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ABSTRACT 
Social networking data threads emerge rapidly and 
such crowd-driven big data streams are valuable 
for detecting trends and opinions. For such 
analytics, conventional data mining approaches 
are challenged by both high-dimensionality and 
scalability concerns. Here, we leverage on the 
Cloud4Trends framework, for collecting and 
analyzing geo-located microblogging content, 
partitioned into clusters under cloud-based 
infrastructures. Different cloud architectures are 
proposed to offer flexible solutions for geo-located 
data analytics, with emphasis on incremental trend 
analysis. The proposed architectures are largely 
based on a set of service modules which facilitate 
the deployment of the experimentation on Cloud 
infrastructures. Several experimentation remarks 
are highlighted to showcase the requirements and 
testing capabilities of different cloud computing 
settings.  
General Terms 
Cloud based models and implementations, social 
data analytics, go-located data experimentation 

Keywords : social networks and wisdom of the 
crowd, geo-located blogosphere dynamics, social 
geo-located data clustering, cloud service 
deployment. 

                                                
1 http://www.internetlivestats.com/twitter-statistics/  

1. INTRODUCTION 
Huge data threads are produced in social 

media constantly, with microblogging and 
blogging frameworks dominating people’s trend 
to broadcast information in a real-time fashion. In 
Twitter, for example, tweets threads reach massive 
sizes, currently in the scale of 500 million per day 
and around 200 billion tweets per year1. The 
dynamic and unstructured nature of such 
information broadcasting offers an abundance of 
data out of which unexpected latent information 
can be harvested. Moreover, the current practice of 
declaring geo-location offers new sources of 
metadata (such as time, point of interest, geo-
coordinates etc) which can reveal important trends 
in a geo-bounded area, such as in a city.  
User-originating information posted on social 
media typically reflect topics of their actual 
interest, so  such crowd-sourced and in particular 
geo-tagged content is particularly useful for geo-
located trends detection. Detecting trends of an 
area (such as in a city), is of major importance, due 
to the fact that trends can be utilized to spot 
collective emergent or evolving behaviour and 
phenomena, useful for proceeding to appropriate 
decision and city policy making. 
Raw information from Twitter has been exploited 
in research at several domains, such as for 



predicting revenues and stock prices, for the real-
time identification of phenomena, for political 
standings etc. Therefore, it is well acknowledged 
that the microblogging “sphere” forms a valuable 
source of latent information relevant with the 
dynamics involved in the public’s opinions, and 
views. This is further justified by the fact that such 
applications capture the dynamics and the co-
evolution social pulse [1]. Blogosphere as well is 
a rich information source at which the dynamics 
and the “voice of the public” may be extracted and 
mined especially with respect to certain locations 
or events. Therefore, microblogging and blogging 
activities can serve as major social dynamics 
barometers. This is due to the fact that such 
parallel information flows embed valuable and 
often hidden information about trending users’ 
interests and opinions in a geo-located area.  

This paper places emphasis on both the design 
framework and on the leveraging of the cloud 
paradigm to stress-test data analytics for localized 
trending topics detection. Trends dynamics are 
harvested and may be analyzed over user-
contributed content from both microblogging 
(Twitter) and blogosphere activities through an 
approach such as in incremental text clustering. 
To support such an approach, dealing with high 
processing and data management demands, 
different cloud-based architectures have been 
designed and proposed for various 
experimentation scales and requirements.  
The proposed framework’s contribution is 
summarized in its following objectives: 

• dealing with the large scale data 
production in the Web 2.0 micro-
blogsphere (with huge and rapidly 
evolving data) by enabling methods 
efficient implementation, useful for real 
world application settings; 

• supporting the analysis of text data from 
emergent web sources which may be 
generated at various rates under a unified 
data processing cloud-leveraging manner; 

• proposing a methodology for unsupervised 
detection of local trends by combining 

content from different sources to enrich 
detected geo-located related trends; 

• designing and experimenting with different 
Cloud-based infrastructures to support a 
geo-located social data processing 
scenarios under  parallelized computation 
settings. 

