
Cloud-based architectures for Geo-located
blogosphere dynamics detection

Athena Vakali
Department of Informatics

Aristotle University
54124 Thessaloniki, Greece

+30 2310998415
avakali@csd.auth.gr

Stefanos Antaris
Department of Informatics

Aristotle University
54124 Thessaloniki, Greece

+30 2310991865
santaris@csd.auth.gr

Maria Giatsoglou
Department of Informatics

Aristotle University
54124 Thessaloniki, Greece

+30 2310998236
mgiatsog@csd.auth.gr

ABSTRACT
Social networking data threads emerge rapidly and
such crowd-driven big data streams are valuable
for detecting trends and opinions. For such
analytics, conventional data mining approaches
are challenged by both high-dimensionality and
scalability concerns. Here, we leverage on the
Cloud4Trends framework, for collecting and
analyzing geo-located microblogging content,
partitioned into clusters under cloud-based
infrastructures. Different cloud architectures are
proposed to offer flexible solutions for geo-located
data analytics, with emphasis on incremental trend
analysis. The proposed architectures are largely
based on a set of service modules which facilitate
the deployment of the experimentation on Cloud
infrastructures. Several experimentation remarks
are highlighted to showcase the requirements and
testing capabilities of different cloud computing
settings.
General Terms
Cloud based models and implementations, social
data analytics, go-located data experimentation

Keywords : social networks and wisdom of the
crowd, geo-located blogosphere dynamics, social
geo-located data clustering, cloud service
deployment.

1 http://www.internetlivestats.com/twitter-statistics/

1. INTRODUCTION
Huge data threads are produced in social

media constantly, with microblogging and
blogging frameworks dominating people’s trend
to broadcast information in a real-time fashion. In
Twitter, for example, tweets threads reach massive
sizes, currently in the scale of 500 million per day
and around 200 billion tweets per year1. The
dynamic and unstructured nature of such
information broadcasting offers an abundance of
data out of which unexpected latent information
can be harvested. Moreover, the current practice of
declaring geo-location offers new sources of
metadata (such as time, point of interest, geo-
coordinates etc) which can reveal important trends
in a geo-bounded area, such as in a city.
User-originating information posted on social
media typically reflect topics of their actual
interest, so such crowd-sourced and in particular
geo-tagged content is particularly useful for geo-
located trends detection. Detecting trends of an
area (such as in a city), is of major importance, due
to the fact that trends can be utilized to spot
collective emergent or evolving behaviour and
phenomena, useful for proceeding to appropriate
decision and city policy making.
Raw information from Twitter has been exploited
in research at several domains, such as for

predicting revenues and stock prices, for the real-
time identification of phenomena, for political
standings etc. Therefore, it is well acknowledged
that the microblogging “sphere” forms a valuable
source of latent information relevant with the
dynamics involved in the public’s opinions, and
views. This is further justified by the fact that such
applications capture the dynamics and the co-
evolution social pulse [1]. Blogosphere as well is
a rich information source at which the dynamics
and the “voice of the public” may be extracted and
mined especially with respect to certain locations
or events. Therefore, microblogging and blogging
activities can serve as major social dynamics
barometers. This is due to the fact that such
parallel information flows embed valuable and
often hidden information about trending users’
interests and opinions in a geo-located area.

This paper places emphasis on both the design
framework and on the leveraging of the cloud
paradigm to stress-test data analytics for localized
trending topics detection. Trends dynamics are
harvested and may be analyzed over user-
contributed content from both microblogging
(Twitter) and blogosphere activities through an
approach such as in incremental text clustering.
To support such an approach, dealing with high
processing and data management demands,
different cloud-based architectures have been
designed and proposed for various
experimentation scales and requirements.
The proposed framework’s contribution is
summarized in its following objectives:

• dealing with the large scale data
production in the Web 2.0 micro-
blogsphere (with huge and rapidly
evolving data) by enabling methods
efficient implementation, useful for real
world application settings;

• supporting the analysis of text data from
emergent web sources which may be
generated at various rates under a unified
data processing cloud-leveraging manner;

• proposing a methodology for unsupervised
detection of local trends by combining

content from different sources to enrich
detected geo-located related trends;

• designing and experimenting with different
Cloud-based infrastructures to support a
geo-located social data processing
scenarios under parallelized computation
settings.

The rest of the paper is structured as follows.
Section 2 reviews the current state regarding trend
detection approaches that leverage microblogging
and blogging data, discussing their challenges.
Section 3 outlines the idea for leveraging a cloud
based trends detection framework, under which
potential, with its implementation details
summarized in Section 4. Different cloud based
architectures are proposed in Section 5 to enable
different architectures focus ranging from
lightweight to fully parallelized solutions. At
Section 6 some indicative experimentation results
are outlined in order to highlight the cloud based
solutions capabilities which can be exploited for
different social media data threads. Finally,
Section 6 has the conclusions and indication for
the proposed work’s exploitation in real city
bounded use cases.

