
A multi-layer software architecture framework
 for adaptive real-time analytics

Athena Vakali
Informatics Department

Aristotle University, Greece
avakali@csd.auth.gr

Paschalis Korosoglou and Pavlos Daoglou
IT Center
Aristotle University, Greece
{pkoro,pdaog}@it.auth.gr

Abstract—Highly distributed applications dominate today’s
software industry posing new challenges for novel software
architectures capable of supporting real time processing and
analytics. The proposed framework, so called REAλICS, is
motivated by the fact that the demand for aggregating current
and past big data streams requires new software methodologies,
platforms and services. The proposed framework is designed to
tackle with data intensive problems in real time environments,
via services built dynamically under a fully scalable and elastic
Lambda based architecture. REAλICS proposes a multi-layer
software platform, based on the lambda architecture paradigm,
for aggregating and synchronizing real time and batch
processing. The proposed software layers and adaptive
components support quality of experience, along with community
driven software development. Flexibility and elasticity are
targeted by hiding the complexity of bootstrapping and
maintaining a multi level architecture, upon which the end user
can drive queries over input data streams. REAλICS proposes a
flexible and extensible software architecture that can capture
users preference at the front-end and adapt the appropriate
distributed technologies and processes at the back-end. Such a
model enables real time analytics in large-scale data driven
cloud-based systems.

Keywords—software architectures; real time data management;
big data analytics; cloud based services.

I. INTRODUCTION
The emerging big data era demands sophisticated models

for data summarization, mining and analytics. Nowadays, such
analytics have become the drivers for substantially improved
decision-making and for the next generation of products and
services. Both real-time and near real-time responses in many
multi domain use cases (network fault prediction, security
threat prediction, fraud analytics etc) require data intensive and
data driven analytics [1].

In this context, it is important to design and deploy data-
driven software architectures, while introducing new
abstractions for data pipelining in distributed and
heterogeneous cloud environments. Moreover, real-time
execution of big data analytics requires addressing and
overcoming network performance constraints when large
amounts of data are transferred over cloud and distributed
architectures [2], [3]. Big Data management tools have
progressed and reached adequate maturity levels by now, but
they do exhibit performance issues, especially in real time

scenarios. The current abundance of big data software releases
and features, have highlighted popular software solutions, such
as the Apache Hadoop1 and its associated components. These
technologies have proven their value and have become
dominant in the recent years for handling big data streams [4].
Despite their capabilities, such big data software releases, are
mostly suited for batch processing needs and they are often
challenged with slow performance on real-time analytics [5]. It
is now needed to offer novel software solutions adaptive,
tunable and elastic. Such solutions should be able to aggregate
past data knowledge with real time data generated data streams
since several use cases from different domains require such
tasks.

The proposed framework so called REAλICS (RΕΑl time λ
architecture analytICS), is highly motivated by the fact that in
today’s highly distributed applications, processing of real time
(multi-streamed) big data has become a bottleneck. REAλICS
is inspired by such challenges and the need to integrate data
intensive software solutions, towards supporting continuous
and real-time data and information processing. Different use
cases can leverage such integration and platform’s capabilities
as the ones of ENCASE project2 which targets a user-centric
architecture of distinct data integration services. Data
processing architectures designed to handle such latencies and
handle massive quantities of data by taking advantage of
both batch and stream processing methods have already
appeared. A popular case is the Lambda3 architecture designed
to balance performance, throughput, and fault-tolerance. Both
batch and real-time stream processing are utilized on a layered
approach to provide comprehensive and accurate views of
batch and online data [6].

In REAλICS emphasis is placed on the real time execution
of big data analytics, under a flexible software architecture,
which aims at facilitating big data analytics methods and tools
implementations. In enabling such analytics, REAλICS deals
with both current and past data streams, which are aggregated,
analyzed and visualized to provide qualitative information in
response to users’ queries. Quality of results is due to the
aggregation of live along with past data sources, such as

1 Apache Hadoop http://hadoop.apache.org/
2 “Enhancing security and privacy in the Social Web”
http://encase.socialcomputing.eu/
3 Lambda Architecture : A repository dedicated to the Lambda Architecture
http://lambda-architecture.net/

historical data, which are expected to reveal hidden inter-
relationships, phenomena, and reciprocities on the queried
distributed data sets.