The rest of the paper is structured as follows. 
Section 2 reviews the current state regarding trend 
detection approaches that leverage microblogging 
and blogging data, discussing their challenges. 
Section 3 outlines the idea for leveraging a cloud 
based trends detection framework, under which 
potential, with its implementation details 
summarized in Section 4. Different cloud based 
architectures are proposed in Section 5 to enable 
different architectures focus ranging from 
lightweight to fully parallelized solutions. At 
Section 6 some indicative experimentation results 
are outlined in order to highlight the cloud based 
solutions capabilities which can be exploited for 
different social media data threads. Finally, 
Section 6 has the conclusions and indication for 
the proposed work’s exploitation in real city 
bounded use cases. 

2. MICRO-BLOGOSPHERE TRENDS 
DETECTION : STATUS AND 
CHALLENGES 
Localized trend detection and “public’s pulse” 
monitoring strongly set the need for efficient 
scalable and/or summarizing methodologies and 
frameworks. Current data mining (such as 
clustering) approaches focus on detecting (e.g. in 
twitter): (i) clusters of users densely associated via 
follower or message links, or (ii) groups of tweets 
using text mining techniques, such as exploiting 
common word co-occurrences [17].  
2.1 MINING FOR TREND ANALYSIS  
A typical approach to trend analysis involves 
tracking users’ interests in different keywords 
across time. Already, temporal trend analysis 
based on keyword frequency has appeared in 
several commercial blog and Web search engines 



such as: Google Hot Trends2 and BlogPulse3. 
Although Google Hot Trends analyzes millions of 
web searches to identify trends, it does not 
emphasize on social data analytics. This leaves 
aside a collective source of intelligence which 
embeds opinions, facts and sentiments. BlogPulse 
is an online service that discovers trends from 
blogs on a daily basis with statistical techniques 
for detecting trending phrases based on their 
frequency of appearance [2]. Other online services 
such as Twitter-related Trendistic4, outline term 
frequency trends again under statistical 
methodologies. Twitter itself also exhibits local 
trends5 (for some locations) as keywords which 
are popular at the current time and at a particular 
city.  

Clustering has been widely applied on content 
generated in Web social media to uncover latent 
associations, while recently the feature of time and 
the temporal evolution of clusters have been 
researched [8], [9]. Social data hierarchical graph 
clustering approaches have been applied for trend 
detection, in cases where associations among 
cross-blogs are modeled with a graph structure [3], 
[9]. This approach operates on a static dataset, as 
it is not tailored for real-time online operation.  

In TwitterStand, news detection from tweets, is 
based on data from the Twitter’s GardenHose 
service (with a sample of Twitter’s public 
timeline) [6]. To deal with noise, TwitterStand 
also filters out tweets that are unrelated to news via 
a classification method based on the Naïve Bayes 
Classifier. After that, the tweets are clustered with 
an online method that holds many similarities to 
the one followed in Cloud4Trends application 
[17]. In particular, the TwitterStand’s algorithm 
extracts TF-IDF feature vectors for the tweets and 
the clusters and performs clustering based on their 
similarity, while it also incorporates the temporal 
dimension in the clustering process in the same 
way as Cloud4Trends does.  
TwitterMonitor [6] is another framework for 
online trend detection over Twitter, following an 
approach similar to BlogScope [3].  

                                                
2 http://www.google.com/trends 
3 http://www.blogpulse.com/trends.html 

2.2 CHALLENGES IN CROWDSOURCED 
TREND ANALYSIS  
 
Data 
Characteristics 

Challenges 

Vast size: huge 
amount of textual 
content, e.g. posts, 
tweets, comments, 
etc., produced on 
social media is an 
intrinsic 
characteristic for 
social data analysis 

Scalability: a scalable 
clustering methodology 
is suitable to process the 
vast amount of social 
text data, and social 
media mining requires 
features such as geo-
location and time. 

Noisy Data: Social 
text data are mostly 
written in informal 
style and have 
simple phrases, 
abbreviations, etc. 

Data Preprocessing: 
An efficient text 
preprocessing stage 
which identifies the 
noisy data is of great 
value for knowledge 
extraction. 

Dynamic data: 
Social media users 
produce new textual 
data at unexpected 
rates of time. 

Online Processing: A 
real-time, adaptive text 
clustering approach is 
needed to process highly 
evolving social data 

Social data are geo 
and time-
dependent: Social 
users generate 
textual content of 
similar topic at a 
specific time period, 
and at different 
locations  

Streaming Clustering: 
Social text data 
processed online must 
meet  memory, 
performance 
requirements in cases of 
streaming clustering 
algorithms. 