2. MICRO-BLOGOSPHERE TRENDS
DETECTION : STATUS AND
CHALLENGES
Localized trend detection and “public’s pulse”
monitoring strongly set the need for efficient
scalable and/or summarizing methodologies and
frameworks. Current data mining (such as
clustering) approaches focus on detecting (e.g. in
twitter): (i) clusters of users densely associated via
follower or message links, or (ii) groups of tweets
using text mining techniques, such as exploiting
common word co-occurrences [17].
2.1 MINING FOR TREND ANALYSIS
A typical approach to trend analysis involves
tracking users’ interests in different keywords
across time. Already, temporal trend analysis
based on keyword frequency has appeared in
several commercial blog and Web search engines

such as: Google Hot Trends2 and BlogPulse3.
Although Google Hot Trends analyzes millions of
web searches to identify trends, it does not
emphasize on social data analytics. This leaves
aside a collective source of intelligence which
embeds opinions, facts and sentiments. BlogPulse
is an online service that discovers trends from
blogs on a daily basis with statistical techniques
for detecting trending phrases based on their
frequency of appearance [2]. Other online services
such as Twitter-related Trendistic4, outline term
frequency trends again under statistical
methodologies. Twitter itself also exhibits local
trends5 (for some locations) as keywords which
are popular at the current time and at a particular
city.

Clustering has been widely applied on content
generated in Web social media to uncover latent
associations, while recently the feature of time and
the temporal evolution of clusters have been
researched [8], [9]. Social data hierarchical graph
clustering approaches have been applied for trend
detection, in cases where associations among
cross-blogs are modeled with a graph structure [3],
[9]. This approach operates on a static dataset, as
it is not tailored for real-time online operation.

In TwitterStand, news detection from tweets, is
based on data from the Twitter’s GardenHose
service (with a sample of Twitter’s public
timeline) [6]. To deal with noise, TwitterStand
also filters out tweets that are unrelated to news via
a classification method based on the Naïve Bayes
Classifier. After that, the tweets are clustered with
an online method that holds many similarities to
the one followed in Cloud4Trends application
[17]. In particular, the TwitterStand’s algorithm
extracts TF-IDF feature vectors for the tweets and
the clusters and performs clustering based on their
similarity, while it also incorporates the temporal
dimension in the clustering process in the same
way as Cloud4Trends does.
TwitterMonitor [6] is another framework for
online trend detection over Twitter, following an
approach similar to BlogScope [3].

2 http://www.google.com/trends
3 http://www.blogpulse.com/trends.html

2.2 CHALLENGES IN CROWDSOURCED
TREND ANALYSIS

Data
Characteristics

Challenges

Vast size: huge
amount of textual
content, e.g. posts,
tweets, comments,
etc., produced on
social media is an
intrinsic
characteristic for
social data analysis

Scalability: a scalable
clustering methodology
is suitable to process the
vast amount of social
text data, and social
media mining requires
features such as geo-
location and time.

Noisy Data: Social
text data are mostly
written in informal
style and have
simple phrases,
abbreviations, etc.

Data Preprocessing:
An efficient text
preprocessing stage
which identifies the
noisy data is of great
value for knowledge
extraction.

Dynamic data:
Social media users
produce new textual
data at unexpected
rates of time.

Online Processing: A
real-time, adaptive text
clustering approach is
needed to process highly
evolving social data

Social data are geo
and time-
dependent: Social
users generate
textual content of
similar topic at a
specific time period,
and at different
locations

Streaming Clustering:
Social text data
processed online must
meet memory,
performance
requirements in cases of
streaming clustering
algorithms.

Table 1. Online social data processing
challenges

Several solutions have been proposed to surpass
the challenges imposed on social text clustering
algorithms. These challenges are largely due to the
inherent main social data characteristics
(summarized in Table 1) :

4 http://trendistic.com/
5 https://support.twitter.com/articles/101125

• Vast social data sizes : which demand
scalable solutions, dealing with the
computational time complexities required by
conventional text mining algorithms.
Emerging clustering approaches should be
considered to result in efficient social text
data analysis, since data need to be processed
at a limited amount of time [18],[19]. Current
parallel and distributed infrastructures are
proposed to meet the scaling demands of the
clustering algorithms, and already several
parallel or distributed clustering approaches
have been proposed reducing both the
computational cost and the execution time
[16],[18],[20].

• Noisy social networks data : pose the need
for methodologies dealing with the multiple
noise states, due to the non formal and
unstructured social networks expression.
Several text preprocessing methodologies
(e.g. emoticon identification, acronyms
recognition, etc.,) are proposed as vital for the
refinement of the text content and the
improvement of the clustering approach [17].

