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Abstract—Highly distributed applications dominate today’s 
software industry posing new challenges for novel software 
architectures capable of supporting real time processing and 
analytics. The proposed framework, so called REAλICS, is 
motivated by the fact that the demand for aggregating current 
and past big data streams requires new software methodologies, 
platforms and services. The proposed framework is designed to 
tackle with data intensive problems in real time environments, 
via services built dynamically under a fully scalable and elastic 
Lambda based architecture. REAλICS proposes a multi-layer 
software platform, based on the lambda architecture paradigm, 
for aggregating and synchronizing real time and batch 
processing. The proposed software layers and adaptive 
components support quality of experience, along with community 
driven software development. Flexibility and elasticity are 
targeted by hiding the complexity of bootstrapping and 
maintaining a multi level architecture, upon which the end user 
can drive queries over input data streams. REAλICS proposes a 
flexible and extensible software architecture that can capture 
users preference at the front-end and adapt the appropriate 
distributed technologies and processes at the back-end. Such a 
model enables real time analytics in large-scale data driven 
cloud-based systems. 

Keywords—software architectures; real time data management; 
big data analytics; cloud based services. 

I.  INTRODUCTION  
The emerging big data era demands sophisticated models 

for data summarization, mining and analytics. Nowadays, such  
analytics have become the drivers for substantially improved 
decision-making and for the next generation of products and 
services. Both real-time and near real-time responses in many 
multi domain use cases (network fault prediction, security 
threat prediction, fraud analytics etc) require data intensive and 
data driven analytics [1]. 

In this context, it is important to design and deploy data-
driven software architectures, while introducing new 
abstractions for data pipelining in distributed and 
heterogeneous cloud environments. Moreover, real-time 
execution of big data analytics requires addressing and 
overcoming network performance constraints when large 
amounts of data are transferred over cloud and distributed 
architectures [2], [3]. Big Data management tools have 
progressed and reached adequate maturity levels by now, but 
they do exhibit performance issues, especially in real time 

scenarios. The current abundance of big data software releases 
and features, have highlighted popular software solutions, such 
as the Apache Hadoop1 and its associated components. These 
technologies have proven their value and have become 
dominant in the recent years for handling big data streams [4]. 
Despite their capabilities, such big data software releases, are 
mostly suited for batch processing needs and they are often 
challenged with slow performance on real-time analytics [5]. It 
is now needed to offer novel software solutions adaptive, 
tunable and elastic. Such solutions should be able to aggregate 
past data knowledge with real time data generated data streams 
since several use cases from different domains require such 
tasks. 

The proposed framework so called REAλICS (RΕΑl time λ 
architecture analytICS), is highly motivated by the fact that in 
today’s highly distributed applications, processing of real time 
(multi-streamed) big data has become a bottleneck. REAλICS 
is inspired by such challenges and the need to integrate data 
intensive software solutions, towards supporting continuous 
and real-time data and information processing. Different use 
cases can leverage such integration and platform’s capabilities 
as the ones of ENCASE project2 which targets a user-centric 
architecture of distinct data integration services. Data 
processing architectures designed to handle such latencies and 
handle massive quantities of data by taking advantage of 
both batch and stream processing methods have already 
appeared. A popular case is the Lambda3 architecture designed 
to balance performance, throughput, and fault-tolerance. Both  
batch and real-time stream processing are utilized on a layered 
approach to provide comprehensive and accurate views of 
batch and online data [6].  

In REAλICS emphasis is placed on the real time execution 
of big data analytics, under a flexible  software architecture, 
which aims at facilitating big data analytics methods and tools 
implementations. In enabling such analytics, REAλICS deals 
with both current and past data streams, which are aggregated, 
analyzed and visualized to provide qualitative information in 
response to users’ queries. Quality of results is due to the 
aggregation of live along with past data sources, such as 

                                                             
1 Apache Hadoop http://hadoop.apache.org/ 
2 “Enhancing security and privacy in the Social Web” 
http://encase.socialcomputing.eu/  
3 Lambda Architecture : A repository dedicated to the Lambda Architecture   
http://lambda-architecture.net/      



historical data, which are expected to reveal hidden inter-
relationships, phenomena, and reciprocities on the queried 
distributed data sets.   