Table 1. Online social data processing 
challenges 

Several solutions have been proposed to surpass 
the challenges imposed on social text clustering 
algorithms. These challenges are largely due to the 
inherent main social data characteristics 
(summarized in Table 1) :  

4 http://trendistic.com/ 
5  https://support.twitter.com/articles/101125 



• Vast social data sizes : which demand 
scalable solutions, dealing with the  
computational time complexities required by 
conventional text mining algorithms. 
Emerging clustering approaches should be 
considered to result in efficient social text 
data analysis, since data need to be processed 
at a limited amount of time [18],[19]. Current 
parallel and distributed infrastructures are 
proposed to meet the scaling demands of the 
clustering algorithms, and already several 
parallel or distributed clustering approaches 
have been proposed reducing both the 
computational cost and the execution time 
[16],[18],[20]. 

• Noisy social networks data : pose the need 
for methodologies dealing with the multiple 
noise states, due to the non formal and 
unstructured social networks expression. 
Several text preprocessing methodologies 
(e.g. emoticon identification, acronyms 
recognition, etc.,) are proposed as vital for the 
refinement of the text content and the 
improvement of the clustering approach [17]. 

• Dynamic data threads :  demand fast and 
often real-time processing and monitoring so 
new adaptive methodologies should be 
considered and validated [9]. 

• Social data geo and time-dependencies : 
require multiple features integration since 
both geo-location and time are crucial in 
several location based social networks 
analytics [13].   
 

3. LEVERAGING CLOUD4TRENDS 
FOR SOCIAL TEXT DYNAMICS 
DETECTION  
This work places emphasis on dynamics detection 
in a geo-located and time related context. It 
leverages on Cloud4Trends, a framework 
proposed by the authors to enable the online 
identification of trends dynamics, using Twitter 
and the Blogosphere [17].    
It is important to notice that some commercially 
available products have focused on offering trend 
analytics solutions (such as [22], [23]). These tools 

place emphasis on attracting social customers by 
unifying engagement, visual planning, and 
collective collaboration. Their focus is on 
performance analytics for real-time campaign 
decisions and they differ with Cloud4Trends in 
terms of their focus on customer interactions and 
not on the latent knowledge extraction. By using 
Cloud4Trends, text clustering is employed in an 
incremental manner for detecting and maintaining 
a set of dynamic clusters. This framework is based 
on the assumption that the analysis is implemented 
on a “document” level, instead of a “term” level, 
whereas the corresponding clustering approach 
follows the TwitterStand process [6]. It is 
important to note that with Cloud4Trends clusters 
which are active at a given time and locations 
express the so called active topics which are of 
users’ interest. By dynamically observing the 
clusters’ updating rate, we identify trends at their 
peak and detect the topics that are no more 
trending. This is followed instead of applying a 
fixed-threshold based method that sets as inactive 
clusters after a predefined period of time. In our 
approach we separately collect and clusters tweets 
that pertain to a desired geographical area, rather 
than examining the geographical scope of the 
resulting clusters as a post-analysis process. 
In our proposed process here, we proceed to a 
microblogging analysis performed on a streaming 
fashion to capture constantly changing trending 
users’ interests, with an analysis which further : 

• exploits associations based on the 
broadcasting time, alleviating gaps in earlier 
efforts such as in [1], which employs a 
clustering method after identifying a set of 
trending phrases and focuses only on the 
latter, in an offline fashion; 

• deals with the respective user’s physical 
location (exploiting the tweet geo-location 
feature).  

Such mutual multi-feature analysis is expected to 
produce more fine-grained high-quality clusters of 
tweets which will correspond to actual topics that 
are popular at a given location and time period. It 
is also expected to alleviate the generally 
acknowledged problem of noisy microblogging 



data, since the joint consideration of location and 
time generally improves the clustering quality and 
contributes to filtering out noisy tweets. 
The proposed process is outlined in Figure 1 and 
it actually involves a 3-tier design that deals with 
the: i) collection of data in a streaming manner 
from Twitter as well as from a pool of selected 
blogs focused on a number of geographic areas, ii) 
application of an online clustering technique on 
the data to detect recent trending topics, and iii) 
refinement and ranking of clusters such that trends 
are detected and visualized. These three tiers are 
summarized in the next subsections 
 