REAλICS is currently under a prototyping phase. An
assessment of the underlying key technologies to be used has
been completed and the development of the necessary
workflows (to dynamically provide real time based services
upon the IaaS layers) is under way and being constantly
validated through software testing mechanisms (i.e. Unit tests,
integration tests etc). Meanwhile, an Intrusion Detection use
case (of significant importance for the IT Center of the
Aristotle University of Thessaloniki), is being developed upon
the tools that shall be made available through REAλICS, so as
to assist in the results validation and services dissemination
phases.

REAλICS aims at improving entities, system components
and user experience at all data and software layers. It
anticipates to encapsulate building and enabling end-user
dynamic delivery of content under a fully scalable multi-level
software architecture for tackling data intensive problems and
optimize system layer components performance by dynamic
provisioning of services and by hiding the complexity of
bootstrapping and maintaining an underlying multi level
Lambda capable architecture. Farther beyond REAλICS aims
to enrich user quality of experience, by hiding complexity
layers and by being adaptive and flexible in allowing users to:
define their input data streams (to be collected, streamed and
queried), outline the features of the underlying resources and
identify the connectors to be implemented depending on their
computational needs. Live and past data streams are to be
processed by hiding all the infrastructure’s internal complexity
and configuration from the user. Finally, REAλICS will
advance scalability and elasticity restrictions specially in the
infrastructural and software layers since the elasticity of the
REAλICS architecture is foreseen from a service representation
of the architecture.

The rest of the paper is structured as follows: Section II
discusses related work in the proposed work mostly relevant
areas, Section III has all the details for the proposed
framework’s principles and methodology, while its
implementation and readiness level are presented in Section
IV. Section V sums up the frameworks current statis and
discusses its undergoing and future development.

II. STATE OF THE ART AND BEYOND
The real time feature of the REAλICS platform requires

certain different optimization methodologies. Specifically,
measures of latencies and delays become highly relevant. A
general control mechanism to guaranty specified bounds on
latencies is to: 1) observe the current application’s workload
and predict the trend of its change; and 2) based on the latter, to
devise a strategy when and how to elastically scale resources
(e.g., the number of virtual cluster nodes). There have been
several approaches to optimize the usage of cloud resources
according to the current workloads of the running applications,
e.g., [6, 7, 8]. For example, reference [7] develops the
controller for the applications run on the Amazon EC2 cluster;
the controller enables high percentage quantile guarantees on

the latencies (of type, e.g., 99% of all requests must be
answered within 100ms).

 The REAλICS platform will dynamically adapt the used
resources to the running application, e.g., through elastic
scaling of the size of the underlying clustered resources. For
example, in the time intervals of high workloads of the
application, the REAλICS platform will detect the need to add
more cluster (i.e. worker) nodes; conversely, in the time
intervals of low workloads, certain number of cluster nodes
will be released. The elastic scaling will be performed such that
the application performance, as measured, e.g., by the latency,
is stable and is targeted to be independent of the current
application workload.

There have been previous projects on the optimization of
the PaaS cloud systems. At the BigFoot project, for example,
the cross-layer system optimization of the PaaS cloud
infrastructure is performed [10]. This approach, in contrast
with the REAλICS, is dedicated to batch analysis and is not
primarily concerned with the real time aspects of the platform.
While certain aspects of the two frameworks are similar, like
interactivity of the platform with the user, the major differences
are that: 1) the REAλICS main focus is on the real time data
analytics; and 2) the REAλICS major goal is to enable cloud
federation. Moreover, multilevel software architectures are
dvekl, Lambda architecture embodies a set of principles
tailored for effective design of Big Data management systems.
The greatest argument supporting its realization and use is the
ability to run ad hoc queries involving computations against the
whole range of stored data while data continues to expand from
real time streams.

