. Yahoo! Mov-
ies number of ratings are only the 2% of Movielens ratings). By
applying our method to both a small and a big dataset, we can eval-
uate the scalability of our method as long as monitor how the
learning curve of our recommender’s training model is affected
when we apply different sizes of training data. Table 3 contains
dissimilarity notions in recommenders. Expert Systems with Applications
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Table 4
IANOS parameters and their values in the experimental steps (NB: Naive Bayes, SO:
Slope-One and ALL: all values tested).

Parameter Values

b1: weight on popularity/likeness 0.25, 0.5, 1, 2, 4
k: number of nearest objects 5, 10, 15, 20, 25, 30, 35, 40
b2: weight on rating estimations 0.25, 0.5, 1, 2, 4

Experimental step Parameters chosen values
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the description for the two datasets which, for the rest of the paper,
will be referred as D1 and D2 respectively.

7.2. Similarity-driven recommenders

For the purpose of evaluating our recommender’s usability, two
very commonly used recommenders were selected to be com-
bined, Naive Bayes (Duda and Hart, 1973) and Slope-One (Lemire
and Maclachlan, 2007). They represent the two basic categories
of recommenders, the content-based and the collaborative ones,
and they were chosen because they incorporate the concept of sim-
ilarity towards providing rating estimations. In the case of Naive
Bayes, probabilistic models are built for each user based on her
previous ratings that provide high scores for items that have similar
attributes to the items favoured by each user. In the case of Slope-
One, higher scores are given to items that were rated similarly high
by the user in question and the other users. In other words, Slope-
One searches for similar preferences between users to provide esti-
mations for unrated items. Each algorithm provides rating estima-
tions separately which are then combined with the ones coming
from our recommender. Accuracy-based comparisons between
the stand-alone and the combined rating estimations will indicate
the usefulness of such combinations as well as how well our rec-
ommender co-operates with two of the most popular
recommenders.

7.3. Evaluation metrics

IANOS performance is measured by two distinct metrics, RMSE
improvement and execution time. We first calculate the RMSE pro-
duced by the stand-alone execution of either Naive Bayes or Slope-
One. Then, by calculating the RMSE from the combined estimator,
we end up with a positive or negative percentage improvement
which is defined as follows:

improvement% ¼ 100� 100 � RMSEDis&Sim

RMSESim
ð11Þ

The greater the improvement in Eq. (11), the more accurate the
combinations are as opposed to the similarity-based recommender.

Time of execution, on the other hand, shows the amount of time
required for the system to produce the required recommendations.
This metric will be used to present the additional computational
complexity introduced by our recommender as well as show the
impact the hadoop framework and its distributed nature have on
execution time.

7.4. Accuracy-based experimental steps

IANOS framework has three parameters that need to be ad-
justed: (i) the popularity/likeness weight b1 in Definition 3.1, (ii)
the k nearest objects in Section 5.2 and (iii) the intra-recommender
weight b2 in Eq. (8). Our accuracy-based experiments are divided
into three experimental steps where each one of them applies dif-
ferent values for one of the aforementioned parameters, and the
value with the best accuracy results is used in the subsequent
steps. Although this is a ‘‘depth-first’’-liked search that leads to lo-
cal optima, an exhaustive search is found to be unnecessary for the
scope of this work. As said earlier, we do not intend to find the glo-
Table 3
Datasets description.

Dataset jUj jIj jPj jCj

Yahoo! Movies (D1) 7637 9215 196,025 16
MovieLens (D2) 69,878 10,675 10M 19
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bal optima, but to test the practicality of IANOS combinations.
Moreover, an exhaustive search is computational prohibitive.
Prior to the three steps, one more will be incorporated showing
the results of IANOS using predefined parameters that will be used
as a baseline for comparison. Table 4 contains the four experimen-
tal steps along with the parameters and their values they make use
of.