 
Figure 1. Microblogging Trend Detection Outline 
 
3.1 The Data Collection Tier 
The Data collection tier involves special online 
data aggregators for collecting recently published 
content from Twitter and the Blogosphere. The 
content corresponds to some specific geographic 
area (such as a city level), leveraging the Twitter 
Streaming API6 and Google Blogger API7 (other 
possibilities in blogging and microblogging 
platforms can also be considered). While the first 
API provides a continuous stream of recently 
generated posts the second one is based on REST 
requests. To this end, based on a collection of 
identifiers of blogs owned by Blogger users who 

                                                
6 https://dev.twitter.com/docs/streaming-api 
7 http://code.google.com/apis/blogger/ 

have declared that they reside within the 
monitored geographic area, we use the API for 
requesting new posts for each blog at a fixed time 
interval (e.g. daily, which is reasonable since we 
do not expect blogs to be updated as frequently as 
content in Twitter). 

3.2 The Data Analysis and Processing Tier 
The retrieved posts (either tweets, blog posts, or 
extended tweets) are processed in order to produce 
clusters which contain posts pertaining to the same 
topic. Data are filtered to remove low quality 
content with typical approaches including filtering 
out tweets/blog posts with very few terms, etc. 
Text sanitization techniques are applied on the 
resources’ text to filter out common words 
(defined in a stop word lists) and to perform 
stemming. Next, resources, are represented with a 
common model that includes: a unique identifier, 
a TF-IDF-based key-value map, a timestamp, and 
the resource’s type (tweet, blog post, or extended 
tweet). For a given resource the key-value map 
structure includes as keys all the resource’s unique 
terms, taken from the initial data model’s text, tags 
and title (for blogs only) attributes. Using the 
Lucene Search Engine library8 separate indexes 
are kept for each resource type and for each 
attribute. Though these indexes, TF-IDF key-value 
maps are obtained for each attribute.  

3.3 The Trend Detection and Visualization 
Tier 
This tier builds on the basis of the outcome of the 
data processing tier which produces three sets of 
clusters for the tweets’, blog posts’, and extended 
tweets’ datasets. A given cluster can be 
characterized as active or inactive based on 
whether it is corresponds to topics that are popular 
at the given time, or it corresponds to topics that 
are no longer considered as trending. Clusters 
update rates are monitored to determine when a 
cluster should be made inactive due to limited 
activity. To this end, additional information is 
maintained for each cluster: the evolution of the 
temporal distance between the timestamps of the 
last two resources assigned to the given cluster. 

8 http://lucene.apache.org/core/ 



By taking the moving average of the 
aforementioned parameter to smoothen its 
evolution, we can identify periods of time when 
the cluster is increasingly rising in popularity. This 
is due to users’ intense activity, when it is at its 
peak. To improve clusters’ quality, the tiny sized 
clusters (with very few members) are considered 
as noise and thus are eliminated. 

Active clusters are considered as representative of 
topics that concern web users at a given times, 
however, in order to identify the actual trends, 
clusters should be ranked in terms of an activity 
measure. To this end, for each type of content (and 
for a given monitored location) Cloud4Trends 
retrieves the active clusters and ranks them based 
on: i) their members’ number, and ii) their mean 
timestamp, under the assumption that the “hottest” 
topics are those that are referred to in many 
resources, and that are additionally being created 
on average close to the current time. 

The topics that characterize each cluster are 
identified as the terms with the highest scores in 
the cluster’s mean key-value map. Cloud4Trends 
then generates a summary description for each 
cluster comprising of few member terms or 
phrases based on their scores and their 
significance (hashtags, title terms, etc), while the 
high-ranked clusters shape the trending topics for 
the given time. 
In Cloud4Trends trends are therefore calculated 
based on the three different data sources for each 
location under investigation. Depending on the 
update rates of the resources’ types (e.g. faster in 
Twitter while slower in blogs), one can decide on 
how often the clusters’ “trending scale” will be 
recalculated. 

4. IMPLEMENTATION DESIGN OF A 
CLOUD-BASED FRAMEWORK FOR 
BLOGOSPHERE DYNAMICS 
Cloud4Trends is proposed to handle data intensive 
use cases as it involves concurrent analysis of 
large sizes of web social data in an online fashion. 
In handling for example, both tweets, with 
unexpectedly peaks, and blogs whose sizes may be 
considerably large, problems for handling large 
and fluctuating sizes of data arise.  Feasible 

approaches should address parallel programming 
techniques required for many of our proposed 
operations, as for example in the cases of : 

• data which should be concurrently analyzed 
for the different geographic areas and their 
analysis should be done effectively;  

• blogs and Twitter data which should be 
collected in parallel; 

• data collection module which should be 
constantly available for receiving new data; 

• data processing which should be carried out 
for data already arrived and awaiting analysis 
under different concurrent process. 

