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Abstract In social media, users’ interactions are affected by real-world events which influ-
ence emergence and shifts of opinions and topics. Interactions around an event-related topic
can be captured in a weighted network, while identification of connectivity and intensity
patterns can improve understanding of users’ interest on the topic. Community detection
is studied here as a means to reveal groups of social media users with common inter-
action patterns in such networks. The proposed community detection approach identifies
communities exploiting both structural properties and intensity patterns, while dynamics
of communities’ evolution around an event are revealed based on an iterative community
detection and mapping scheme. We investigate the importance of considering interactions’
intensity for community detection via a benchmarking process on synthetic graphs and
propose a generic framework for: i) modeling user interactions, ii) identifying static and
evolving communities around events, iii) extracting quantitative and qualitative measure-
ments from the communities’ timeline, iv) leveraging measurements to understand the
events’ impact. Two real-world case studies based on Twitter interactions demonstrate the
framework’s potential for capturing and interpreting associations among communities and
events.
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1 Introduction

In emerging social media, and particularly in microblogging, users’ activity is usually tied
to real world events, since users tend to report relevant information, or discuss their views
on them through their posts, as the events unfold. At the same time, they interact in dif-
ferent ways, such as by replying to posts, referencing one another, etc. Such interactions in
social media can be best captured in a user interaction network modelling users as nodes
and their interactions as edges. A user interaction network can be viewed as a collection
of entities whose interconnections are dynamic and multi-valued (since their intensities and
types evolve over time). Such networks’ analysis may demand different, more focused mod-
els, depending on the individual needs, thus often static network snapshots are extracted
to facilitate the analysis task at hand. A snapshot, here, corresponds to the interactions
observed between users within a given time-frame (i.e. a confined time-period), while vari-
ation in users’ interaction frequency or intensity within this period can be captured by the
assignment of different weights to the networks’ associations, resulting in a weighted net-
work. A time-aware analysis of such networks’ structure by examining successive snapshots
can reveal different patterns and dynamics, since users’ behavior fluctuates depending on
factors such as the co-existence of real-world events and users’ interest in them, the emer-
gence of users as key-actors in the events, the type of the social medium itself, etc. At
the same time, topic- and event-specific networks can be derived from broader interaction
networks by keeping as edges only interactions relevant to the given topic/event. Thus,
in a different perspective, a per-snapshot analysis of an event-specific interaction network
enables specifically focusing on communities which are relevant to the event’s individual
instances/phases.

Community detection targets at identifying such implicit groups in real world networks,
with a community being generally defined on a graph, as: a group of entities more densely
connected to each other compared to the rest of the network, and usually sharing common
properties. Community detection has been applied in the context of social interaction net-
works, such as scientific co-authorship networks [2], corporate communication networks
[27], and recently in social media user networks [30] [12]. The temporal aspect of commu-
nities’ evolution is a more recent research problem which focuses on both detecting latent
communities of entities, as well as tracking their evolution, by modelling and analyzing
associations over time [10].

In this work, we study the reciprocities among real world events and relevant social media
user communities, while we focus on revealing the form of communities generated with
respect to events, opinions expressed within them, and changes they undergo as the event
unfolds. Our main hypothesis is that by uncovering user communities and community evo-
lution chains, and studying their quantitative and qualitative features in a static and evolving
approach, respectively, we can better understand how users are affected by events and in
what ways they embrace them. Apart from the societal conclusions that can emerge from
such analysis, its application on targeted networks can be leveraged in domains such as:
marketing (e.g. for estimating campaigns’ success, or brand monitoring), politics and public
affairs (e.g. for estimating the approval/disapproval of a new policy, or tracking uprisings of
groups of people), news media and event organizing (e.g. for summarizing events based on
the evolution of the public opinion as expressed in different communities).

Here, we present a generic framework for community evolution tracking in the spotlight
of certain events of different characteristics, and elaborate on its successive steps. The pro-
posed framework foresees community detection at different granularities and supports the
tracking of communities across successive temporal network snapshots. This paper extends
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our previous approach in [9], which focuses on static interaction networks in the context
of a real world event and proposes a community detection algorithm incorporating user
interactions’ intensities, while it projects the community analysis’ results on the aggregated
network on the time, topic and size axes to gain insights on the event’s impact. Moving
beyond [9], the framework proposed here can be applied on (time) evolving social media
users interaction networks to extract finer grained dynamics of users interest on a given
event, based on the community detection results. Apart from supporting the so called global
event analysis, applied on the results of static community detection, the new framework is
capable of identifying evolving community chains and leveraging them for the more detailed
intra-event and inter-event analysis. Building on the idea that user interaction strengths are
crucial in communities formation and that the communities detection and qualitative charac-
terization can lead to a better understanding of real world events societal impact, we propose
a frameworks instantiation via the community detection algorithm proposed in [9], which is
suitable for user interaction networks.

Communities are initially detected in the context of a given time-frame, while they can,
next, be analyzed at a community, time-frame, or time-frame group level. The proposed
meta-analysis framework considers a set of features that can be extracted and analyzed at
each granularity level. The association of the proposed community meta-analysis approach
with the event impact tracking task is a contribution of this work, and can be leveraged
for answering questions such as “what types of communities are generated with respect
to certain events” and “how does users’ interest drift with respect to a given event”. We
demonstrate the potential of the proposed approach by applying our framework on two
real world user interaction datasets from Twitter, focused on events of different scales and
characteristics. In specific, our focus here is on i) topics that are discussed in multiple, more
focused event instances sharing a common context, and ii) one-time events that comprise
targeted sessions, while for their tracking we propose the following analysis approaches:

– global event analysis that adopts the per community analysis approach to asses users’
interest in an event theme as a whole, based on all observed user reactions;

– intra-event temporal analysis in terms of communities evolution, which exposes the
(expansion versus shrinkage) forces characterizing a given event’s impact on social
media users, based on the per time-frame analysis approach;

– cross-event analysis that aligns instances/sessions with the appropriate time-frame
groups to reveal the differences in users’ behavior while shifting from one event
instance/session to the next, given the general topic context.