• Dynamic data threads : demand fast and
often real-time processing and monitoring so
new adaptive methodologies should be
considered and validated [9].

• Social data geo and time-dependencies :
require multiple features integration since
both geo-location and time are crucial in
several location based social networks
analytics [13].

3. LEVERAGING CLOUD4TRENDS
FOR SOCIAL TEXT DYNAMICS
DETECTION
This work places emphasis on dynamics detection
in a geo-located and time related context. It
leverages on Cloud4Trends, a framework
proposed by the authors to enable the online
identification of trends dynamics, using Twitter
and the Blogosphere [17].
It is important to notice that some commercially
available products have focused on offering trend
analytics solutions (such as [22], [23]). These tools

place emphasis on attracting social customers by
unifying engagement, visual planning, and
collective collaboration. Their focus is on
performance analytics for real-time campaign
decisions and they differ with Cloud4Trends in
terms of their focus on customer interactions and
not on the latent knowledge extraction. By using
Cloud4Trends, text clustering is employed in an
incremental manner for detecting and maintaining
a set of dynamic clusters. This framework is based
on the assumption that the analysis is implemented
on a “document” level, instead of a “term” level,
whereas the corresponding clustering approach
follows the TwitterStand process [6]. It is
important to note that with Cloud4Trends clusters
which are active at a given time and locations
express the so called active topics which are of
users’ interest. By dynamically observing the
clusters’ updating rate, we identify trends at their
peak and detect the topics that are no more
trending. This is followed instead of applying a
fixed-threshold based method that sets as inactive
clusters after a predefined period of time. In our
approach we separately collect and clusters tweets
that pertain to a desired geographical area, rather
than examining the geographical scope of the
resulting clusters as a post-analysis process.
In our proposed process here, we proceed to a
microblogging analysis performed on a streaming
fashion to capture constantly changing trending
users’ interests, with an analysis which further :

• exploits associations based on the
broadcasting time, alleviating gaps in earlier
efforts such as in [1], which employs a
clustering method after identifying a set of
trending phrases and focuses only on the
latter, in an offline fashion;

• deals with the respective user’s physical
location (exploiting the tweet geo-location
feature).

Such mutual multi-feature analysis is expected to
produce more fine-grained high-quality clusters of
tweets which will correspond to actual topics that
are popular at a given location and time period. It
is also expected to alleviate the generally
acknowledged problem of noisy microblogging

data, since the joint consideration of location and
time generally improves the clustering quality and
contributes to filtering out noisy tweets.
The proposed process is outlined in Figure 1 and
it actually involves a 3-tier design that deals with
the: i) collection of data in a streaming manner
from Twitter as well as from a pool of selected
blogs focused on a number of geographic areas, ii)
application of an online clustering technique on
the data to detect recent trending topics, and iii)
refinement and ranking of clusters such that trends
are detected and visualized. These three tiers are
summarized in the next subsections

Figure 1. Microblogging Trend Detection Outline

3.1 The Data Collection Tier
The Data collection tier involves special online
data aggregators for collecting recently published
content from Twitter and the Blogosphere. The
content corresponds to some specific geographic
area (such as a city level), leveraging the Twitter
Streaming API6 and Google Blogger API7 (other
possibilities in blogging and microblogging
platforms can also be considered). While the first
API provides a continuous stream of recently
generated posts the second one is based on REST
requests. To this end, based on a collection of
identifiers of blogs owned by Blogger users who

6 https://dev.twitter.com/docs/streaming-api
7 http://code.google.com/apis/blogger/

have declared that they reside within the
monitored geographic area, we use the API for
requesting new posts for each blog at a fixed time
interval (e.g. daily, which is reasonable since we
do not expect blogs to be updated as frequently as
content in Twitter).

3.2 The Data Analysis and Processing Tier
The retrieved posts (either tweets, blog posts, or
extended tweets) are processed in order to produce
clusters which contain posts pertaining to the same
topic. Data are filtered to remove low quality
content with typical approaches including filtering
out tweets/blog posts with very few terms, etc.
Text sanitization techniques are applied on the
resources’ text to filter out common words
(defined in a stop word lists) and to perform
stemming. Next, resources, are represented with a
common model that includes: a unique identifier,
a TF-IDF-based key-value map, a timestamp, and
the resource’s type (tweet, blog post, or extended
tweet). For a given resource the key-value map
structure includes as keys all the resource’s unique
terms, taken from the initial data model’s text, tags
and title (for blogs only) attributes. Using the
Lucene Search Engine library8 separate indexes
are kept for each resource type and for each
attribute. Though these indexes, TF-IDF key-value
maps are obtained for each attribute.