Therefore, suggested ideas can heavily utilize the 
Cloud computing paradigm which offers a 
significant ground for such social streams mining 
applications due to its support via scalable and 
powerful infrastructures [8]. Our design 
requirements match well with the MapReduce 
computing paradigm, which codifies a generic 
“recipe” for processing large datasets when this 
processing consists of more than one stage. The 
MapReduce technology matches the needs of the 
Clou4Trends data analysis and processing tier, 
given that in a cloud-based deployment the 
mapping operations can be distributed into 
separate computer nodes. Prior to being ported to 
the Cloud, Cloud4Trends ran into a multi-core 
computer, designed over a software architecture 
which posed obstacles in aggregating and 
analyzing data from both Twitter and blogs. We 
believe that parallel approaches in cloud 
computing infrastructures constitute viable 
solutions for real-time large-scale data mining 
applications. 

Since Cloud4Trends aims is to validate the quality 
of the resulting clusters and observe and quantify 
the differences in the trends resulting from the 
three data sources which represent different user 
groups. Cloud infrastructure can be leveraged for 
efficiently handling both the data’s high 
scalability, the requirement for real-time tweet 
processing and clusters’ update, as well as for 
ensuring quality of service for an increasing 
number of end users (inline with Table 1 
challenges). 



4.1 The VENUS-C Infrastructure 
The suggested system (as described in previous 
section) is currently implemented in the context of 
the so called “Cloud4Trends” experiment9 entitled 
“Leveraging the Cloud infrastructure for localized 
real-time trend detection in social media”, which 
runs over the VENUS-C infrastructure. VENUS-
C10 (Virtual Multidisciplinary EnviroNments 
USing Cloud Infrastructures) is a pioneering 
project that develops and deploys a Cloud 
computing service for research and industry 
communities in Europe by offering an industrial-
quality, service-oriented platform based on 
virtualization technologies and taking advantage 
of previous experience on Grids and 
Supercomputing, to facilitate a range of research 
fields through easy deployment of end-user 
services.  

VENUS-C offers several service components to 
allow a wide range of end-user applications 
(targeting mainly research groups and SMEs) to 
benefit from the advantages of a Cloud computing 
platform, without having to develop custom 
Cloud-aware solutions. It offers a selection of 
programming models that, combined with 
appropriate data access mechanisms, constitute a 
convenient abstraction for deploying scientific 
applications on top of plain virtual machines. 
VENUS-C programming model enactment 
services expose their functionality via an Open 
Grid Forums Basic Execution Service (OGF BES) 
[15] and Job Submission Description Language 
(JSDL) [16] compliant web service interface, and 
take care of the enactment of a job at a given Cloud 
Provider. Each enactment service deploys a 
specific application on a number of either 
Windows Azure11 virtual machines or Unix virtual 
resources from open source Cloud middlewares 
(OpenNebula12 & EMOTIVE Cloud13).  
A Cloud-based data management SDK is provided 
by VENUS-C for handling all data transfer 
operations between the Cloud infrastructure and 
the on-premises client applications, which 

                                                
9 http://oswinds.csd.auth.gr/?page_id=1320 
10 http://www.venus-c.eu/ 
11 http://www.windowsazure.com/ 

supports the Storage Networking Industry 
Association (SNIA) Cloud Data Management 
Interface (CDMI) specification [16]. Resource 
monitoring has also been taken into account in 
VENUS-C so that each end-user is to be able to 
identify its application’s resource consumption via 
the VENUS-C Accounting Service.  
4.2 The Cloud4Trends Cloud-based 
Architecture 
The suggested design is implemented in 
Cloud4Trends under the previously described 3-
tiered conceptual design structure. Cloud4Trends 
is implemented as a hybrid application based on 
the integration of : i) on-premises client interface 
and ii) multiple job execution components with 
different functionalities on top of the VENUS-C 
Cloud services infrastructure. In particular, 
Cloud4Trends uses VENUS-C Generic Worker 
programming model for job submission and 
application deployment on top of the Azure. 
 