REAλICS is currently under a prototyping phase. An 
assessment of the underlying key technologies to be used has 
been completed and the development of the necessary 
workflows (to dynamically provide real time based services 
upon the IaaS layers) is under way and being constantly 
validated through software testing mechanisms (i.e. Unit tests, 
integration tests etc). Meanwhile, an Intrusion Detection use 
case (of significant importance for the IT Center of the 
Aristotle University of Thessaloniki), is being developed upon 
the tools that shall be made available through REAλICS, so as 
to assist in the results validation and services dissemination 
phases.  

REAλICS aims at improving entities, system components 
and user experience at all data and software layers. It 
anticipates to encapsulate building and enabling end-user 
dynamic delivery of content under a fully scalable multi-level 
software architecture for tackling data intensive problems and 
optimize system layer components performance by dynamic 
provisioning of services and by hiding the complexity of 
bootstrapping and maintaining an underlying multi level 
Lambda capable architecture. Farther beyond REAλICS aims 
to enrich user quality of experience, by hiding complexity 
layers and by being adaptive and flexible in allowing users to: 
define their input data streams (to be collected, streamed and 
queried), outline the features of the underlying resources and 
identify the connectors to be implemented depending on their 
computational needs. Live and past data streams are to be 
processed by hiding all the infrastructure’s internal complexity 
and configuration from the user. Finally, REAλICS will 
advance scalability and elasticity restrictions specially in the 
infrastructural and software layers since the elasticity of the 
REAλICS architecture is foreseen from a service representation 
of the architecture. 

The rest of the paper is structured as follows: Section II 
discusses related work in the proposed work mostly relevant 
areas, Section III has all the details for the proposed 
framework’s principles and methodology, while its 
implementation and readiness level are presented in Section 
IV. Section V sums up the frameworks current statis and 
discusses its undergoing and future development. 

II. STATE OF THE ART AND BEYOND  
The real time feature of the REAλICS platform requires 

certain different optimization methodologies. Specifically, 
measures of latencies and delays become highly relevant. A 
general control mechanism to guaranty specified bounds on 
latencies is to: 1) observe the current application’s workload 
and predict the trend of its change; and 2) based on the latter, to 
devise a strategy when and how to elastically scale resources 
(e.g., the number of virtual cluster nodes). There have been 
several approaches to optimize the usage of cloud resources 
according to the current workloads of the running applications, 
e.g., [6, 7, 8]. For example, reference [7] develops the 
controller for the applications run on the Amazon EC2 cluster; 
the controller enables high percentage quantile guarantees on 

the latencies (of type, e.g., 99% of all requests must be 
answered within 100ms).  

 The REAλICS platform will dynamically adapt the used 
resources to the running application, e.g., through elastic 
scaling of the size of the underlying clustered resources. For 
example, in the time intervals of high workloads of the 
application, the REAλICS platform will detect the need to add 
more cluster (i.e. worker) nodes; conversely, in the time 
intervals of low workloads, certain number of cluster nodes 
will be released. The elastic scaling will be performed such that 
the application performance, as measured, e.g., by the latency, 
is stable and is targeted to be independent of the current 
application workload.   

There have been previous projects on the optimization of 
the PaaS cloud systems. At the BigFoot project, for example, 
the cross-layer system optimization of the PaaS cloud 
infrastructure is performed [10].  This approach, in contrast 
with the REAλICS, is dedicated to batch analysis and is not 
primarily concerned with the real time aspects of the platform. 
While certain aspects of the two frameworks are similar, like 
interactivity of the platform with the user, the major differences 
are that: 1) the REAλICS main focus is on the real time data 
analytics; and 2) the REAλICS major goal is to enable cloud 
federation. Moreover, multilevel software architectures are 
dvekl, Lambda architecture embodies a set of principles 
tailored for effective design of Big Data management systems. 
The greatest argument supporting its realization and use is the 
ability to run ad hoc queries involving computations against the 
whole range of stored data while data continues to expand from 
real time streams. 