The remainder of the paper is organized as next. Section 2 reviews literature on social
media analysis for event tracking and (evolving) community detection in social networks.
Section 3 presents our framework and sets up the problem, while Section 4 introduces and
validates the proposed community detection approach. Section 5 presents experimentation
on selected case studies and Section 6 concludes the paper.

2 Related work

Evolving social data mining has been applied for detecting non-obvious patterns in social
interactions that indicate the coexistence of prominent events in the real world or in the
context of the given social environment, often in real time. In social data mining, events
have been defined as occasions taking place at a specific time and location, e.g. concerts,
parties [32], or as the information flow between a group of social actors on a specific topic
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over a certain time period [24]. Both definitions use the concept of time, though, the first
one refers to special events occurring at a real world location, whereas the second is based
on social behavior focusing on users’ activities over a specific topic. There are several event
detection approaches, however here we focus on event tracking which can be applied when
the given event is known.

Event tracking in social media Event tracking can be used for monitoring the evolution of
a known event across time quantitatively and/or qualitatively. An event tracking system is
proposed in [18], which detects peaks on the tweets’ volume to identify moments of bursting
users’ activity, and then annotates the detected peaks and performs sentiment-based analysis
on them. A probabilistic model is used in [16] to track events in terms of topic drift and
users’ interest, using both term-based frequencies and users’ affiliation network, but without
leveraging users’ observed interactions. Conversations in Twitter, as they uncoil via the use
of the mentioning mechanism in parallel to a specific event, is studied in [26]. Authors
mention that such conversations could be used for revealing trends related to aspects of the
given event/topic within user subgroups. The participation of Twitter users in discussions
about various events based on their type (e.g. organizations, journalists, ordinary users) was
studied in [6], where authors focused on identifying differences in users’ participation in
terms of the event’s type and the types of the generated content.

Community detection in social media Community detection (or graph clustering) meth-
ods are diverse and can be classified based mainly on their definitions of communities
and their algorithmic approaches in: i) cohesive subgraph discovery, ii) vertex clustering,
iii) community quality optimization, iv) divisive, and v) model-based [23]. Although pre-
liminary community detection algorithms were designed for small-scale networks with
prominent community separation and had high complexity, recent approaches focus on
complex large-scale graphs (such as web social interaction networks) and reveal communi-
ties that better match real world characteristics (e.g. [14, 15, 31]). In [32] event detection
has been tackled by applying N-cut graph partitioning on two graphs: one connecting blog
posts by their textual similarity, and another connecting pairs of users based on the similar-
ity of their temporal activity profiles. By applying community detection on event-focused
user interaction networks, we aim to identify latent groups of users that interact more
often compared to the rest of the network and are focused on certain sub-topics of the
event.

So far, few works have tackled community detection in social media users’ interaction
networks [12, 19]. In the context of social media, community detection has been mainly
applied to friendship networks generated by the declared users’ affiliations [11], resulting
in easily-interpreted groups of users. Interaction networks, though, are more complex and
their derived communities’ interpretations are less obvious, since interactions among their
members may indicate both awareness of each other as well as interest in common top-
ics. Important aspects of community detection in social media are covered in [23] where
the need to detect meaningful communities and also identify hubs and outliers is high-
lighted. This requirement is addressed in the local community detection algorithm SCAN
[31], which also has an O(N) time complexity with respect to the number of nodes. Up to
now SCAN’s applicability to weighted networks has only been addressed in [28] where a
relevant structural similarity measure is proposed, but no explicit experimental results are
offered for such networks. Thus, all previous efforts based on SCAN and its variants have
been tested on limited (unweighted) synthetic or closed-world networks. Closed-world net-
works are limited within the scope of a certain domain (e.g. the Enron email network with
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internal company email exchanges), when on the contrary, social media users’ interactions
are of a wider scope and open nature, “connecting” people of different disciplines. Also,
although weighted networks are a natural representation of user interactions’ intensities,
many community detection approaches, operate on unweighted networks after preserving
either all relationships, or only those whose intensity exceeds a cut-off threshold. Here, in
Section 4, we examine whether SCAN approaches can successfully uncover the underly-
ing community structure in real world networks, or they need to be adapted to leverage the
interactions’ intensity.

Evolving community detection in social media Social network users’ interactions vary in
type, frequency and strength, thus the dynamics of communities’ structure inevitably change
over time. Different approaches have been suggested to capture communities evolution
given the underlying network changes in [10]. Evolution in online forums is detected in [19]
via an evolutionary clustering approach, whereas different types of interaction types are
addressed jointly and separately in [17] and [11], respectively. In [29] several approaches
for communities’ evolution detection at different time-frames are presented, while in [22]
statistical analysis on the detected evolving communities reveals correlations between their
life span and size.

3 Community detection for event tracking in social media: Principles and guidelines
towards a framework design

Communities evolution tracking in relation to a given event involves several decisions and a
series of steps, namely: event profiling, data collection and model formation, data mining,
event & community co-analysis. In the next paragraphs we will describe a generic frame-
work for tracking the evolution of such communities and discuss its primary steps in detail.
Table 1 summarizes the notation used throughout the paper.

3.1 Event profiling and analysis requirements specification

Event profiling is necessary since events differ in nature and in their inherent features. We
focus on scheduled events that are either recurring, meaning that multiple event instances
take place at different times under the umbrella of a general event theme, or modular that
can be broken down in smaller sessions with a more focused theme.