 
Figure  2. Trend Detection Cloud-based framework 
 
Cloud infrastructure functionalities which enable 
effective data-driven and task-based job 
submissions are exploited. Figure 2 illustrates the 
three Cloud4Trends modules, namely: the Collect 
module, the on-the-Cloud module, and the Cloud 

12 http://opennebula.org 
13 http://www.emotivecloud.net/ 



services module. These modules support the 
proposed 3-tier design (described above) such that 
the Client module implements the Data Collection 
and Visualization tiers, whereas the Cloud-based 
module implements the Data Processing and 
knowledge extraction tier. 
More details on this implementation are given in 
[17], at which an indicative workflow is proposed 
to be orchestrated as follows : Collect module, 
which is responsible for collecting data from 
social Web (Twitter and Blogosphere) and 
initializing new experiments when required by the 
researchers, submits new Parsing jobs (executed 
by Twitter or Blog Parsers) to the cloud via the Job 
Submission Client of Generic Worker, which is 
hosted at the Execution Service, when new data 
are available. The required data for each given job 
are uploaded, as a batch, using the Data Access 
Service to Azure Blobs. Cloud4Trends’ Indexing 
Service Module consists of three separate Azure 
services (for indexing tweets, blog posts, and 
extended tweets) that are responsible for the Full 
Text Indexing of the parsed data using the a 
Lucene library for Azure14. When an Indexing 
service completes its execution it initiates a 
Splitter Job using the Generic worker’s Job 
Submission Client, which receives as input data 
the new resources. Splitter application also 
downloads the appropriate currently active 
clusters from the corresponding Azure Table. 
Different Similarity estimation Workers (Mapper 
jobs) are submitted by each Splitter job, via the 
Execution Service module, and in particular using 
the Generic Worker Local Job Submission service, 
which calculate the similarity scores between the 
new resource and the respective active clusters. An 
Aggregation Worker (Reducer job) is also 
submitted by the Splitter Job via the Local Job 
Submission service, to collect all similarity score 
combinations emitted by the corresponding 
Mapper jobs, and identify the best match to an 
existing cluster for each resource. 

                                                
14  http://code.msdn.microsoft.com/windowsazure/Azure-

Library-for-83562538 

5. CLOUD ARCHITECTURES FOR 
SOCIAL DATA ANALYSIS 
Cloud4Trends has exploited the  Windows Azure 
infrastructure, which provides functionalities but 
also poses additional challenges since in cloud 
computing a predefined number of resources (i.e. 
number of CPU, RAM, etc.) is available to be 
utilized and shared. Each computer resource in the 
cloud executes a specific system’s service, the 
Worker Role and Windows Azure provides several 
instances of resources to be defined on each 
Worker Roles. By initiating more than one 
instance of a Worker Role in order to provide 
parallelization, the number of reserved resources 
is increasing according to the defined resource’s 
instance. As such, great emphasis should be given 
on the number of resources which are assigned on 
each Worker Role in order to efficiently divide the 
shared resources to the overall system’s Worker 
Roles. An erroneous partition of the cloud 
resources over the Worker Roles may lead to non-
scalable system architectures. Moreover, the 
Azure Service Bus service is provided to establish 
a fail-safe communication channel among the 
Worker Roles, and Virtual Machines are hosted 
into the Windows Azure infrastructure, which 
allocate same shared resources with the other 
Worker Roles, under  the same communication 
network to avoid network delays during their 
communication.  

 
Figure  3. 1st architecture (lightweight) 
 



Based on the above specifications, we propose five 
distinct system architectures emphasizing on the 
differences among single-node and cloud-
computing architecture : 

• 1st system architecture, as a lightweight 
suggestion at which a sequential flow of 
the social text clustering process over the 
cloud is accomplished, as shown in Figure 
3. No parallelization is provided in any of 
our framework’s component,  and 
components of the same tier are included 
into a single Worker Role, providing 
though the minimum number of Worker 
Roles and just two Virtual Machines are to 
be generated for efficiently executing the 
component’s process: i)Token Identifier 
VM, and ii) Dimension Manager VM 

• 2nd  system architecture, to focus on the 
text processing and at which distinction of 
the tweet collection and the Json parsing 
process is emphasized. While the process 
of roles does not require high memory 
allocation, small instances of each role is 
needed and multiple instances of the Json 
Parser Role and the Tweet Preprocessing 
Roles are initialized (Figure 4) to provide 
components parallelization and offer a 
more scalable solution. 