REAλICS beyond the State of the Art : REAλICS introduces 
novel design methodologies that have not been used before in 
the context of PaaS clouds and in overcoming problems  raised 
on earlier work (such as in [7, 8, 9]). Specifically, REAλICS 
project advances the state of the art through the following: 

1. Distributed controller. Existing work [7,8,9] utilizes 
centralized controllers to control the amount of application’s 
resources used. We propose to use distributed controller, i.e., to 
introduce multiple controllers that work in parallel and reduce 
the delays of the control operation. We will optimally balance 
the tradeoff between the amount of resources allocated to the 
control part of the system (e.g., number of controllers) and the 
achieved performance of the control loop (e.g., achieved 
latency bound guarantees). 

2. Distributed bin packing. An important aspect of the 
resource usage optimization is the problem of bin packing: how 
to store the data that corresponds to an application using the 
minimal amount of storage resources, e.g., the number of 
cluster nodes. The bin packing problem is NP hard problem but 
polynomial-time algorithms to approximately solve it are 
available [11]. Existing work, e.g., [11] proposes greedy 
algorithms for bin packing. While they are cost-effective, 
greedy algorithms may be highly sub-optimal in certain 
problems. We propose instead to use convex relaxation, 
primal-dual Lagrangian methods to solve the bin packing 
problem [12]. The advantages are guaranteed sub-optimality 
measures, and amenability for distributed implementation (see, 
e.g., [14]).  



A key feature in REAλICS is the components optimization 
at the backend. While the data analytics and/or machine 
learning algorithms are mostly employed from the existing 
state of the art solutions (mostly relevant with streams mining 
and big data analytics), the optimization focus of the REAλICS 
project is on the elastic management of cloud computational 
and storage resources (at the top of IaaS layers such as 
OpenStack or OpenNebula) [25]. Specifically, our aim is to 
enable for the users’ applications running on the REAλICS 
platform guaranteed Service Level Objectives (SLOs), with the 
minimized amount of cloud computational and storage 
resources used. Hence, the main objective of the REAλICS 
platform optimization is centered on its users and aims at 
optimizing their quality of experience. With respect to the 
SLOs, our major focus is on the real time aspect and the 
temporal SLOs, e.g., bounds on latencies, as this is highly 
relevant to satisfy our users’ real time data mining needs. 

Employing the above new methodologies can significantly 
improve the resource usage over the existing solutions, in the 
context of predictive analytics and mining solutions (ref [19-
[24]). A major reason for the latter is that our methodology 
enables distributed solutions where existing work usually 
employ centralized solutions. The distributed solutions will 
allow to optimally strike the balance between the latency and 
the amount of used overall resources (including, e.g., the 
controller part), while this feature is not present in the existing 
work. 

III. REAΛICS PRINCIPLES AND METHODOLOGY 
New modeling and abstractions for data to schemas models, 

as well as for query and custom querying modeling, are 
required for supporting real time big data demands. In this 
context, the main addressed problems by the proposed 
framework refer to the need for the real-time execution of big 
data analytics. The principles governing the proposed design 
originate from the fact that data-centric distributed 
applications, are characterized by data intensive streams 
generation, requiring cloud-based solutions with emphasis on 
processing scalability and elasticity. The main flexibility of 
REAλICS originates from its capability to encapsulate different 
models and software tools which are re-usable for the various 
real time analytics tasks (such as data modeling, querying, 
streams monitoring, etc). Maximizing Quality of Experience 
(QoE) by adapting users requirements and allowing REAλICS 
backend to serve as platform for the user, is another main 
principle of REAλICS.  

 One novelty of REAλICS is that it sets the user at the core 
of the platform, aiming at QoE beyond what is offered by 
conventional platforms.  Experimentation and definitions of 
requirements on both the infrastructural and the algorithmic 
levels are primarily user driven. The principles of the proposed 
framework are to enable users to select the tools for 
dynamically formulating a Lambda capable Big Data 
architecture. REAλICS framework design provisions a  
comprehensive set of software tools to tackle data intensive 
problems with real time demands. The proposed design 
addresses the non-expert users needs, since they can implement 
and further customize their preferences. 