REAλICS beyond the State of the Art : REAλICS introduces
novel design methodologies that have not been used before in
the context of PaaS clouds and in overcoming problems raised
on earlier work (such as in [7, 8, 9]). Specifically, REAλICS
project advances the state of the art through the following:

1. Distributed controller. Existing work [7,8,9] utilizes
centralized controllers to control the amount of application’s
resources used. We propose to use distributed controller, i.e., to
introduce multiple controllers that work in parallel and reduce
the delays of the control operation. We will optimally balance
the tradeoff between the amount of resources allocated to the
control part of the system (e.g., number of controllers) and the
achieved performance of the control loop (e.g., achieved
latency bound guarantees).

2. Distributed bin packing. An important aspect of the
resource usage optimization is the problem of bin packing: how
to store the data that corresponds to an application using the
minimal amount of storage resources, e.g., the number of
cluster nodes. The bin packing problem is NP hard problem but
polynomial-time algorithms to approximately solve it are
available [11]. Existing work, e.g., [11] proposes greedy
algorithms for bin packing. While they are cost-effective,
greedy algorithms may be highly sub-optimal in certain
problems. We propose instead to use convex relaxation,
primal-dual Lagrangian methods to solve the bin packing
problem [12]. The advantages are guaranteed sub-optimality
measures, and amenability for distributed implementation (see,
e.g., [14]).

A key feature in REAλICS is the components optimization
at the backend. While the data analytics and/or machine
learning algorithms are mostly employed from the existing
state of the art solutions (mostly relevant with streams mining
and big data analytics), the optimization focus of the REAλICS
project is on the elastic management of cloud computational
and storage resources (at the top of IaaS layers such as
OpenStack or OpenNebula) [25]. Specifically, our aim is to
enable for the users’ applications running on the REAλICS
platform guaranteed Service Level Objectives (SLOs), with the
minimized amount of cloud computational and storage
resources used. Hence, the main objective of the REAλICS
platform optimization is centered on its users and aims at
optimizing their quality of experience. With respect to the
SLOs, our major focus is on the real time aspect and the
temporal SLOs, e.g., bounds on latencies, as this is highly
relevant to satisfy our users’ real time data mining needs.

Employing the above new methodologies can significantly
improve the resource usage over the existing solutions, in the
context of predictive analytics and mining solutions (ref [19-
[24]). A major reason for the latter is that our methodology
enables distributed solutions where existing work usually
employ centralized solutions. The distributed solutions will
allow to optimally strike the balance between the latency and
the amount of used overall resources (including, e.g., the
controller part), while this feature is not present in the existing
work.

III. REAΛICS PRINCIPLES AND METHODOLOGY
New modeling and abstractions for data to schemas models,

as well as for query and custom querying modeling, are
required for supporting real time big data demands. In this
context, the main addressed problems by the proposed
framework refer to the need for the real-time execution of big
data analytics. The principles governing the proposed design
originate from the fact that data-centric distributed
applications, are characterized by data intensive streams
generation, requiring cloud-based solutions with emphasis on
processing scalability and elasticity. The main flexibility of
REAλICS originates from its capability to encapsulate different
models and software tools which are re-usable for the various
real time analytics tasks (such as data modeling, querying,
streams monitoring, etc). Maximizing Quality of Experience
(QoE) by adapting users requirements and allowing REAλICS
backend to serve as platform for the user, is another main
principle of REAλICS.

 One novelty of REAλICS is that it sets the user at the core
of the platform, aiming at QoE beyond what is offered by
conventional platforms. Experimentation and definitions of
requirements on both the infrastructural and the algorithmic
levels are primarily user driven. The principles of the proposed
framework are to enable users to select the tools for
dynamically formulating a Lambda capable Big Data
architecture. REAλICS framework design provisions a
comprehensive set of software tools to tackle data intensive
problems with real time demands. The proposed design
addresses the non-expert users needs, since they can implement
and further customize their preferences.

REAλICS proposes a fully elastic architectural stack to
dynamically develop and execute use cases and experiments. In
addition, REAλICS prioritizes the development of an open
source uniquely tailored software toolbox, for easing use cases
realization. Through the proposed design, the planned testing
and implementation cycles are designed to optimize results.
The planned toolbox software and algorithms for achieving
better performance results, are taking into consideration both
infrastructural (i.e. elasticity) and scalability demands.