3.3 The Trend Detection and Visualization
Tier
This tier builds on the basis of the outcome of the
data processing tier which produces three sets of
clusters for the tweets’, blog posts’, and extended
tweets’ datasets. A given cluster can be
characterized as active or inactive based on
whether it is corresponds to topics that are popular
at the given time, or it corresponds to topics that
are no longer considered as trending. Clusters
update rates are monitored to determine when a
cluster should be made inactive due to limited
activity. To this end, additional information is
maintained for each cluster: the evolution of the
temporal distance between the timestamps of the
last two resources assigned to the given cluster.

8 http://lucene.apache.org/core/

By taking the moving average of the
aforementioned parameter to smoothen its
evolution, we can identify periods of time when
the cluster is increasingly rising in popularity. This
is due to users’ intense activity, when it is at its
peak. To improve clusters’ quality, the tiny sized
clusters (with very few members) are considered
as noise and thus are eliminated.

Active clusters are considered as representative of
topics that concern web users at a given times,
however, in order to identify the actual trends,
clusters should be ranked in terms of an activity
measure. To this end, for each type of content (and
for a given monitored location) Cloud4Trends
retrieves the active clusters and ranks them based
on: i) their members’ number, and ii) their mean
timestamp, under the assumption that the “hottest”
topics are those that are referred to in many
resources, and that are additionally being created
on average close to the current time.

The topics that characterize each cluster are
identified as the terms with the highest scores in
the cluster’s mean key-value map. Cloud4Trends
then generates a summary description for each
cluster comprising of few member terms or
phrases based on their scores and their
significance (hashtags, title terms, etc), while the
high-ranked clusters shape the trending topics for
the given time.
In Cloud4Trends trends are therefore calculated
based on the three different data sources for each
location under investigation. Depending on the
update rates of the resources’ types (e.g. faster in
Twitter while slower in blogs), one can decide on
how often the clusters’ “trending scale” will be
recalculated.

4. IMPLEMENTATION DESIGN OF A
CLOUD-BASED FRAMEWORK FOR
BLOGOSPHERE DYNAMICS
Cloud4Trends is proposed to handle data intensive
use cases as it involves concurrent analysis of
large sizes of web social data in an online fashion.
In handling for example, both tweets, with
unexpectedly peaks, and blogs whose sizes may be
considerably large, problems for handling large
and fluctuating sizes of data arise. Feasible

approaches should address parallel programming
techniques required for many of our proposed
operations, as for example in the cases of :

• data which should be concurrently analyzed
for the different geographic areas and their
analysis should be done effectively;

• blogs and Twitter data which should be
collected in parallel;

• data collection module which should be
constantly available for receiving new data;

• data processing which should be carried out
for data already arrived and awaiting analysis
under different concurrent process.

Therefore, suggested ideas can heavily utilize the
Cloud computing paradigm which offers a
significant ground for such social streams mining
applications due to its support via scalable and
powerful infrastructures [8]. Our design
requirements match well with the MapReduce
computing paradigm, which codifies a generic
“recipe” for processing large datasets when this
processing consists of more than one stage. The
MapReduce technology matches the needs of the
Clou4Trends data analysis and processing tier,
given that in a cloud-based deployment the
mapping operations can be distributed into
separate computer nodes. Prior to being ported to
the Cloud, Cloud4Trends ran into a multi-core
computer, designed over a software architecture
which posed obstacles in aggregating and
analyzing data from both Twitter and blogs. We
believe that parallel approaches in cloud
computing infrastructures constitute viable
solutions for real-time large-scale data mining
applications.

Since Cloud4Trends aims is to validate the quality
of the resulting clusters and observe and quantify
the differences in the trends resulting from the
three data sources which represent different user
groups. Cloud infrastructure can be leveraged for
efficiently handling both the data’s high
scalability, the requirement for real-time tweet
processing and clusters’ update, as well as for
ensuring quality of service for an increasing
number of end users (inline with Table 1
challenges).

4.1 The VENUS-C Infrastructure
The suggested system (as described in previous
section) is currently implemented in the context of
the so called “Cloud4Trends” experiment9 entitled
“Leveraging the Cloud infrastructure for localized
real-time trend detection in social media”, which
runs over the VENUS-C infrastructure. VENUS-
C10 (Virtual Multidisciplinary EnviroNments
USing Cloud Infrastructures) is a pioneering
project that develops and deploys a Cloud
computing service for research and industry
communities in Europe by offering an industrial-
quality, service-oriented platform based on
virtualization technologies and taking advantage
of previous experience on Grids and
Supercomputing, to facilitate a range of research
fields through easy deployment of end-user
services.