REAλICS proposes a fully elastic architectural stack to 
dynamically develop and execute use cases and experiments. In 
addition, REAλICS prioritizes the development of an open 
source uniquely tailored software toolbox, for easing use cases 
realization. Through the proposed design, the planned testing 
and implementation cycles are designed to optimize results. 
The planned toolbox software and algorithms for achieving 
better performance results, are taking into consideration both 
infrastructural (i.e. elasticity) and scalability demands. 

REAλICS operates through interoperable Cloud APIs and 
open source infrastructural tools. At the core of a provided set 
of resources user owned elastic virtual cluster, based on the 
Lambda architectural prototype, are configured and delivered. 
These virtualized clusters are dynamically reconfigurable either 
upon a users’ request (i.e. add/remove cluster nodes) or through 
heuristic approaches controlled via the REAλICS platform 
itself aiming at achieving best performance results with the 
minimal (at any given time) consumption of physical 
resource

 

Fig. 1. REAλICS overview 

The proposed methodology to support such a framework is 
outlined in Fig. 1, as a step-by-step systematic process. The 
overall REAλICS process utilizes a wizard based front-end 
interface (1st step), at which requirements for the infrastructural 
level and the specifications of the experiment/use case are set. 
Such specifications refer to: the data streams to collect, any 
additional historical datasets that may be related, data flow 
patterns to be followed, queries that should be addressed, tools 
to be implemented etc. At this 1st step, the user is given the 
option to use and implement predefined algorithms provided 
via the open source and community driven toolbox. Then, the 
REAλICS service collects these requirements and as a 2nd step 
it bootstraps a user owned Lambda capable infrastructure. 
Once the “pre-flight” testing of the underlying resources and 
services is completed as a 3rd step the experimental 
specifications and the required algorithms from the toolbox are 
passed onto the compute and storage layers and hence the data 
collection and querying on the Lambda architectural level 
commence. Dynamic reconfiguration and adaptation takes 
place as a 4th step. During this cycle the infrastructural layers 
scale up or down and adapt to an equilibrium based on user 
restrictions, quotas and computing demands, while the software 
is re-designed and integrated through development cycles to 
reach optimal levels of maturity and performance. As a 5th step 
the results are delivered to the user who can judge the initial 



use case setup to decide whether reconfiguring and reinitiating 
of a given experiment is required. Moreover, data collected in 
previous iterations of the experiment may be kept for future 
use. Therefore, as an experiment grows and evolves it follows a 
perpetual cycle enabling the data collected for the experiment 
to be constantly accumulated.  

In summary, REAλICS proposes a flexible and extensible 
software architecture which can capture users preference at the 
front-end and adapt the appropriate distributed technologies 
and processes at the back-end. Such a model enables real time 
analytics in large-scale data driven cloud-based systems.  

IV. IMPLEMENTATION AND READINESS LEVEL 
REAλICS perpetual cycle strategy enables the realization of a 
given experiment on a software stack (Fig. 2).  The software 
stack covers all of the processes from the user-driven initiated 
requirements to the systems and services. REAλICS Web 
front-end user interface, handles user interaction and a back-
end system includes subsystems and services to interact with 
the distributed persistent storage and the virtualized 
YARN/Hadoop stacks. To proceed with an adaptive and 
flexible architecture REAλICS empowers a tailored API, 
which addresses the front-end requirements, and appropriately 
manages the stack, the network and the persistent storage. 
 

 

Fig. 2. REAλICS software stack overview 

REAλICS iterative and adaptive procedure enables both: 
monitoring of an experiment’s cycle in the course of its 
execution (i.e. data to be collected, together with the 
corresponding queries, which may vary and evolve as more 
insight is delivered via the REAλICS platform) and the offering 
of an option to withhold data, from the previous versions of the 
experiment, as the latter one evolves (thus not losing historical 
data which have already been collected in previous versions of 
the experiment). 

A. Components and Functionality 
To support adaptiveness efficiently, REAλICS builds upon 

and utilizes a Domain Specific Language (DSL), which 
describes an evolving experiment conclusively (the YAML 
markup language specification is being used syntactically). 
DSL files are forwarded from the Frontend UI to the custom 

service programmatic interface for the realization/configuration 
of the resources to take place.  