REAλICS operates through interoperable Cloud APIs and
open source infrastructural tools. At the core of a provided set
of resources user owned elastic virtual cluster, based on the
Lambda architectural prototype, are configured and delivered.
These virtualized clusters are dynamically reconfigurable either
upon a users’ request (i.e. add/remove cluster nodes) or through
heuristic approaches controlled via the REAλICS platform
itself aiming at achieving best performance results with the
minimal (at any given time) consumption of physical
resource

Fig. 1. REAλICS overview

The proposed methodology to support such a framework is
outlined in Fig. 1, as a step-by-step systematic process. The
overall REAλICS process utilizes a wizard based front-end
interface (1st step), at which requirements for the infrastructural
level and the specifications of the experiment/use case are set.
Such specifications refer to: the data streams to collect, any
additional historical datasets that may be related, data flow
patterns to be followed, queries that should be addressed, tools
to be implemented etc. At this 1st step, the user is given the
option to use and implement predefined algorithms provided
via the open source and community driven toolbox. Then, the
REAλICS service collects these requirements and as a 2nd step
it bootstraps a user owned Lambda capable infrastructure.
Once the “pre-flight” testing of the underlying resources and
services is completed as a 3rd step the experimental
specifications and the required algorithms from the toolbox are
passed onto the compute and storage layers and hence the data
collection and querying on the Lambda architectural level
commence. Dynamic reconfiguration and adaptation takes
place as a 4th step. During this cycle the infrastructural layers
scale up or down and adapt to an equilibrium based on user
restrictions, quotas and computing demands, while the software
is re-designed and integrated through development cycles to
reach optimal levels of maturity and performance. As a 5th step
the results are delivered to the user who can judge the initial

use case setup to decide whether reconfiguring and reinitiating
of a given experiment is required. Moreover, data collected in
previous iterations of the experiment may be kept for future
use. Therefore, as an experiment grows and evolves it follows a
perpetual cycle enabling the data collected for the experiment
to be constantly accumulated.

In summary, REAλICS proposes a flexible and extensible
software architecture which can capture users preference at the
front-end and adapt the appropriate distributed technologies
and processes at the back-end. Such a model enables real time
analytics in large-scale data driven cloud-based systems.

IV. IMPLEMENTATION AND READINESS LEVEL
REAλICS perpetual cycle strategy enables the realization of a
given experiment on a software stack (Fig. 2). The software
stack covers all of the processes from the user-driven initiated
requirements to the systems and services. REAλICS Web
front-end user interface, handles user interaction and a back-
end system includes subsystems and services to interact with
the distributed persistent storage and the virtualized
YARN/Hadoop stacks. To proceed with an adaptive and
flexible architecture REAλICS empowers a tailored API,
which addresses the front-end requirements, and appropriately
manages the stack, the network and the persistent storage.

Fig. 2. REAλICS software stack overview

REAλICS iterative and adaptive procedure enables both:
monitoring of an experiment’s cycle in the course of its
execution (i.e. data to be collected, together with the
corresponding queries, which may vary and evolve as more
insight is delivered via the REAλICS platform) and the offering
of an option to withhold data, from the previous versions of the
experiment, as the latter one evolves (thus not losing historical
data which have already been collected in previous versions of
the experiment).

A. Components and Functionality
To support adaptiveness efficiently, REAλICS builds upon

and utilizes a Domain Specific Language (DSL), which
describes an evolving experiment conclusively (the YAML
markup language specification is being used syntactically).
DSL files are forwarded from the Frontend UI to the custom

service programmatic interface for the realization/configuration
of the resources to take place.

To support the functionality of cloud federation and real
time data analytics, a user-driven cloud management platform
at the IaaS layer is proposed. Since such cloud management
platforms are evolving, REAλICS adapts its capabilities to
enable outsourcing of computing power to external cloud
infrastructures. Monitoring of the IaaS layer can be extended to
account for the real time data analysis requirements. Next, the
main components and their functionalities are summarized.