VENUS-C offers several service components to
allow a wide range of end-user applications
(targeting mainly research groups and SMEs) to
benefit from the advantages of a Cloud computing
platform, without having to develop custom
Cloud-aware solutions. It offers a selection of
programming models that, combined with
appropriate data access mechanisms, constitute a
convenient abstraction for deploying scientific
applications on top of plain virtual machines.
VENUS-C programming model enactment
services expose their functionality via an Open
Grid Forums Basic Execution Service (OGF BES)
[15] and Job Submission Description Language
(JSDL) [16] compliant web service interface, and
take care of the enactment of a job at a given Cloud
Provider. Each enactment service deploys a
specific application on a number of either
Windows Azure11 virtual machines or Unix virtual
resources from open source Cloud middlewares
(OpenNebula12 & EMOTIVE Cloud13).
A Cloud-based data management SDK is provided
by VENUS-C for handling all data transfer
operations between the Cloud infrastructure and
the on-premises client applications, which

9 http://oswinds.csd.auth.gr/?page_id=1320
10 http://www.venus-c.eu/
11 http://www.windowsazure.com/

supports the Storage Networking Industry
Association (SNIA) Cloud Data Management
Interface (CDMI) specification [16]. Resource
monitoring has also been taken into account in
VENUS-C so that each end-user is to be able to
identify its application’s resource consumption via
the VENUS-C Accounting Service.
4.2 The Cloud4Trends Cloud-based
Architecture
The suggested design is implemented in
Cloud4Trends under the previously described 3-
tiered conceptual design structure. Cloud4Trends
is implemented as a hybrid application based on
the integration of : i) on-premises client interface
and ii) multiple job execution components with
different functionalities on top of the VENUS-C
Cloud services infrastructure. In particular,
Cloud4Trends uses VENUS-C Generic Worker
programming model for job submission and
application deployment on top of the Azure.

Figure 2. Trend Detection Cloud-based framework

Cloud infrastructure functionalities which enable
effective data-driven and task-based job
submissions are exploited. Figure 2 illustrates the
three Cloud4Trends modules, namely: the Collect
module, the on-the-Cloud module, and the Cloud

12 http://opennebula.org
13 http://www.emotivecloud.net/

services module. These modules support the
proposed 3-tier design (described above) such that
the Client module implements the Data Collection
and Visualization tiers, whereas the Cloud-based
module implements the Data Processing and
knowledge extraction tier.
More details on this implementation are given in
[17], at which an indicative workflow is proposed
to be orchestrated as follows : Collect module,
which is responsible for collecting data from
social Web (Twitter and Blogosphere) and
initializing new experiments when required by the
researchers, submits new Parsing jobs (executed
by Twitter or Blog Parsers) to the cloud via the Job
Submission Client of Generic Worker, which is
hosted at the Execution Service, when new data
are available. The required data for each given job
are uploaded, as a batch, using the Data Access
Service to Azure Blobs. Cloud4Trends’ Indexing
Service Module consists of three separate Azure
services (for indexing tweets, blog posts, and
extended tweets) that are responsible for the Full
Text Indexing of the parsed data using the a
Lucene library for Azure14. When an Indexing
service completes its execution it initiates a
Splitter Job using the Generic worker’s Job
Submission Client, which receives as input data
the new resources. Splitter application also
downloads the appropriate currently active
clusters from the corresponding Azure Table.
Different Similarity estimation Workers (Mapper
jobs) are submitted by each Splitter job, via the
Execution Service module, and in particular using
the Generic Worker Local Job Submission service,
which calculate the similarity scores between the
new resource and the respective active clusters. An
Aggregation Worker (Reducer job) is also
submitted by the Splitter Job via the Local Job
Submission service, to collect all similarity score
combinations emitted by the corresponding
Mapper jobs, and identify the best match to an
existing cluster for each resource.

14 http://code.msdn.microsoft.com/windowsazure/Azure-

Library-for-83562538

5. CLOUD ARCHITECTURES FOR
SOCIAL DATA ANALYSIS
Cloud4Trends has exploited the Windows Azure
infrastructure, which provides functionalities but
also poses additional challenges since in cloud
computing a predefined number of resources (i.e.
number of CPU, RAM, etc.) is available to be
utilized and shared. Each computer resource in the
cloud executes a specific system’s service, the
Worker Role and Windows Azure provides several
instances of resources to be defined on each
Worker Roles. By initiating more than one
instance of a Worker Role in order to provide
parallelization, the number of reserved resources
is increasing according to the defined resource’s
instance. As such, great emphasis should be given
on the number of resources which are assigned on
each Worker Role in order to efficiently divide the
shared resources to the overall system’s Worker
Roles. An erroneous partition of the cloud
resources over the Worker Roles may lead to non-
scalable system architectures. Moreover, the
Azure Service Bus service is provided to establish
a fail-safe communication channel among the
Worker Roles, and Virtual Machines are hosted
into the Windows Azure infrastructure, which
allocate same shared resources with the other
Worker Roles, under the same communication
network to avoid network delays during their
communication.