To support the functionality of cloud federation and real 
time data analytics, a user-driven cloud management platform 
at the IaaS layer is proposed. Since such cloud management 
platforms are evolving, REAλICS adapts its capabilities to 
enable outsourcing of computing power to external cloud 
infrastructures. Monitoring of the IaaS layer can be extended to 
account for the real time data analysis requirements. Next, the 
main components and their functionalities are summarized.  

Front-end: REAλICS proposes a rich-feature Web User 
(wizard enabling) Interface (UI) via which the user is able to 
set project requirements and access the computed results, the 
toolbox contents and the repository. More specifically, user 
options are given to: provide an initial set of requirements via 
the UI, define the data streams to collect, specify any additional 
related historical datasets, data flow patterns to be followed, as 
well as queries which should be executed on the collected data 
sets.  The outcome of this step-by-step options declaration is 
stored at a DSL file, which the user may further archive, edit or 
share with other users of the platform. Additionally, REAλICS 
user can dynamically update the whole work and data flow via 
the Web UI wizard enabled procedure. As mentioned above, 
the carried out experiment undergoes of an iterative and 
adaptive procedure, i.e. in the course of it the data streams, 
along with the corresponding queries may be updated. An extra  
feature enabled through REAλICS is that the user is given the 
option to keep the data from the previous versions of the 
experiment (thus not losing already collected historical data). 

Software Toolbox: REAλICS provides a software toolbox 
that includes predefined, easily configurable and adaptable 
algorithms and data views, which the user may implement (per 
use case). The toolbox is extensible and can include flow 
algorithms for tackling common data intensive issues.  
Alongside this algorithmic toolbox, predefined views of the 
results are available upon request (again for easing and 
improving users QoE). REAλICS toolbox heavily builds upon 
Apache Spark and Apache Flink with further development and 
implementations for state of the art machine learning and data 
mining algorithms, which can be executed in parallel on 
computer clusters. Among the specific categories of algorithms 
we primarily target collaborative filtering, classification, 
clustering, dimensional reduction, topic modeling and other 
algorithms, while new algorithms can also be inspired and 
implemented in the expansion of REAλICS. The fact that such 
platforms are executed upon frameworks that compose basic 
elements of the REAλICS Lambda driven architecture 
(Hadoop, Spark, Flink) allows the exploitation of their 
capabilities from the REAλICS framework for the construction 
of its open source toolkit of algorithms. Implemented 
algorithms will be offered from the REAλICS toolkit such that 
users can choose among them for their specific data analytics 
requirements.  

B. Lambda architecture Implementation  
REAλICS enables big data analytics projects to be 

implemented by using virtual clusters which implement a 
Lambda architecture approach. As discussed in Section II, the 



most significant benefit of the proposed Lambda architecture is 
that the user query is executed over the whole range of data 
which are accumulated up to the point in time the query was 
submitted, thus both (past and live) data streams are taken into 
account. 

 

Fig. 3. REAλICS Lambda based configuration. Tools from the Cloudera 
Hadoop ecosystem are placed in the corresponding layers of Lambda. The 

tools outlined in this figure are only indicative 

λ at REAλICS is proposed to exploit its three layer design for 
user defined queries addressed at the unified Lambda service 
layer, the data accumulated on the storage (batch) layer and the 
data streams processed dynamically on the speed layer.  

C. Testing and Implementation  
 REAλICS perpetual methodology cycle enables several use 
cases  implementation due to its multi-phase design (Fig. 4.): 

 Phase 1: Use case definition and set-up of the initial set of 
requirements. These requirements translate into  requirements 
for the : (1) infrastructure (i.e. expected size of Lambda 
infrastructure), (2) software tools and Big Data ecosystem 
components and (3) data sources and streams, data flows, data 
partitioning etc.  