Table 1 Notation used in the description of the framework

symbol description

tf time-frame: time window for data aggregation defined as a fixed number of time-units

tu time-unit: defines how often the tf should be “shifted”; equals to the shifting step’s length

length(tf ) time-frame’s length: the number of tu that comprise a tf

tfi the ist time-frame

Int
type

i (u, v) the number of type interactions observed during tfi between users u and v

Intensityi(u, v) the overall intensity of interactions observed during tfi between users u and v

αtype the weight assigned to type interaction for calculating Intensityi(u, v);αtype ∈ [0, 1]
act

type
t (u, v) activity indicator: is 1 if u and v have a type interaction at timestamp t , or 0 otherwise
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Definition 1 A recurring event can be viewed as a series of event instances, with each
instance having typically a daily duration and a sparse instance granularity, i.e. significant
periods of time elapse between two successive event instances.

Definition 2 A modular event consists of sessions with a typical duration of a few hours
and a dense granularity, i.e. sessions are consecutive.

A series of Eurogroup1 meetings and a local TEDx2 event can be viewed as examples
of a recurring and a modular event, respectively, and are discussed in detail in Section 5.
Apart from specifying the instance/session duration and granularity, when profiling an event
additional features should be taken into consideration, such as the event’s: general topic(s),
impact scope, and intended audience.

To track the impact of a given event, either global communities or evolving community
chains (i.e. evolving communities) can be detected, depending on the analysis require-
ments. Global communities correspond to the interaction graph embedding all interactions
observed with respect to the event, thus they are derived via static community detection, and
they offer a general estimation about the total interest on the event, as well as on how this
interest is expressed in different groups of people. If the event is relatively popular, there is
a large number of interactions, and global communities are usually bigger and denser, com-
pared to when selecting a graph snapshot spanning a shorter time duration. On the other
hand, by co-analyzing evolving community chains, which are detected across successive
graph snapshots, in parallel with the event’s unfolding more fine-grained insights can be
derived, such as local interest fluctuations, and more specific expressions of interest.

The events’ profile and analysis requirements assist the selection of the framework’s
parameters. An essential parameter is the keyword set, which includes terms/ phrases related
to the events’ topic, while, optionally, a specific observation period and/or geolocation
boundaries can be set for the event. When tracking evolving community chains, an important
parameter is the time-frame’s length (length(tf )), which specifies the temporal granularity
of the data mining triggering, i.e. the frequency of the community detection’s invocation,
and the time-unit (tu), which represents how often and for how much the tf should be
“shifted”, under a sliding window approach. tu also regulates the overlap between two
consecutive time-frames. In static (global) community detection, the length(tf ) parameter
coincides with the duration of the observation period, while the tu parameter’ granularity is
irrelevant.

3.2 Data collection and model formation

Data are collected from a selected pool of social media and content is processed to extract
users’ interactions. Social media’s selection could be based e.g. on the geographic focus in
case of local events, along with the preferred social media of locals (e.g. a concert in China
is discussed more in Weibo compared to Twitter), or even the intended events’ audience
(e.g. scientists, artists, etc). Microblogging sites are often used for event tracking since they

1Eurogroup is a forum of the finance ministers of the eurozone, i.e. European Union’s member states whose
currency is the euro, which aims at coordinating economic policies within eurozone and promoting conditions
for economic growth. (http://www.eurozone.europa.eu/eurogroup/)
2TEDx events are independently planned and coordinated events that bring together local communities,
organizations and individuals for presenting motivated and innovative ideas and engaging in dialogue.
(http://www.ted.com/tedx/)
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are considered a natural medium for sharing news/opinions and are used by users of various
disciplines. Each web social platform supports different types of interactions, while the
types of considered interactions, may lead to user networks of varying form/structure, and
thus to different communities. In Twitter, e.g., explicit user interactions can be categorized
in: mentions, which are usually made when referring to a user, replies, which are used for
direct communication, and retweets, which are used for propagating the content generated
by a user. To track communities evolution in dynamic event-driven networks, we generate
and maintain an evolving graph of users under a time-frame based updating approach.

For evolving community detection, given the selected tu and length(tf ) (defined as a
fixed number of time-units), we aggregate data under a moving window scheme, where
the fixed-width tf moves forward one tu at a time. For each time-frame tfi , we extract
the observed interactions and update the user’s interaction network by connecting users
that have interacted at least in one tu within the tf ’s span. In Twitter e.g., interactions
between users A and B that lead to their connection involve activities such as: A men-
tioning B in her post, A replying to or reposting (i.e. retweeting) a post of B . An edge
between nodes u and v at a given tfi , thus, represents the existence of an aggregated
interaction between them, weighted by: wi(u, v) = ∑

∀type αtype × Int
type
i (u, v), where

Int
type
i (u, v) = ∑

t∈tfi act
type
t (u, v) stands for the sum of the observed type interactions

(act typet (u, v) = 1, if u and v have a type interaction at timestamp t , or 0 otherwise).
αtype is a weighting factor assigned to the interaction type. Due to our overlapping time-
frames, for a given dataset we end up with a series of smoothly evolving networks encoding
both the new tu’s interactions and the interactions of the last length(tf ) − 1 time-units.
To achieve this, when the end of a tfi is reached, the graph is updated by removing inter-
actions observed during the tf ’s older tu (by decreasing accordingly the respective edges’
intensity). Alternative interaction networks can be generated depending on the selection of
participating interaction types and their weights, while all interaction types can be assigned
a weighting factor equal to 1, if there is no need to assign different significance to each
of them (this approach is also followed here in our experiments).3 The approach described
above is also followed in the simpler case of global (static) community detection, where
there is just one tf covering the event’s total monitoring period.

3.3 Data mining

Here, the selected community detection algorithm is applied on the graph’s snapshot at
the end of each tf , while a community matching cross time-frame approach is followed
to determine each community’s evolution. This approach to evolving community detection
is characterized as sequential mapping-driven evolving clustering [10] and, in principle,
it maps communities of each tf to their predecessors and successors (in the previous and
following time-frames) with use of similarity measures and/or temporal smoothing tech-
niques. Its focus is on detecting transitions in communities’ life (birth, merge/split, death).
The application of sequential mapping-driven evolving clustering on graphs generated via
the previously described overlapping time-windowing process is proposed to alleviate noise
and lead to a smooth community evolution, by refining abrupt changes in the monitored
community structures.