Figure 3. 1st architecture (lightweight)

Based on the above specifications, we propose five
distinct system architectures emphasizing on the
differences among single-node and cloud-
computing architecture :

• 1st system architecture, as a lightweight
suggestion at which a sequential flow of
the social text clustering process over the
cloud is accomplished, as shown in Figure
3. No parallelization is provided in any of
our framework’s component, and
components of the same tier are included
into a single Worker Role, providing
though the minimum number of Worker
Roles and just two Virtual Machines are to
be generated for efficiently executing the
component’s process: i)Token Identifier
VM, and ii) Dimension Manager VM

• 2nd system architecture, to focus on the
text processing and at which distinction of
the tweet collection and the Json parsing
process is emphasized. While the process
of roles does not require high memory
allocation, small instances of each role is
needed and multiple instances of the Json
Parser Role and the Tweet Preprocessing
Roles are initialized (Figure 4) to provide
components parallelization and offer a
more scalable solution.

• 3rd system architecture, to support Tweet
Indexing and at which parallelization may
be accomplished on the Vector Handler
component, while the Indexing and the
Dimension Manager components are not
required to be parallelized (Figure 5).
Since Windows Azure, enables
programming balancing of a Worker
Role’s instances, flexibility and
dimensionality reduction is reached.

• 4th system architecture, to place emphasis
on the parallelization of clustering
components and at which Text Clustering
Role is divided into three distinct roles, as
shown Figure 6. This approach supports i)
Similarity Calculator Role, ii) Results
Comparator Role, and iii) Cluster Manager
Role, such that Similarity Calculator Roles
are processed effectively.

Figure 4. 2nd architecture (text processing)

Figure 5. 3rd architecture (indexing)

Figure 6. 4th architecture (clustering)

Figure 7. 5th architecture (parallelization)

• 5th system architecture, to offer
parallelization in most of the framework’s
components (Figure 7). Combining the 3rd
and the 4th system architectures, maximum
parallelization is targeted, for scalable
solutions in real-time geo-located social
text clustering. Medium instances of
resources are assigned on Cluster Manager
Role and Dimension Manager VM, while
small instances are assigned to the other of
the system’s roles.

•

6. EXPERIMENTATION RESULTS
For testing purposes, the real-time social text
clustering approach uses the FSD Corpus15. This
dataset was collected by the Cross project, which
deals with identifying real-time story detection
across multiple massive streams. Dataset consists
of almost 52 million tweet IDs along with their
corresponding user screen names (from Twitter
Streaming API). Additionally, labeling process
has been applied on a subset of the dataset to
categorize the tweets on a distinct topic. This
subset consists of 3034 tweets which were tagged
as being on-topic for one of the 27 topics defined.

15 http://demeter.inf.ed.ac.uk/cross/index.html

Services System architectures

1st 2nd 3rd 4th 5th

Tweet
Preprocess
ing Role

1x1
Core
1x1.7
5GB
RAM

4x1
Cor
e
4x1.
75
GB
RA
M

3x1
Core
3x1.75
GB
RAM

2x1
Core
2x1.75
GB
RAM

2x1
Core
2x1.75
GB
RAM

Tweet
Indexing
Role

1x1
Core
1x1.7
5GB
RAM

1x1
Cor
e
1x1.
75G
B
RA
M

1x1
Core
1x1.75
GB
RAM

1x1
Core
1x1.75
GB
RAM

1x1
Core
1x1.75
GB
RAM

Tweet
Clustering
Role

1x2
Cores
1x3.5
GB
Ram

1x2
Cor
es
1x3.
5GB
Ram

1x2
Cores
1x3.5
GB
Ram

- -

Results
Comparato
r Role

- - -

1x1
Core
1x1.75
GB
RAM

1x1
Core
1x1.75
GB
RAM

Cluster
Manager
Role

- - -

1x2
Cores
1x3.5
GB
Ram

1x2
Cores
1x3.5
GB
Ram

Dimension
Manager
VM

1x4
Cores
1x7G
B
Ram

1x4
Cor
es
1x7
GB
Ram

1x4
Cores
1x7G
B Ram

1x4
Cores
1x7G
B Ram

1x4
Cores
1x7G
B Ram

Total
Number of
Resources

10
Cores
17.5
GB
Ram

17
Cor
es
29.7
5
GB
RA
M

20
Cores
35 GB
Ram

20
Cores
35 GB
Ram

20
Cores
35 GB
Ram

Table 2. Experimentation technical details

Great emphasis is given on the computer
architectures used to apply our experiments,
evaluating the benefits and the limitations of each
architecture. The same experiments are conducted
over the different proposed (Section 5) cloud-
computing architectures and also on single node
solutions. Details for each architecture’s services
technical details are summarized in Table 2.