Phase 2: The user (i.e. use case owner) is supported by the 
Web frontend wizard to feed these requirements into the 
REAλICS platform. A DSL file is properly formatted and 
delivered to the use case owner  

Phase 3: The initial set of requirements (in the form of a 
DSL file) are fed into REAλICS back-end components and 
Tasks queue handles bootstrapping a virtualized Lambda 
infrastructure in accordance to the requirements. Unit tests 
(prebuilt and/or built dynamically based on the requirements) 
are executed to ensure all components are functional.  

Phase 4: Data collection from defined sources and streams 
commences. Data flow patterns are also applied. Data are 
stored immutably on the persistent storage layer while 
computations based on the user defined queries are utilized in 
predefined or ad-hoc intervals driven by the user requirements.  

 Phase 5: The experiment’s execution is examined and 
assessed. The use case owner updates requirements. The use 
case owner has the option to either drop the data already 
collected in Phase 4 or maintain them to be used in the next 
version (iteration) of the experiment). At this point the use case 
owner thus returns to Phase 2 to update requirements (either 
via the wizard steps or by updating the DSL file) and continues 
within this perpetual use case cycle. 

 

 

Fig. 4. REAλICS Use case experimentation perpetual lifecycle  

 

Intrusion detection for distributed resources: The Aristotle 
University of Thessaloniki hosts four (4) Data centers 
distributed across the University Campus. The infrastructure 
overall is comprised of approximately more than 1000 physical 
and virtual servers, more than 200 physical networking devices 
and more than 500 virtual subnets, most of which are 
monitored at the systems level via appropriate monitoring 
appliances. Currently, the systems are monitored for intrusions 
on the physical level; However an overall view of the campus 
resources is not achievable with standalone monitoring 
appliances due to the volume and variety of the data needed for 
such a purpose estimated to be in the order of tens of TBs. 
Moreover, as industries and academia turn towards “Bring 
Your Own Device” (BYOD) and IoT strategies bringing forth 
the need for a really “distributed resources” targeted IDS 
monitoring is imperative. The use case, currently being 
developed shall be used during the validation phase of the 
REAλICS, which we envision will be used to build upon it a 
real-time IDS monitoring service specifically targeted on 
detecting intrusions and break-in attempts not only focusing on 
data derived from the systems logging mechanisms (as is most 
commonly done on several IDS implementations) but also on 
data aggregated from different sources (environmental 
monitoring sensors, door traps, network taps IoT settings etc).  



V. CONCLUSIONS AND FUTURE WORK 
REAλICS proposed framework addresses the highly 

distributed systems inherent demand to gain knowledge from 
multiple data sources and streams, such as live data as well as 
historical data sources. Challenges in this problem are due to 
the fact that appropriate insight on data’s summarization should 
be delivered to engineers, decision makers and interested 
stakeholders in real time demanding environments where even 
a fraction of a second counts. REAλICS embeds innovation 
potential at various levels of its approach, in the context of 
offering an innovation-friendly industrial and competitive 
software stack. REAλICS is innovating since its user-centered 
framework entities, prioritize users QoE and promote 
community driven open source software distributions.. 

Adaptiveness of REAλICS is heavily based on the user 
defined custom DSL implementation (currently in prototype 
status). Several contributions that are already available in the 
PaaS landscape will be taken into account in the final DSL 
specification. Moreover, elasticity at the moment can be 
handled on the batch and service layers but to truly address 
elasticity on the stream layer the latest available advances from 
Apache Flink and Apache Spark will need to be endorsed and 
adopted within REAλICS.  

REAλICS seeks to advance the state of the art in IaaS 
management by extending functionality and feature-rich 
solutions for the comprehensive management of virtualized 
data centers. Such an approach will be validated and tested 
under the ENCASE project use cases which stress test data 
integration demands under security and privacy preserving 
mechanisms. The future goal is to validate the proposed 
framework a) as an enterprise-ready product and not a group of 
components that need integration to be built upon the cloud, b) 
to give support for services provided by the people who 
developed and manage the software and c) to provide easiness 
to fit into any existing data platform. An example that would fit 
the design goals of REAλICS is the platform, currently being 
developed and used, in the context of the ENCASE project, 
where fast adaptiveness and integration of new filtering tools is 
needed in real time.  
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