We make use of predefined values for the three parameters (see
Table 4). Regarding the first parameter b1 we choose different val-
ues in order to favour either likeness or popularity towards
extracting the degrees of users’ interest in categories. Different val-
ues in this parameter will result in changes in both the dissimilar-
ity values and the objects mapped in our training model’s vector
spaces. As for the k nearest objects, we go from small to large val-
ues in order to find an upper bound. Decline in accuracy results
when using values above that bound may indicate that when esti-
mating a rating (see Section 5.2) information from ‘‘noisy’’ objects
is taken into account. In term of the last parameter b2, we apply
different values to put more emphasis on the estimations of either
the similarity-based recommender or the proposed one. Changes
here affect only the final combined estimations. All in all, changes
in all parameters will affect the accuracy rates.

7.4.1. Accuracy results
As noted earlier, the first experimental step’s accuracy results

act as a baseline for comparison and every subsequent step moni-
tors changes in accuracy when applying different values in the
three parameters of our framework. Regarding the splitting of data,
we traverse from small to large-scale size of training data by creat-
ing the following five splits for both datasets: 20–80%, 40–60%, 60–
40%, 80–20%. We also create a 5–95% split in order to test our
method under conditions that usually appear in new-user problem
scenarios. The accuracy results for all the five experimental steps
are presented below:

� Control Set of Parameters: In both datasets, our recom-
mender’s combination with Naive Bayes provides improved
results of up to 18.09% and 18.74% in the D1 and D2 datasets
respectively. However, Slope-Ones combination does not show,
in most of the splits, corresponding improvement as in both
datasets most results are negative with D1 results being worse
than D2. The only positive improvements are found in D2 in
splits 20–80% and 40–60%. Fig. 4a shows the results for D1 data-
set while Fig. 4b illustrates the ones for the D2 dataset for the
five splits.
� Popularity versus Likeness: By Fig. 5a we can see that results

show little change for Naive Bayes where improvements were
provided regardless of the weight used. Nonetheless, we get
the best results with b1 = 2 indicating the greater importance
Control set of parameters NB: b1 = 1, k = 10 and b2 = 1
SO: b1 = 1, k = 10 and b2 = 1

Popularity VS Likeness NB: b1 = ALL, k = 10 and b2 = 1
SO: b1 = ALL, k = 10 and b2 = 1

Different neighborhoods NB: b1 = 2, k = ALL and b2 = 1
SO: b1 = 4, k = ALL and b2 = 1

Weight on two predictors NB: b1 = 2, K = 40(D1 & D2) and b2 = ALL
SO: b1 = 4, K = 40(D1 &D2) and b2 = ALL

dissimilarity notions in recommenders. Expert Systems with Applications
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of popularity against the likeness without ignoring the contri-
bution of the latter. In particular, for D1 we have up to 18.22%
improvement while for D2 the accuracy was improved up to
19.28%. In Slope-Ones case, as Fig. 5b shows, putting more
emphasis on likeness produces most of the time negative
results as opposed to the improved results in both datasets
when we greatly favour popularity (b1 = 4). In particular, we
get up to 8.74% improvement in D1 and 6.56% in D2. However,
as the training set increases in size, this improvement lowers
and gets negative in D2, but remains slightly above zero in D1.
The improvement on Slope-One’s estimations when popularity
is greatly emphasized can be attributed to the algorithms own
rationale. Slope-One takes into consideration how much an
item was liked by users who have common ratings to the user
in question. However, it does not take into account how many
times the item was rated, meaning an item with a relatively
high average rating that was rated by many users may be
shunned in favour of an item that was rated only once with
the maximum rating. By giving greater weight to popularity,
this inherent weakness of the standard Slope-One is compen-
sated. In case of Naive Bayes, the small changes in improve-
ments when applying the different values of b1 indicates that
whether we favour popularity or likeness seems to be insignif-
icant for our recommender when it is combined with Naive
Bayes.
� Different neighborhoods: Results in both datasets do not pres-

ent any significant changes for either Naive Bayes or Slope-One
when we use different number for nearest objects. In Naive
Bayes case, we achieved improvements up to 18.49% and
19.49% while in Slope-One we got 8.63% and 7.11% respectively
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Fig. 4. Accuracy for control set of parameters.
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for the two datasets. In both algorithms, best results came from
k = 40 for both D1 and D2. However, results coming from all dif-
ferent numbers of k are so close with each other as to show us
that there is no clear evidence that even larger values of k will
produce better results. Fig. 6a and Fig. 6b present the results
for this experimental step.
� Weight on two predictors: The results of the final set show