• 3rd system architecture, to support Tweet 
Indexing and at which parallelization may 
be accomplished on the Vector Handler 
component, while the Indexing and the 
Dimension Manager components are not 
required to be parallelized (Figure 5). 
Since Windows Azure, enables 
programming balancing of a Worker 
Role’s instances, flexibility and 
dimensionality reduction is reached.  

• 4th   system architecture, to place emphasis 
on the parallelization of clustering 
components and at which Text Clustering 
Role is divided into three distinct roles, as 
shown Figure 6. This approach supports i) 
Similarity Calculator Role, ii) Results 
Comparator Role, and iii) Cluster Manager 
Role, such that Similarity Calculator Roles 
are processed effectively. 

 

 
Figure  4. 2nd architecture (text processing) 

 
Figure  5. 3rd architecture (indexing) 

 
Figure  6. 4th architecture (clustering) 
 



 
Figure  7. 5th architecture (parallelization) 
 

• 5th system architecture, to offer 
parallelization in most of the framework’s 
components (Figure 7). Combining the 3rd  
and the 4th system architectures, maximum 
parallelization is targeted, for scalable 
solutions in real-time geo-located social 
text clustering. Medium instances of 
resources are assigned on Cluster Manager 
Role and Dimension Manager VM, while 
small instances are assigned to the other of 
the system’s roles. 

•  

6. EXPERIMENTATION RESULTS  
For testing purposes, the real-time social text 
clustering approach uses the FSD Corpus15. This 
dataset was collected by the Cross project, which 
deals with identifying real-time story detection 
across multiple massive streams. Dataset consists 
of almost 52 million tweet IDs along with their 
corresponding user screen names (from Twitter 
Streaming API). Additionally, labeling process 
has been applied on a subset of the dataset to 
categorize the tweets on a distinct topic. This 
subset consists of 3034 tweets which were tagged 
as being on-topic for one of the 27 topics defined. 
 

                                                
15 http://demeter.inf.ed.ac.uk/cross/index.html 
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2x1.75 
GB 
RAM 

2x1 
Core 
2x1.75 
GB 
RAM 

Tweet 
Indexing 
Role 

1x1 
Core 
1x1.7
5GB 
RAM 

1x1 
Cor
e 
1x1.
75G
B 
RA
M 

1x1 
Core 
1x1.75
GB 
RAM 

1x1 
Core 
1x1.75
GB 
RAM 

1x1 
Core 
1x1.75 
GB 
RAM 

Tweet 
Clustering 
Role 

1x2 
Cores 
1x3.5
GB 
Ram 

1x2 
Cor
es 
1x3.
5GB 
Ram 

1x2 
Cores 
1x3.5
GB 
Ram 

- - 

Results 
Comparato
r Role 

- - - 

1x1 
Core 
1x1.75
GB 
RAM 

1x1 
Core 
1x1.75
GB 
RAM 

Cluster 
Manager 
Role 

- - - 

1x2 
Cores 
1x3.5
GB 
Ram 

1x2 
Cores 
1x3.5
GB 
Ram 

Dimension 
Manager 
VM 

1x4 
Cores 
1x7G
B 
Ram 

1x4 
Cor
es 
1x7
GB 
Ram 

1x4 
Cores 
1x7G
B Ram 

1x4 
Cores 
1x7G
B Ram 

1x4 
Cores 
1x7G
B Ram 

Total 
Number of 
Resources 

10 
Cores 
17.5 
GB 
Ram 

17 
Cor
es 
29.7
5 
GB 
RA
M 

20 
Cores 
35 GB 
Ram 

20 
Cores 
35 GB 
Ram 

20 
Cores 
35 GB 
Ram 

Table 2. Experimentation technical details 

 



Great emphasis is given on the computer 
architectures used to apply our experiments, 
evaluating the benefits and the limitations of each 
architecture. The same experiments are conducted 
over the different proposed (Section 5) cloud-
computing architectures and also on single node 
solutions. Details for each architecture’s services 
technical details are summarized in Table 2.  

The initial experimentation focused on the two 
computing infrastructures paradigm and we stress-
tested the proposed framework with a 
dimensionality reduction technique, for both cloud 
and traditional computing infrastructures.  
 