Front-end: REAλICS proposes a rich-feature Web User
(wizard enabling) Interface (UI) via which the user is able to
set project requirements and access the computed results, the
toolbox contents and the repository. More specifically, user
options are given to: provide an initial set of requirements via
the UI, define the data streams to collect, specify any additional
related historical datasets, data flow patterns to be followed, as
well as queries which should be executed on the collected data
sets. The outcome of this step-by-step options declaration is
stored at a DSL file, which the user may further archive, edit or
share with other users of the platform. Additionally, REAλICS
user can dynamically update the whole work and data flow via
the Web UI wizard enabled procedure. As mentioned above,
the carried out experiment undergoes of an iterative and
adaptive procedure, i.e. in the course of it the data streams,
along with the corresponding queries may be updated. An extra
feature enabled through REAλICS is that the user is given the
option to keep the data from the previous versions of the
experiment (thus not losing already collected historical data).

Software Toolbox: REAλICS provides a software toolbox
that includes predefined, easily configurable and adaptable
algorithms and data views, which the user may implement (per
use case). The toolbox is extensible and can include flow
algorithms for tackling common data intensive issues.
Alongside this algorithmic toolbox, predefined views of the
results are available upon request (again for easing and
improving users QoE). REAλICS toolbox heavily builds upon
Apache Spark and Apache Flink with further development and
implementations for state of the art machine learning and data
mining algorithms, which can be executed in parallel on
computer clusters. Among the specific categories of algorithms
we primarily target collaborative filtering, classification,
clustering, dimensional reduction, topic modeling and other
algorithms, while new algorithms can also be inspired and
implemented in the expansion of REAλICS. The fact that such
platforms are executed upon frameworks that compose basic
elements of the REAλICS Lambda driven architecture
(Hadoop, Spark, Flink) allows the exploitation of their
capabilities from the REAλICS framework for the construction
of its open source toolkit of algorithms. Implemented
algorithms will be offered from the REAλICS toolkit such that
users can choose among them for their specific data analytics
requirements.

B. Lambda architecture Implementation
REAλICS enables big data analytics projects to be

implemented by using virtual clusters which implement a
Lambda architecture approach. As discussed in Section II, the

most significant benefit of the proposed Lambda architecture is
that the user query is executed over the whole range of data
which are accumulated up to the point in time the query was
submitted, thus both (past and live) data streams are taken into
account.

Fig. 3. REAλICS Lambda based configuration. Tools from the Cloudera
Hadoop ecosystem are placed in the corresponding layers of Lambda. The

tools outlined in this figure are only indicative

λ at REAλICS is proposed to exploit its three layer design for
user defined queries addressed at the unified Lambda service
layer, the data accumulated on the storage (batch) layer and the
data streams processed dynamically on the speed layer.

C. Testing and Implementation
 REAλICS perpetual methodology cycle enables several use
cases implementation due to its multi-phase design (Fig. 4.):

 Phase 1: Use case definition and set-up of the initial set of
requirements. These requirements translate into requirements
for the : (1) infrastructure (i.e. expected size of Lambda
infrastructure), (2) software tools and Big Data ecosystem
components and (3) data sources and streams, data flows, data
partitioning etc.

Phase 2: The user (i.e. use case owner) is supported by the
Web frontend wizard to feed these requirements into the
REAλICS platform. A DSL file is properly formatted and
delivered to the use case owner

Phase 3: The initial set of requirements (in the form of a
DSL file) are fed into REAλICS back-end components and
Tasks queue handles bootstrapping a virtualized Lambda
infrastructure in accordance to the requirements. Unit tests
(prebuilt and/or built dynamically based on the requirements)
are executed to ensure all components are functional.

Phase 4: Data collection from defined sources and streams
commences. Data flow patterns are also applied. Data are
stored immutably on the persistent storage layer while
computations based on the user defined queries are utilized in
predefined or ad-hoc intervals driven by the user requirements.

 Phase 5: The experiment’s execution is examined and
assessed. The use case owner updates requirements. The use
case owner has the option to either drop the data already
collected in Phase 4 or maintain them to be used in the next
version (iteration) of the experiment). At this point the use case
owner thus returns to Phase 2 to update requirements (either
via the wizard steps or by updating the DSL file) and continues
within this perpetual use case cycle.