The initial experimentation focused on the two
computing infrastructures paradigm and we stress-
tested the proposed framework with a
dimensionality reduction technique, for both cloud
and traditional computing infrastructures.

Figure 8 showcases the fact that Windows Azure
cloud computing infrastructure performed better
when compared with the single-node
infrastructure, and it was noticed that regarding its
high computational cost and its parallelization
demands, cloud computing infrastructure has
provided the appropriate resources to efficiently
support such a demanding and scalable solution.

Figure 8. Computer Infrastructures Comparison

 The basic workflow of the experiments and the
different parameters of our proposed
methodology, including the appropriate tweets’
selection and the rate of the dimensionality
reduction performed, have been stress-tested
under several scenarios. Here, we focus on the
experimentation results which are relevant in the
proposed architectures emphasis and potential on
geo-located time dependent knowledge extraction
from social text threads.

Figure 9. Azure Hours of Execution Time - No
dimensionality Reduction

Figure 9 summarizes the proposed cloud
computing architectures (details at Section 5), the
execution time of each system architecture, when
no dimensionality reduction is performed. As
depicted in this figure, the 1st System Architecture
demands more hours than the other system
architectures to accomplish the experiment.
Instead, when the parallelization is occurred on the
other system architectures, the experiments’
execution time is diminishing. In the 5th System
architecture, where maximum parallelization is
provided in most of its services, the total execution
time is lower than the others. The scalability
obstacle, though, is confronted with the support of
the parallelization on the systems’ services.

Figure 10. Azure Hours of Execution Time - 25%
latent factors dimensionality reduction

0
10
20
30

10
00

30
00

50
00

70
00

90
00

Ho
ur
s

Size	of	Training	Collection

Cloud	
Computing	
Architecture

Single-Node	
Architecture

The dimensionality reduction approach has been
further applied on the cloud computing
architectures, the time execution of each system
architecture is shown in Figure 10 . Similar to the
previous approach, 1st System Architecture
requires the most execution time than the other
architectures, while the 5th System Architecture
provides a more scalable solution.

Figure 11. Single-Node Hours of Execution Time -
25% latent factors dimensionality reduction

Finally, the difference among the proposed system
architectures when the dimensionality reduction
technique is applied is stressed-tested, by
considering that parallelization is provided on the
distinct systems’ services (Figure 11). The total
execution time is shown to be decreased, since the
tweets’ vector representation is reduced, and the
similarity calculation along with the existing
clusters is not of high-computational cost. Such
cases exhibit no bottlenecks in the clustering
process and their applicability in geo-located time
dependent use cases is promising.

7. CONCLUSIONS AND FUTURE
WORK
This proposed work has focused on utilizing the
cloud computing paradigm, by the use of VENUS-
C enactment services, and under data-dependent
jobs, which stress-tested five different proposed
architectures. Scalability issues are addressed by
dedicated components which enable dedicated
Cloud Tables for monitoring clusters’ “activity”
and for updating their states. Dynamics can thus
be detected under clusters’ representations at
parameterized time intervals, with geo-spotted
trends identification.

Future work is planned around the following axes:
i) the fine-tuning of the clustering and trend
detection algorithm and the experimental
evaluation of results, ii) the implementation of a
shard-based distributed Indexing service since for
the time being the service for each type of resource
is deployed on a single instance, iii) measuring the
system’s performance for different design
parameters, iv) creating a web-based user interface
(hosted either on Cloud or on premises) for
visualization of the detected real-time trends and
trends’ analytics, and v) stress-test the proposed
framework and architectures under different cities
datasets and requirements.

The benefit that Cloud4Trends and different
architectures offer is that they verify that Cloud-
based architectures constitute a viable solution for
online social web geo-located and time-related
data mining applications. In particular, the
proposed work enables massive data analysis at a
distributed setting, thus reducing the prerequisite
for real-time applications data processing time. At
the same time is allows easier testing of new
scenarios, achieving high-quality results under
different demands of cloud-based architectures
which can improve application capability sharing.
Overall, these are benefit for both researchers and
entrepreneurs in actual real use cases.

In summary, the proposed framework (as realized
by the Cloud4Trends experiment), demonstrates
that porting trend detection into the Cloud is a very
suitable solution considering the challenges posed
by the data, geo-location features and time
intensive processes involved in online collection
and analysis of large and evolving geo-located
Web 2.0 datasets.