Figure 8 showcases the fact that Windows Azure 
cloud computing infrastructure performed better 
when compared with the single-node 
infrastructure, and it was noticed that regarding its 
high computational cost and its parallelization 
demands, cloud computing infrastructure has 
provided the appropriate resources to efficiently 
support such a demanding and scalable solution. 

 

 
Figure 8. Computer Infrastructures Comparison 

 The basic workflow of the experiments and the 
different parameters of our proposed 
methodology, including the appropriate tweets’ 
selection and the rate of the dimensionality 
reduction performed, have been stress-tested 
under several scenarios. Here, we focus on the 
experimentation results which are relevant in the 
proposed architectures emphasis and potential on 
geo-located time dependent knowledge extraction 
from social text threads.  

 
Figure 9. Azure Hours of Execution Time - No 
dimensionality Reduction 

Figure 9 summarizes the proposed cloud 
computing architectures (details at Section 5), the 
execution time of each system architecture, when 
no dimensionality reduction is performed. As 
depicted in this figure, the 1st System Architecture 
demands more hours than the other system 
architectures to accomplish the experiment. 
Instead, when the parallelization is occurred on the 
other system architectures, the experiments’ 
execution time is diminishing. In the 5th System 
architecture, where maximum parallelization is 
provided in most of its services, the total execution 
time is lower than the others. The scalability 
obstacle, though, is confronted with the support of 
the parallelization on the systems’ services. 

 

 
Figure 10. Azure Hours of Execution Time - 25% 
latent factors dimensionality reduction 
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The dimensionality reduction approach has been 
further applied on the cloud computing 
architectures, the time execution of each system 
architecture is shown in Figure 10 . Similar to the 
previous approach, 1st System Architecture 
requires the most execution time than the other 
architectures, while the 5th System Architecture 
provides a more scalable solution. 

 
Figure 11. Single-Node Hours of Execution Time - 
25% latent factors dimensionality reduction 

Finally, the difference among the proposed system 
architectures when the dimensionality reduction 
technique is applied is stressed-tested, by 
considering that parallelization is provided on the 
distinct systems’ services (Figure 11). The total 
execution time is shown to be decreased,  since the 
tweets’ vector representation is reduced, and the 
similarity calculation along with the existing 
clusters is not of high-computational cost. Such 
cases exhibit no bottlenecks in the clustering 
process and their applicability in geo-located time 
dependent use cases is promising.  

7. CONCLUSIONS AND FUTURE 
WORK 
This proposed work has focused on utilizing the 
cloud computing paradigm, by the use of VENUS-
C enactment services, and under data-dependent 
jobs, which stress-tested five different proposed 
architectures. Scalability issues are addressed by 
dedicated components which enable dedicated 
Cloud Tables for monitoring clusters’ “activity” 
and for updating their states. Dynamics can thus 
be detected under clusters’ representations at 
parameterized time intervals, with geo-spotted 
trends identification. 

Future work is planned around the following axes: 
i) the fine-tuning of the clustering and trend 
detection algorithm and the experimental 
evaluation of results, ii) the implementation of a 
shard-based distributed Indexing service since for 
the time being the service for each type of resource 
is deployed on a single instance, iii) measuring the 
system’s performance for different design 
parameters, iv) creating a web-based user interface 
(hosted either on Cloud or on premises) for 
visualization of the detected real-time trends and 
trends’ analytics, and v) stress-test the proposed 
framework and architectures under different cities 
datasets and requirements. 

The benefit that Cloud4Trends and different 
architectures offer is that they verify that Cloud-
based architectures constitute a viable solution for 
online social web geo-located and time-related 
data mining applications. In particular, the 
proposed work enables massive data analysis at a 
distributed setting, thus reducing the prerequisite 
for real-time applications data processing time. At 
the same time is allows easier testing of new 
scenarios, achieving high-quality results under 
different demands of cloud-based architectures 
which can improve application capability sharing. 
Overall, these are benefit for both researchers and 
entrepreneurs in actual real use cases. 

In summary, the proposed framework (as realized 
by the Cloud4Trends experiment), demonstrates 
that porting trend detection into the Cloud is a very 
suitable solution considering the challenges posed 
by the data, geo-location features and time 
intensive processes involved in online collection 
and analysis of large and evolving geo-located 
Web 2.0 datasets.  
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