3Interaction weights have been included in the framework in a simplified way, for generality’s sake. In reality,
estimating different weights for each interaction is difficult and a research problem on its own.
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The framework’s community detection module should implement an algorithm suitable
for networks derived from web social activities, given that they are generally of large scale
and present unpredictable bursts, while the resulting interaction networks can be rather
complex, with communities difficult to discern. Also, in real world interaction networks,
users should not necessarily be assigned to a community (a practice followed in graph par-
titioning), but they may either be considered as outliers weakly connected to the rest of the
network, or hubs interconnecting several different communities of users. A user may be
assigned to multiple communities, such as e.g. in a simple affiliation network, where two
such communities could be the user’s family and work circle. Thus, important features to be
considered when selecting a community detection algorithm for the framework, depending
on the needs of the problem at hand, include: i) low complexity, ii) support for overlapping
communities, iii) distinction of user roles, iv) application on weighted networks, v) support
for multiple interaction types, vi) parameter-free or having low sensitivity to parameters. In
any case, the resulting communities should comprise nodes sharing similar interaction pat-
terns, i.e. sets of interaction instances. Here, an interaction instance with respect to a given
node (user) represents an aggregated interaction of a given weight between this node and a
given neighbor.

To detect communities’ evolution, we compare communities of successive time-frames
tfk and tfk+1 based on their node overlap (such as in [22]). If nodes similarity exceeds an
overlap threshold, we consider that the given community in tfk+1 is the evolution of the
matched community in tfk and distinguish the transitions of: growth, persistence, contrac-
tion, depending on the change in the community’s size. If a community in tfk is matched to
multiple communities in tfk+1, we consider that it splits into them and then dies, whereas if
multiple communities in tfk are matched to one community in tfk+1 we consider it a merge.
If no match is found for a community in tfk+1, we consider that it has died. A community
chain is, then, defined as follows:

Definition 3 A community chain is a series of communities detected in succes-
sive time-frames, constructed via the identification of its first appearance (birth), its
death, and intermediate transitions of: growth, persistence, and contraction. The com-
munity chain’s life span is the number of time-frames elapsed between its birth and
death.

3.4 Event & community evolution co-analysis

Communities detected on each tf proceed to the Event & Community Evolution Co-analysis
phase, in which, having each time-frame’s communities at hand, the proposed framework
extracts quantitative features characterizing communities on different granularity levels.
Table 2 presents a selection of features that can be used to characterize the community
detection results, along with aggregation operators that can be used on them at the three
envisioned granularity levels (per community, time-frame, and time-frame group). In prin-
ciple, community level analysis studies individual communities within the same tf in
dimensions such as the communities’ size, topic diversity and time span; time-frame level
analysis gathers communities of the same tf and calculates aggregate features summariz-
ing the time-frame’s community set as a whole, while emphasis is on revealing changes
observed over time; similarly, time-frame group level analysis operates on a number of suc-
cessive time-frames and calculates their aggregate features, useful for comparing different
time-frame groups.
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Table 2 Community features per granularity level

Feature Operators Measured on

Size of community – community

min, max, mean, std, sum time-frame

Topic diversity in community – community

min, max, mean, std time-frame

Time span of community (time-units of activity) – community

min, max, mean, std time-frame

Number of communities – time-frame

Percentage of users in communities – time-frame

Size of community chain – community (chain)

min, max, mean, std, time-frame

min, max, mean, std time-frame group

Life span of community chain – community (chain)

min, max, mean, std time-frame

min, max, mean, std time-frame group

Number of community chains – time-frame group

Percentage of users in community chains – time-frame group

Global community detection combined with per community analysis is probably the sim-
plest approach to follow for acquiring an initial, general impression on users’ interest in an
event theme as a whole. The total monitoring time period is taken as one (the only) time-
frame, communities are detected on the induced graph, and the following features can be
used to assist the interpretation of users’ networking activities and interest with respect to
the event [9]:

Definition 4 Given a community c detected at time-frame tf ; a group of users U , where
∀ui ∈ U is member of c; a set of interactive, timestamped Twitter posts P , where ∀pt

k ∈ P

embeds an interaction between users ui, uj ∈ U which took place at time t ; and a set of
topics T expressed in P , the following features are defined:

– The size of community corresponds to the number of users assigned to c, | U |, and is
indicative of its strength (in terms of popularity);

– The topic diversity in community is the size of the topic set of c, | T |;
– The time span of community, constrained in tf , is the length of the absolute tem-

poral duration covered by its corresponding tweets: tmax − tmin, where p
tmin

i , p
tmax

j ∈
P, tmax = maxpt

k∈P t, tmin = minpt
k∈P t .

To estimate the topics discussed in a particular time-frame, LDA [3], or a similar method,
can be applied on the text of all tweets posted within it, and then tweets can be assigned
to their most probable topic. A community’s topic set T is then the union of all the topics
expressed in the community’s tweets. With this approach we can infer more refined topics
that interest each community’s members.

The evolving community detection setting is more suitable when, as described in
Section 3.1, it is needed to track users’ interest shifts across recurring and modular events.
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To this end, our framework leverages the per time-frame and per time-frame group analy-
sis approaches, described next, to perform intra-event and inter-event analysis, respectively.
The per community analysis can still be useful when applied to comparatively analyze
communities detected at a particular time-frame.