ACKNOWLEDGMENTS
This work is partly funded and realized within the
Cloud4Trends pilot project of the VENUS-C
project. VENUS-C (Virtual multidisciplinary
EnviroNments USing Cloud infrastructures) is co-
funded by the GÉANT and e-Infrastructures Unit,
DG Information Society and Media, European
Commission. The authors thank the anonymous
reviewers for their valuable comments and
suggestions.

REFERENCES
[1] Antoniades, D. and C. Dovrolis. "Co-

evolutionary dynamics in social networks: A
case study of Twitter." Computational Social
Networks2.1 (2015): 1-21.

[2] N. S. Glance, M. Hurst, and T. Tomokiyo:
BlogPulse: Automated Trend Discovery for
Weblogs. WWW Conference. 2004.

[3] M. Uchida, N. Shibata, and S. Shirayama:
Identification and Visualization of Emerging
Trend from Blogosphere, proceedings of
International Conference on Weblogs and
Social Media (ICWSM), pp. 305-306, 2007.

[4] M. Mathioudakis, N. Bansal, and N. Koudas:
Identifying, attributing and describing spatial
bursts. Proc. VLDB Endow. 3, 1-2 (September
2010), 1091-1102. 2010.

[5] J. Sankaranarayanan, H. Samet, B. E. Teitler,
M. D. Lieberman, and J. Sperling:
TwitterStand: news in tweets. In Proceedings
of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic
Information Systems (GIS '09). ACM, 42-51.
2009.

[6] M. Mathioudakis and N. Koudas:
TwitterMonitor: trend detection over the
twitter stream. In Proceedings of the 2010
international conference on Management of
data (SIGMOD '10). ACM, 1155-1158. 2010.

[7] V. Koutsonikola, A. Vakali, E. Giannakidou,
I. Kompatsiaris: Clustering Users of a Social
Tagging System: A Topic and Time Based
Approach. WISE 2009: 75-86. 2009.

[8] I. Livenson and E. Laure: Towards transparent
integration of heterogeneous cloud storage
platforms. In DIDC '11. ACM, 27-34. 2011.

[9] Giatsoglou, Maria, and Athena Vakali.
"Capturing social data evolution using graph
clustering." IEEE Internet Computing (2013):
74-79.

[10] Spärck Jones, Karen: A statistical
interpretation of term specificity and its
application in retrieval. Journal of
Documentation 28 (1): 11–21. 1972.

[11] D. Lezzi, R. Rafanell, F. Lordan, E. Tejedor,
R.M. Badia: COMPSs in the VENUS-C
Platform: enabling e-Science applications on
the Cloud. Proceedings of 4th Iberian Grid
Infrastructure Conference, 2011, 73-84.

[12] Yogesh Simmhan, Catharine van Ingen, Girish
Subramanian, and Jie Li: Bridging the Gap
between Desktop and the Cloud for eScience
Applications. In Proceedings of the 2010 IEEE
3rd International Conference on Cloud
Computing (CLOUD '10). IEEE Computer
Society, 474-481. 2010.

[13] Bao, Jie, et al. "Recommendations in location-
based social networks: a
survey." GeoInformatica 19.3 (2015): 525-
565.

[14] Foster I. et. al:OGSA Basic Execution Service
Version 1.0. Grid Forum Document GFD-RP.
108. 8 August 2007.

[15] Savva A (Editor). Job Submission Description
Language (JSDL) Specification, Version 1.0.
Grid Forum Document GFD-R.056. 7
November 2005.

[16] SNIA CDMI: http://www.snia.org/cdmi
[17] A. Vakali, M. Giatsoglou, and S. Antaris.

Social networking trends and dynamics
detection via a cloud-based framework design.
WWW (Companion Volume), pages 1213-
1220. ACM, WWW 2012.

[18] Clarg E., Araki K. (2011). Text Normalization
in Social Media: Progress, Problems and
Applications for a Pre-Processing System of
Casual English. Special issue of
Computational Linguistics and Related Fields.
pp 2 – 11

[19] Reuter T., Cimiano P., Drumond L., Buza K.,
Schmidt-Thieme L. (2011). Scalable Event-
based Clustering of Social Media via Record
Linkage Techniques. In Proceedings of the
Fifth International AAAI Conference on
Weblogs and Social Media.

[20] Whang J.J., Sui Xin, Dhillon I.S. (2012).
Scalable and Memory-Efficient Clustering of
Large-Scale Social Networks. In Proceedings

of the 12th International Conference on Data
Mining. pp. 705 – 714

[21] Yerva S. R., Jeung H., Aberer K. (2012).
Cloud based Social and Sensor Data Fusion.
Proceedings of the 15th International

Conference on Information Fusion. pp. 2494 –
2501.

[22] Sysomos MAP social research engine :
https://sysomos.com/

[23] Radian6 Buddy Media Social Studio :
http://www.exacttarget.com/