Fig. 4. REAλICS Use case experimentation perpetual lifecycle

Intrusion detection for distributed resources: The Aristotle
University of Thessaloniki hosts four (4) Data centers
distributed across the University Campus. The infrastructure
overall is comprised of approximately more than 1000 physical
and virtual servers, more than 200 physical networking devices
and more than 500 virtual subnets, most of which are
monitored at the systems level via appropriate monitoring
appliances. Currently, the systems are monitored for intrusions
on the physical level; However an overall view of the campus
resources is not achievable with standalone monitoring
appliances due to the volume and variety of the data needed for
such a purpose estimated to be in the order of tens of TBs.
Moreover, as industries and academia turn towards “Bring
Your Own Device” (BYOD) and IoT strategies bringing forth
the need for a really “distributed resources” targeted IDS
monitoring is imperative. The use case, currently being
developed shall be used during the validation phase of the
REAλICS, which we envision will be used to build upon it a
real-time IDS monitoring service specifically targeted on
detecting intrusions and break-in attempts not only focusing on
data derived from the systems logging mechanisms (as is most
commonly done on several IDS implementations) but also on
data aggregated from different sources (environmental
monitoring sensors, door traps, network taps IoT settings etc).

V. CONCLUSIONS AND FUTURE WORK
REAλICS proposed framework addresses the highly

distributed systems inherent demand to gain knowledge from
multiple data sources and streams, such as live data as well as
historical data sources. Challenges in this problem are due to
the fact that appropriate insight on data’s summarization should
be delivered to engineers, decision makers and interested
stakeholders in real time demanding environments where even
a fraction of a second counts. REAλICS embeds innovation
potential at various levels of its approach, in the context of
offering an innovation-friendly industrial and competitive
software stack. REAλICS is innovating since its user-centered
framework entities, prioritize users QoE and promote
community driven open source software distributions..

Adaptiveness of REAλICS is heavily based on the user
defined custom DSL implementation (currently in prototype
status). Several contributions that are already available in the
PaaS landscape will be taken into account in the final DSL
specification. Moreover, elasticity at the moment can be
handled on the batch and service layers but to truly address
elasticity on the stream layer the latest available advances from
Apache Flink and Apache Spark will need to be endorsed and
adopted within REAλICS.

REAλICS seeks to advance the state of the art in IaaS
management by extending functionality and feature-rich
solutions for the comprehensive management of virtualized
data centers. Such an approach will be validated and tested
under the ENCASE project use cases which stress test data
integration demands under security and privacy preserving
mechanisms. The future goal is to validate the proposed
framework a) as an enterprise-ready product and not a group of
components that need integration to be built upon the cloud, b)
to give support for services provided by the people who
developed and manage the software and c) to provide easiness
to fit into any existing data platform. An example that would fit
the design goals of REAλICS is the platform, currently being
developed and used, in the context of the ENCASE project,
where fast adaptiveness and integration of new filtering tools is
needed in real time.

ACKNOWLEDGMENTS
The authors thank Efrosini Kaltimiridou and Konstantinos

Kaggelidis, staff of the IT Center of Aristotle University, for
their contribution in the framework’s design and presentation.
Part of this work is funded from the European Union’s Horizon
2020 research and innovation programme “ENCASE” under
the Marie Skłodowska-Curie grant agreement No 691025.

REFERENCES

[1] Brosig, Fabian, et al. "Quantitative evaluation of model-driven
performance analysis and simulation of component-based
architectures." IEEE Transactions on Software Engineering 41.2 (2015):
157-175.

[2] Bahrami, Mehdi, and Mukesh Singhal. "The role of cloud computing
architecture in big data." Information granularity, big data, and

computational intelligence. Springer International Publishing, 2015.
275-295.

[3] Schutt, Kyle, and Osman Balci. "Cloud software development platforms:
A comparative overview." Software Engineering Research, Management
and Applications (SERA), 2016 IEEE 14th International Conference on.
IEEE, 2016.