increased performance in both datasets for Naive Bayes that
reach 37.18% in D1 and 38.8% in D2 respectively. The results
seem to remain stable as the training set increases hinting that
the learning curve of the Dissimilarity-Naive Bayes combination
is analogous with the one of Naive Bayes when we run it as a
stand-alone recommender.
In the case of Slope-One, a single best value for b2 was not
found. However, we observed that in D1, the best results were
taken when there was a balance between Slope-One’s estima-
tions and ours (b2 = 1) especially in the medium and large train-
ing sets. The same phenomenon was observed in the small
training sets of D2, but when the training data increase more
emphasis on Slope-One’s estimations produces better accuracy
results (b2 = 2). This clearly indicates Slope-One has a better
learning curve than our recommender in the presence of large
sizes of training data. In particular, in D1 we got, most of the
time, positive results of up to 9,9%. In D2 improved results
reached up to 7%, an improvement that was declined as we
passed to larger training sets. Fig. 7a and b present the results
for this final step.

7.5. Time performance

Apart from the four steps discussed above, two more parame-
ters will be introduced presenting time performances. We add
and tune two parameters related to the hadoop framework, the
node number and the replication factor. The former denotes the
number of work stations we make use of in an experiment while
the latter indicates the number of replications for hadoop data
blocks in the different nodes. The minimum replication factor is
1 and the maximum is the number of all the available nodes. By
giving the minimum value, we reduce the need for disk space (each
data block in one node at the time), but we increase the likelihood
for a node to request a block for the one that has it. This will lead to
additional data block exchanges through the network. On the other
hand, by giving the maximum value, we surely increase the need
for disk space (i.e. all blocks in all nodes), but we ensure that when
a node needs a block file, it will find it immediately by accessing its
part in the hadoop distributed file system.

For the purpose of this section we evaluate in terms of time per-
formance the following five processes from IANOS: (a) the data
modeling process of our recommender, (b) the process of calculat-
ing the dissimilarity matrix, (c) the process of creating the indexed
vector spaces, (d) the rating estimations process and (e) the com-
bination of estimations process. These processes represent the
most resource-demanding functions of the application and the
purpose in this section is to show how time performance can be
improved using a distributed implementation. The time of those
five functions/elements has been measured from the beginning
of the mapping procedure to the end of the reduction procedure
as noted in the hadoop framework. Therefore, apart from the actual
time complexity of the algorithms upon which those functions
were created, overhead will also be included. Each of the afore-
mentioned processes have been run in six different setups included
in Table 5. These setups are all possible combinations for the two
parameters when three work stations are available just as in our
case.

Note that, only the framework’s time performance of the Movie-
lens dataset is presented here. The fact that both datasets have to
dissimilarity notions in recommenders. Expert Systems with Applications
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Fig. 5. Accuracy for different values of b1.
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do with movies and that Movielens is larger than Yahoo! Movies
make the presentation of time performance for Yahoo! Movies
dataset redundant. With the data volume of Movielens dataset
we can present IANOS behaviour when data scales. Fig. 8 accumu-
lates the results from all processes comments upon which are pre-
sented below.
Please cite this article in press as: Zigkolis, C., et al. Integrating similarity and
(2013), http://dx.doi.org/10.1016/j.eswa.2013.03.018
� Data Modeling: As Fig. 8a shows, time performance is declined
as our training data increase. As we increase both the number of
nodes and the replication factor, time decreases since there are
more nodes processing the input data and not much intercom-
munication is required between the nodes during the process as
data is available to all nodes locally. However, results are not
dissimilarity notions in recommenders. Expert Systems with Applications
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Fig. 6. Accuracy for different number of neighbors.
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linearly improved. That can be attributed to the overhead of
transferring the data blocks to the nodes, a phenomenon that
is enhanced by the replication factor, and the additional com-
plexity of merging the results as nodes increase. All in all, we
improve time up to 54% between the 1st and the 6th setup
which greatly improves the time required for the data
modeling.
Please cite this article in press as: Zigkolis, C., et al. Integrating similarity and
(2013), http://dx.doi.org/10.1016/j.eswa.2013.03.018
� Extraction of dissimilarity matrix: As before, time perfor-
mance is declined as we move to a greater training-test split.
In this process, increasing node number and replication factor
also has a positive effect in time requirements reaching an
improvement of up to 67% between the 1st and 6th setup (see
Fig. 8b). We can also notice that by increasing the nodes and
the replication factor the results are not uniformly improved.
dissimilarity notions in recommenders. Expert Systems with Applications
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Fig. 7. Accuracy for different values of b2.
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In some cases, using smaller replication factors seem to provide
better results as noted in the 60–40% split where 4th setup
yields better results compared to all the others. The reasons
behind this, aside from overhead, is random noise in the med-
ium, collisions and so forth which can affect results of relatively
small size. However, increasing the nodes and the replication
factor seems to on average improve the performance.
Please cite this article in press as: Zigkolis, C., et al. Integrating similarity and
(2013), http://dx.doi.org/10.1016/j.eswa.2013.03.018
� Creation of Vector Spaces: This particular process is a rela-
tively light procedure. While the plot shows that there is an
improvement using multiple nodes, results are not very impres-
sive with a 27% improvement at maximum (see Fig. 8c). Fur-
thermore, performance is very similar between the various
multinode modes. This can be attributed to the aforementioned
reasons of collisions and overhead that in such low time com-
dissimilarity notions in recommenders. Expert Systems with Applications
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Table 5
Experimental setups for measuring time performance.