The intra-event analysis approach focuses on how a given event instance “evolves around
itself” and can be applied to identify its evolution forces. Since depending on the instance’s
duration (tu × length(tf )), its span may overlap with several time-frames, we align time-
frames with all event instances/sessions to identify a relevant tf set for each of them. Based
on a selected set of quantitative features, it is important to understand how their values
evolve as the event unfolds from its beginning to its end, across these successive time-
frames. To reveal these features’ fluctuations and dynamics, a comprehensive visualization
approach is needed to enable multiple features’ comparison across the temporal dimension.
The visualization approach followed should also be flexible, since it may need to accom-
modate multiple alternative “views” of the dataset in parallel, e.g. when multiple networks
are generated under different interactions’ combinations. Later, in our case studies’ analy-
sis, we present and demonstrate EventWheels, as an example of such a (dual) visualization.
A category of features which can be generated at a per time-frame level involves the aggre-
gation of the respective community level features, described above. Thus, a given tf can
be characterized e.g. in terms of community’s size by applying the statistical operators of
Table 2 on the sizes of all relevant communities. For instance, the use of mean community
size and standard deviation of communities’ size per tf is demonstrated in our experimenta-
tion, as well as the sum of communities’ size, which stands for the total number of users in
communities, a feature that offers an indication of the overall interest expressed in the event
at a given phase of time. Additional features that can be derived at a time-frame level are
presented next:

– number of communities: it indicates the scale of the users’ dispersion around the event.
Dispersion is not necessarily thematic, since different communities may focus on sim-
ilar topics. A community should rather be perceived as a group of users both interested
in similar topics and sharing common interaction patterns;

– percentage of users in communities: it is the ratio of the number of all communities’
members by the total number of users in the network (including outliers). This feature
indicates how much clustered the users are at a given tf .

At a higher temporal granularity level, a cross-event analysis approach can be employed
to compare the different event instances/sessions in their totality, instead of at a per tf basis,
using both quantitative features, as well as some “event demographics”. This approach
groups all time-frames overlapping with a given instance/session, to derive measurements
for it as a whole, and extracts features per time-frame group to use them for cross-event
comparison. In this type of analysis, instead of communities, features are extracted in terms
of community chains, since it is important to identify the appearance of the same community
in successive time-frames. The features of the number of community chains and the percent-
age of users in community chains are derived for each event instance by taking the count of
all different community chains that are “alive” in at least one relevant tf , and the union of
all users participating to communities within a given tf set, similarly to the definitions pro-
vided for the intra-event analysis. The mean lifespan and mean size of a community chain
(again it terms of users) are important features here, and are calculated over these “alive”
community chains. The joint consideration of certain demographic features, such as e.g. the
number of interactive tweets observed during the time period covered by the instance’s tf
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set, and their composition with respect to the interaction types can provide some additional
context for the cross-event analysis.

4 Community detection for social media user interaction networks

To instantiate the framework, we propose an adaptation of SCAN [31], a community detec-
tion algorithm that builds on the density-based clustering algorithm DBSCAN [8]. While
DBSCAN is widely used for clustering spatial points based on their density distribution,
SCAN operates on graphs using a structural similarity measure. SCAN’s advantages are that
it is scalable, it identifies nodes acting as noise in the network (either outliers or hubs), and
does not require the communities’ number as input. It, however, does not support weights
and its main limitation is its sensitivity to the selection of an initial similarity threshold
parameter, whose fine-tuning requires repeated algorithm executions for several parameter
values. An approach to alleviate SCAN’s parameter sensitivity limitation was given in [28]
employing the clustering quality modularity criterion [20] to find the optimal parameter’s
value. Alternative efforts addressing the parameter sensitivity of DBSCAN and SCAN led
to the so called reachability plots [1, 4] which represent the algorithms’ multiple clustering
outcomes for all possible parameter combinations. A technique proposed in [25] operates
on reachability plots produced by DBSCAN to automatically detect significant clusters.

Here, we examine if SCAN approaches can successfully uncover the underlying com-
munity structure in real world user interaction networks, or they need to be adapted to
leverage the interactions’ intensity. SCAN and the proposed adaptation for weighted net-
works WSCAN (i.e. WeightedSCAN) are evaluated in a series of synthetic networks.
The combination of both approaches’ experimental results with the corresponding intrin-
sic network properties (global clustering and weighted clustering coefficients [21]) leads
to an empirical criterion for the selection of SCAN or WSCAN for the network at hand.
WSCAN’s limitation of parameter selection is also addressed by an automatic approach,
AutoWSCAN, which detects communities from nodes’ weighted structure connected order
of traversal, inspired by [25].

4.1 Getting from SCAN to WSCAN

SCAN discovers cohesive network subclusters based on parameters μ and ε, control-
ling the minimum community’s size and the minimum structural similarity between two
community’s nodes, respectively. Generally, a larger μ value leads to fewer and bigger com-
munities, while a larger ε value to tighter communities and more outliers. With structural
similarity as a clustering criterion, nodes with several common neighbors are placed in the
same (μ, ε)-core community. To adapt SCAN for weighted networks we propose weighted
structure reachability for (μ, ε)-cores’ detection.

Definition 5 Given a weighted undirected network (G,w), where G = {V,E} and w :
E → R, the weighted structural similarity wSSim of two nodes u and v is defined as:

wSSim(u, v) =
∑

k∈�(u)∩�(v) wu,k · wv,k
√∑

k∈�(u) w2
u,k

√∑
k∈�(v) w2

v,k

. (1)

where �(v) is the neighborhood of node v: �(v) = {k ∈ V |(v, k) ∈ E} ∪ {v}, wu,v ∈
[0, 1)|u �= v;wu,v = 1|u = v.
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Definition 6 The ε-neighborhood of a given node u is the subset of its neighborhood
containing only nodes that are at least ε-similar with u:

Nε(u) = {v ∈ �(u)|wSSim(u, v) ≥ ε} . (2)

Definition 7 A vertex v is called a (μ,ε)-core if its ε-neighborhood contains at least μ
vertices: COREμ,ε(v) ⇔ |Nε(v)| ≥ μ .