[4] D. McCreary and A. Kelly, Making Sense of NoSQL: A Guide for
Managers and the Rest of Us. Manning Publications Company, 2013.

[5] Buyya, Rajkumar, et al. "Big Data Analytics-Enhanced Cloud
Computing: Challenges, Architectural Elements, and Future
Directions." Parallel and Distributed Systems (ICPADS), 2015 IEEE
21st International Conference on. IEEE, 2015.

[6] Kiran, Mariam, et al. "Lambda architecture for cost-effective batch and
speed big data processing." Big Data (Big Data), 2015 IEEE
International Conference on. IEEE, 2015.

[7] B. Jennings, R. Stadler, “Resource management in clouds: Survey and
research challenges,” J. Netw. Syst. Manage., Springer, New York, 2014

[8] B. Trushkowsky, P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, D. A.
Patterson, “The SCADS director: Scaling a distributed storage system
under stringent performance requirements,”in proc. 9th USENIX
Conference on Filing Storage Technologies (FAST), 2011

[9] G. Toffetti, A. Gambi, M. Pezze, C. Pautasso, “Engineering autonomic
controllers for virtualized WEB applications,” in: Benetallah, B. Casati
F., Kappael, G., Rossi, G., (eds.), Web Engineering no. 6189, in LNCS
pp-66-80, Springer, Berlin, 2010

[10] Shen, Yun; Thonnard, Olivier; Vervier, Pierre-Antoine; Dacier,
Marc, Scalable Multi-Criteria Data Clustering for Big Data Security
Intelligence Analytics, submitted to IEEE Transactions on Big Data,
2015.

[11] V. Gupta, A.Radovanovic, “Online Stochastic Bin Packing,” arxiv
preprint, available at: http://arxiv.org/pdf/1211.2687.pdf, 2012

[12] M. Chiang, S. H. Low, A. R. Calderbank, J. C. Doyle, “Layering as
Optimization Decomposition: A Mathematical Theory of Network
Architectures,”Proceedings of the IEEE, vol. 95, no.1, Jan. 2007

[13] Bohlouli, M., Schulz, F., Angelis, L., Pahor, D., Brandic, I., Atlan, D., &
Tate, R. (2013). Towards an integrated platform for big data analysis. In
Integration of Practice-Oriented Knowledge Technology: Trends and
Prospectives (pp. 47-56). Springer Berlin Heidelberg.

[14] X. Amatriain. Mining large streams of user data for personalized
recommendations. SIGKDD Explorations, 14(2), 2012.

[15] U. Kang and C. Faloutsos. Big graph mining: Algorithms and
discoveries. SIGKDD Explorations, 14(2), 2012.

[16] J. Lin and D. Ryaboy. Scaling big data mining infrastructure: The twitter
experience. SIGKDD Explorations, 14(2), 2012.

[17] Y. Sun and J. Han. Mining heterogeneous information networks: A
structural analysis approach. SIGKDD Explorations, 14(2), 2012.

[18] [12] Dhar, V. (2013)."Data science and prediction". Communications of
the ACM 56 (12): 64.

[19] Predictive Model Markup Language (PMML) http://www.dmg.org/
[20] The shiny R tool, http://www.rstudio.com/shiny/
[21] Revolution analytics, http://www.revolution-computing.com
[22] Eirini Giannakidou, Athena Vakali, Nikolaos Mavridis:

Towards a Framework for Social Semiotic Mining. WIMS 2014: 21:1-
21:6

[23] González Alonso, I., Rodríguez Fernández, M., Jacobo Peralta, J., &
Cortés García, A. (2013). A Holistic Approach to Energy Efficiency
Systems through Consumption Management and Big Data Analytics.
International Journal On Advances in Software, 6(3 and 4), 261-271.

[24] Domingos, Pedro. "A few useful things to know about machine
learning." Communications of the ACM 55.10 (2012): 78-87.

[25] Ignacio M. Llorente OpenNebula vs. OpenStack: User Needs vs. Vendor
Driven, Technical Report http://opennebula.org/opennebula-vs-
openstack-user-needs-vs-vendor-driven/]