No. Setup description

1 The master node in parallel mode (more than one threads)
2 Two nodes with replication factor 1
3 Two nodes with replication factor 2
4 Three nodes with replication factor 1
5 Three nodes with replication factor 2
6 Three nodes with replication factor 3
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plexities they greatly limit the performance improvement.
Nonetheless, while improvement is low for small sizes of train-
ing data, the difference becomes greater for large ones.
� Rating Estimations: In this phase, time performance did not

only depend on the volume of our training data but also on that
of the testing data. The greater the training data were, the big-
ger our category-based spaces would become and, thus, the k
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nearest objects searches would be more expensive in terms of
time. Nonetheless, when the testing data increase there are
more k nearest objects searches being executed. Since these
two are inversely proportional, we observe a bell curve in the
results in the plots. In addition to the estimations from our rec-
ommender, estimations are calculated by the two similarity-
based recommender, Naive Bayes and Slope-One. As a result,
two figures have been included, one when Naive Bayes is exe-
cuted (Fig. 8d) and one when Slope-One is executed (Fig. 8e)
with the latter showing clearly greater execution times than
the former due to the more time-complex nature of Slope-
One. In Fig. 8d, we also observe that the 4th setup performs
slightly better than all the other modes. In addition, the 2nd
setup is also faster than the 3rd. Similarly, in Fig. 8e, the 4th
and 5th setup perform better most of the time than the 6th.
The above can be attributed to the fact that while time com-
plexity is high, since the models of the recommenders are
passed to the nodes, there is a large transfer of data that takes
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place which doubles and triples for 5th and 6th setup respec-
tively. This additional overhead outweighs the advantages of
higher replication factors.
� Combination of Estimations: In the last phase, time complex-

ity also depends on both the size of our training and test data.
Nonetheless, it is apparent that the size of our test data affects
time complexity on a much greater level which is evident by the
fact that for splits equal to or greater than 20–80% the time
required for the operation to end falls steadily. With the 6th
setup we achieve the best results being faster by up to 35%.
However, the improvement diminishes with our testing data
and in the case of the 80–20% split the mode becomes slower
than the one node due to overhead (see Fig. 8f).

7.6. Results discussion

Experiments carried out in the two datasets have shown that
the proposed recommender can improve the accuracy when com-
bined with the two popular Slope-One and Naive Bayes algorithms.
In the case of Naive Bayes, experiments have shown that the com-
bination consistently outperforms the stand-alone content-based
filter by up to 37.18% in Yahoo! Movies dataset and up to 38.8%
in Movielens. As the training set increases in size, the combination
keeps its accuracy at high levels which shows that our recom-
mender’s learning curve is as good as Naive Bayes’s. The stability
in these results may be contributed to the fact that our recom-
mender follows a content-based logic as it is attribute-oriented.
Therefore, it seems to co-operate better when combined with rec-
ommender of this type. Experimentation with other content-based
recommenders will enhance this conclusion.