Additional nodes are attached to (μ, ε)-cores based on structural connectivity. Node u

is structure-reachable from a core node v if u can be reached from v via a chain of nodes
each belonging to the ε-neighborhood of the previous one. Nodes u and v are structure-
connected if they are reachable from the same core node. A community is then defined as
a set of structure-connected nodes that is maximal in terms of structure reachability. Nodes
assigned to no community are characterized as either outliers or hubs depending on whether
they are linked to a single or multiple communities, respectively. For calculating wSSim it
is important to ensure that all weights are <1, since a weight of 1 is used as each node’s
self-similarity in the definition of wSSim. To achieve this, we scale all interactions’ weights
before community detection.

4.2 AutoWSCAN

Our experiments with WSCAN indicated its high sensitivity to parameter ε. Finding an ε

value that leads to a balanced community structure regarding outliers’ number, coherence,
and communities’ separation is, though, tedious. On the other hand, parameter μ affects
SCAN-based algorithms only in terms of the minimum allowed cluster size, thus selecting
a small μ value (e.g. 3-4) ensures that even very small sets of connected nodes are given the
chance to become candidates communities. Due to the above, in this paper, we target our
efforts only on the automatic selection of ε.

Xu et al. [31] proposes a heuristic approach for selecting ε based on the “knee-point
hypothesis” for the μ-nearest neighbor similarity plot. Though, our application of this
approach to real-world networks with both the “unweighted” and weighted structural sim-
ilarity did not reveal clear knee-points. We thus adopt the structure connected order of
traversal to represent the detected structure-connected community sets for all possible ε

values [4]. AutoWSCAN (Alg. 1) re-orders nodes by structure-connected order of traversal
based on weighted core reachability and reachability similarity.

Definition 8 Given a network (G,w), the weighted core reachability wCSim of node u

is defined as:

wCSim(u) =
{
wSSim(u,μNN(u)), if |�(u)| ≥ μ

UNDEFINED, else
, (3)

where μNN(u) is the μ-nearest neighbor of node u.

Definition 9 Given a network (G,w), the weighted reachability similarity wRSim of
node v from node u is defined as:

wRSim(v, u) =
{
min (wCSim(u),wSSim(u, v)) , if |�(u)| ≥ μ

UNDEFINED, else
. (4)
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Algorithm 1 AutoWSCAN

Weighted core reachability (wRSim) is calculated for each node, standing for the mini-
mum ε value that would allow it to become a core (Alg. 1). Then, each possible core node
u (|�(u)| ≥ μ ) is “visited”, which involves finding the node’s neighbors, calculating their
wRSim from the current core, and inserting them at a priority queue based on the wRSim

value (or reordering the queue if they have already been inserted). At each iteration, the
node with the highest wRSim value from any previously visited node is extracted from
the queue to ensure that regions of higher weighted structural similarity are spanned before
surrounding areas of lower similarity [4]. The node visiting order represents the weighted
structure connected order of traversal. For a connected network, Alg. 1 will never return to
its first loop, though, since social media users’ interaction networks are often disconnected,
this is probable. Our approach is to generate partial nodes’ sequences based on structure-
connected order of traversal for each disconnected component and detect communities in
them.

The weighted structure-connected order of traversal can be depicted in a reachability
plot, which illustrates, in the corresponding order, the maximum weighted reachability value
of each node from its previously visited nodes (i.e. maxWRSim). Figure 1 depicts a reach-
ability plot, where we can observe areas in which the maxWRSim values steadily rise and
then fall at a local minimum to rise again after a while. Such “hills” represent different
communities, whereas areas of low maxWRSim values are outliers. Such communities can
be revealed by ’slicing’ the plot horizontally at a selected global similarity threshold, and
isolating the regions that lay above it.
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Figure 1 Example of a weighted reachability plot

Definition 10 Given a sequence of nodes {n1, n2..., n|V |} ordered based on weighted
structure-connected order of traversal, a community is defined with respect to εthres as
a subsequence of nodes {na−1, na, ..., nb} where 1 < a − 1 < b ≤ |V |, iff ∀i ∈
[a, b],maxWRSim(ni) ≥ εthres and [a,b] is maximal.

Algorithm 2 ClusterExtractor
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Since in real world networks communities are usually of different cohesion and strength,
a global εthres will fail to identify communities of different similarity-range scales. Thus,
to detect communities at different (local) ε values, we apply ClusterExtractor, an approach
inspired by [25]. ClusterExtractor (Alg. 2) detects communities as contiguous areas between
two local minima, satisfying some desired properties that reflect the way a person would
identify communities by observing a reachability plot. It receives a weighted reachability
plot and first identifies local minima points, ensuring that they have the lowest value in
a subregion centered on them and spanning 2 · μ points. Then, it puts them in a priority
queue by increasing value, and iteratively removes the first point from the queue and uses
it to split the input nodes’ sequence in two subregions. A split point is valid when the given
subregions differ noticeably in their maxWRSim values compared to the split’s value. We,
thus, check that the maximum value in each region is “significantly” larger than the split
point’s maxWRSim (using a minRatio � 0.7). ClusterExtractor is recursively called for
each subregion whose size is larger than μ (active), and the same process is applied on
subregions based on the minima points within their span. If there are no more (valid) minima
points or both subregions are inactive, then the current region is a community.

4.2.1 Computational complexity

Given a graph with M edges and N nodes, the computational complexity of Alg. 1 for
constructing the structured-connected order of traversal is dominated by the calculation
of: wRSim for all edges and wCSim for all nodes (this entails finding each node’s μ-
nearest neighbor), as well as performing a single pass over all nodes through the ’visiting’
process. The total cost of the above processes is: O(M)+ O(N ∗ k) + O(N), where k is
the node’s average degree. Since many real world networks are sparse (M ≈ N) and follow
a power-law degree distribution (the degree’s expected value is constant) [31], the average
computational complexity for constructing the structured-connected order of traversal is
O(N). ClusterExtractor first involves finding the local minima of the input array and sorting
them, a process which costs O(N) + l ∗ log(l), where l represents the number of local
minima for a given input. Next, an additional pass over the input array allows to identify
the points which are positioned next to the local minima and have the same value, which
again takes O(N). Each local minimum is examined for its suitability as a split point for
either the whole array or some section of it (due to the algorithm’s recursiveness) once,
which demands, in the worst case, finding the maximum value of the whole array, thus
imposing a total cost of O(l ∗N). Based on the above, considering that in general l << N ,
the complexity for a single exectution of the ClusterExtractor is O(N). ClusterExtractor
will be executed once in case the network is connected, and few times, equal to the number
of disconnected components, otherwise, thus, for sparse networks, the total complexity of
AutoWSCAN is estimated at O(N).

4.3 Synthetic benchmarks

Our initial hypothesis that WSCAN and AutoWSCAN are more suited for real world
user interaction networks compared to SCAN needs experimental validation. Since, to our
knowledge, there exist no real world weighted networks with ground truth communities, we
utilize synthetic networks with planted partitioning of nodes in communities to evaluate the
algorithms. In specific, we use the well-known LFR benchmark graphs [13], as they sup-
port weights and possess some important real world networks’ features (node degree and
community size heterogeneous distributions). Our benchmarking involves the application
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of WSCAN and SCAN on a series of LFR graphs generated with different parameters for
several linearly increasing values of the parameter ε, while maintaining the same value for
parameter μ. The accuracy of each run is evaluated by the well known Normalized Mutual
Information (NMI) score [7], which quantifies the closeness between the identified and
ground-truth communities in a scale of 0 to 1 (1 denotes identical assignment of nodes to
communities). For each graph we record the best NMI score achieved and the correspond-
ing ε value. To assess AutoWSCAN’s performance, we apply it on the same graphs, and
also compare it with a modified implementation for unweighted graphs, AutoSCAN. The
latter follows exactly the same process as AutoWSCAN with the exception that is uses the
classic (unweighted) measures of core reachability and reachability similarity.

SCAN-based approaches might characterize some nodes as outliers or hubs and not
assign them to a community, as opposed to the LFR graphs which consider that each node
belongs to at least one community. Since we are not aware of any weighted benchmark net-
work with known community structure embedding also outliers and hubs, we adopt the LFR
benchmark graphs and follow a workaround to extract NMI scores. Thus, upon the algo-
rithms’ execution, we assign i) outliers to the community with which they have at least one
connection, and ii) hubs to the community towards which they are most strongly connected
based on the (weighted) structural similarity or (weighted) reachability score for (W)SCAN
and Auto(W)SCAN, respectively.

After obtaining the NMI scores for all approaches, we seek to reason their comparative
performance by examining the benchmark graphs’ structural properties. To this end, we
employ two metrics: the global clustering coefficient and weighted clustering coefficient.
The global clustering coefficient, CC, expresses the density of triplets of nodes in a net-
work, where a triplet comprises three nodes connected by two (open triplet) or three edges
(closed triplet). It is defined as 3 times the number of closed triplets (for each pair of the
triangle’s edges) over the total number of triplets at the network, and it ranges from 1 for
a fully connected network to 0 for random networks with sufficiently large size. A similar
idea is followed by the global weighted clustering coefficient, wCC, in weighted networks
[21]. By assigning a value to each triplet, wCC is defined as the sum of all closed triplets’
values over the sum of all triplets’ values. Four methods have been proposed for the calcula-
tion of a triplet’s value: the arithmetic mean, geometric mean, maximum, and minimum of
the corresponding two edges’ weights. Here, we employ the geometric mean method since
it is considered the most appropriate for alleviating sensitivity to extreme weights. The def-
inition of wCC implies that for a random distribution of weights in the network, wCC

equals to CC. Here, for each network we calculate the ratio of wCC to CC and observe the
performance of the algorithms when this ratio is greater or lower than 1.

4.4 Benchmark results

The proposed approaches, WSCAN and AutoWSCAN, are compared with their unweighted
counterparts, SCAN and AutoSCAN, in terms of performance on the LFR benchmark
framework. We aim to determine the validity of the proposed methods and their suitabil-
ity for graphs with real world features. Since disregarding the variability of the intensity of
interactions in real world networks is a common approach, here we try to identify how it
affects performance and when it can be safely followed.

We evaluate the algorithms on four weighted LFR graphs, whose complexity is governed
by the network topological mixing (μt ) and weighted mixing (μw) parameters [13]. Since
μt is the ratio of the number of a node’s external neighbors to the node’s total degree, its
increasing values indicate mixed and difficult to separate communities. μw has a similar
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effect, since it is the ratio of the sum of the weights of the edges between a node and its
neighbors in different communities to the sum of the all nodes’ incident edges. Table 3
outlines the parameter combination for each benchmark graph. Benchmarks 1 and 3 refer to
graphs with smaller communities (10-50 nodes per community) compared to Benchmarks
2 and 4 (20-100 nodes nodes per community). Also, graphs of Benchmarks 1 and 2 (with
μt = 0.5) have a more apparent community structure compared to Benchmarks 3 and 4
(with μt = 0.8). Since we are interested in how weights affect the community detection
results, we run SCAN, AutoSCAN, WSCAN and AutoWSCAN for varying values of μw.