In terms of Slope-One, results have varied based on the training
set size. In most of the splits, improved results were observed, up
to 9.9% in Yahoo! Movies and 7% in Movielens. However, this
improvement was declined as we utilized larger training sets. In
fact, in large splits, best results came when we put more emphasis
on Slope-One’s estimations. This indicates that Slope-One learns
faster than our recommender and eventually provides more accu-
rate recommendations as seen in the Movielens dataset. Therefore,
it can be concluded that our recommender, when it is combined
with collaborative recommenders, works better in small training
sets. In cases with large training data, we can rely on estimations
from the similarity-based algorithm without ignoring the contri-
bution of our recommender.

As for the new-user problem, in both datasets, the combination
of the our recommender with both the two similarity-based algo-
rithms has provided improved results for a small number of train-
ing data as shown by Fig. 7. Therefore, our work can be used to
alleviate the new-user problem that affects many contemporary
recommenders.

Regarding time performance through the use of distributed pro-
cesses, experiments have shown that by using Hadoop we can
greatly reduce the additional costs of the proposed algorithm by
up to 67% in the more time consuming processes of the algorithm.
However, it was also shown that performance improvement varies
based on the nature of the functions and training and test sets’
sizes. As can be seen by the time performance results, distributabil-
ity greatly decreases the time requirements of many of the proce-
dures described in this paper, thus it is considered significant in
this work.

All in all, IANOS, and subsequently the proposed recommender,
seem to be practical in scenarios where we have small sizes of
training data. In addition, IANOS can be seen as a benchmark tool
because it enables us to incorporate several similarity-based
recommender in order to test their sole performance in various
Please cite this article in press as: Zigkolis, C., et al. Integrating similarity and
(2013), http://dx.doi.org/10.1016/j.eswa.2013.03.018
datasets as long as to evaluate their combinations with our recom-
mender and check to see how our recommender co-operates with
them.
8. Conclusions & future work

In this work, a novel recommender has been presented based on
underlying dissimilarity values that exist between attributes on a
set of items. We combined this algorithm with two well-known
recommenders, Naive Bayes and Slope-One, in order to evaluate
our intuition that approaching the problem of recommendations
from two different perspectives—similarity and dissimilarity—
may lead to more accurate predictions. Experimentation that has
been carried out in two separate datasets showed, most of the
time, that similarity techniques provided less accurate results
when they were used as stand-alone procedures rather than when
they were combined with our dissimilarity technique. However,
such combinations come with an additional cost in terms of com-
putational complexity. In order to address this issue, we imple-
mented IANOS distributed framework with Hadoop technology in
order to allocate the work load to many work stations. Results,
regarding time performance of IANOS, indicate the usefulness of
its distributed implementation. With the proposed framework
we can run different recommenders which gives us the opportu-
nity both to evaluate their general performance and check to see
how our recommender co-operates with them.

Future work will focus on exploiting our dissimilarity logic in
different ways. For instance, it would be interesting to properly
represent our attribute-based dissimilarity values through a
distinct characteristic—a new feature—in content-based tech-
niques. This additional feature would lead a content-based recom-
mender to improved accuracy results. Moreover, considering the
recent research interest in diversity issues (Zhang and Hurley,
2008) (i.e. increasing the diversity among suggestions), we plan
to study possible applications of our dissimilarity logic to confront
such issues. Dissimilarity and diversity can be seen close as con-
cepts, so it might be worthwhile to expand our research to this
direction.

Improvements in the implementation of IANOS in terms of time
and memory usage are also planned for future work. In terms of
time complexity, we could identify possible bottlenecks in the pro-
cedures and improve the execution time through the use of differ-
ent modeling of data. For instance, the profiling of categories in our
framework may demand great amount of memory when a node
handles a category with a great number of ratings. Therefore, a dif-
ferent modeling policy could be used to alleviate this problem. On
the other hand, the memory usage complexity could be confronted
with the use of a file compression policy on the files saved on ha-
doop distributed file system. Last but not least, we plan to test
other indexing techniques such as QuadTrees (Finkel et al., 1974)
or use of a distributed (Trad et al., 2012) or parallel (Sismanis
et al., 2012) logic in order to make the nearest objects search oper-
ations more efficient.
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