Figure 2 depicts NMI scores for all runs on the four benchmark graphs (with μ = 4). As
expected, (Auto)SCAN performs invariably with respect to μt for all benchmarks, since it is
not affected by changes at the edges’ weights. (Auto)WSCAN’s performance is satisfactory
for the NMI score, as it starts to decay at μw ≈ 0.5. Lower NMI values are expected for high
μw values, since then, the algorithms characterize more nodes as outliers/hubs and assign
them to communities based on the workaround described in Section 4.3. For Benchmarks
1 and 2 the weighted algorithms perform better than (Auto)SCAN for 0.1 ≤ μt ≤ 0.4,
while the corresponding set of graphs exhibit wCC/CC > 1 [9]. For μt ≥ 0.5 unweighted
graphs maintain a good performance for Benchmark 1, whereas they perform poorly for all
graphs of Benchmark 2 (with bigger communities and CC < 0.1). On the contrary, larger
community sizes do not largely affect (Auto)WSCAN’s performance, since NMI scores for
Benchmarks 1 and 2, as well as for Benchmarks 3 and 4 are similar.

NMI scores from Benchmarks 3 and 4 indicate that the weighted algorithms perform
better for μt = 0.8, rather than for μt = 0.5 (Benchmarks 1 and 2). This may seem con-
tradictory, though as explained in [13], when μt < μw , inter-communities edges carry
on average more weight rather than when μt > μw. This is inconsistent with most com-
munity detection algorithms’ hypothesis that intra-community nodes are connected with
highly-weighted edges. For all graphs of Benchmarks 3 and 4 the unweighted algorithms
fail to detect the community structure. An important observation is that in these graphs
wCC/CC > 1 (except on μt = 0.8, where wCC/CC = 1). Results indicate that the
decision of whether to apply (Auto)SCAN or (Auto)WSCAN on a given network could be
based on the ratio wCC/CC, selecting the first when it is < 1, or the second otherwise.
In all cases, automatic algorithms follow closely the best performance of their unweighted
counterparts. This is a significant outcome given the temporal cost induced by the search
of the (ε) parameter space in (W)SCAN. In our experiments, while the selected value for
SCAN is always ∼0.2, for WSCAN it increases for rising value of μw over all graphs with
no common pattern. The selected ε value for all runs where WSCAN performs satisfacto-
rily (NMI > 0.5) ranges from 0.04 to 0.28, it thus seems difficult to estimate it in advance.
AutoWSCAN emerges as a good alternative to WSCAN, as it is independent of ε and
performs similarly to WSCAN under the parameter setting leading to the best results.

Table 3 Synthetic Benchmark Graph Specification

n k kmax minc maxc μt

Benchmark 1 5000 20 50 10 50 0.5

Benchmark 2 5000 20 50 20 100 0.5

Benchmark 3 5000 20 50 10 50 0.8

Benchmark 4 5000 20 50 20 100 0.8
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Figure 2 NMI scores for the algorithms’ benchmarks with varying value of μw

5 Experiments and results

This section, presents the results of the proposed global event, intra-event and cross-
event analysis derived by the framework’s application in two real world case studies,
EUROGROUP and TEDX. Experimentation involves networks from Twitter user interac-
tions, namely mentions, replies, and retweets, generated from data collected via the Twitter
Streaming API4 using event-related topic keywords. Our selected case studies are described
below and their characteristics are summarized in Table 4.

Recurring event case study The EUROGROUP case study refers to the official Eurogroup
meetings, which have attracted major interest due to the recent financial crisis and
Eurogroup’s role in important decision taking. Covering 8 meetings from 13/06/12 to
30/11/12, it acts as an exemplary case study of a series of events held at different time
instances, having the same participants with a common generic context (i.e. the eurozone’s
monetary issues), but different focus (depending on the agenda). Its impact is global since
its decisions primarily affect the eurozones countries, but are reflected at a second level to
the worldwide economy.

Modular event case study The TEDX case study is about a TEDx event that took place
in Athens, Greece from 23/11/2012 to 24/11/2012. It concerns presentations, videos, and
performances promoting creative or innovative ideas and projects. TEDX is used as an
example of a local event with limited users, which is modular, since it takes place at a given

4https://dev.twitter.com/docs/streaming-apis
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Table 4 Event-relevant features for the EUROGOUP and TEDX case studies

Feature EUROGOUP TEDX

Topic focused of wider scope

Impact scope global local

Intended audience universal closed community

Instance duration 1 day 2 hours

Instance granularity sparser, aperiodic continuous

time duration, but covers different topics in its sessions depending on presenters’ expertise.
Its monitoring duration spans from 21/11/2012 to 26/11/2012 covering the pre-event and
after-event “talk” apart from the 2 main days.

5.1 Global analysis on the EUROGROUP case-study

First, we apply global event analysis on the EUROGROUP dataset. The total time duration
of the dataset is 227 days and it comprises: 29529 tweets, 10305 interactions and 3015
different users. Regarding the interactions’ type, retweets span more than 50 % of all
interactions, thus they affect considerably the networks’ shape (star-like forms). Statistical
features such as tweet frequencies, depicted in Figure 3a, can be used to obtain some initial
insights for an event’s popularity in Twitter (e.g. more intense activity towards late Novem-
ber). Here, we are mostly interested in the users’ clustering around such periods claiming
that communities’ emergent features reveal finer aspects of events. An extended version of
this analysis can be found in [10].

To perform global event analysis, static community detection is needed, thus, we first
normalize all weights and calculate wCC and CC for the user interaction network, resulting
at a ratio of wCC/CC = 1.22. wCC is larger than CC implying that the intensities of
user interactions are not random in this network, but play indeed an important role in com-
munities’ formation. Therefore, based on the observations of Section 4.4 we opt to apply
AutoWSCAN for the detection of communities. AutoWSCAN reveals 67 communities

Figure 3 EUROGROUP meetings, tweets, and communities: a depicts the daily number of tweets and is
annotated by the meetings’ dates and locations. The number of active communities per meeting is depicted
above its corresponding day; b shows a distribution of the communities in a scale of users’ interest based on
their members’ activity on the events’ dates
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which we further analyze on the per community features of: size, topic diversity, and
time span. To estimate the communities’ topic diversity we apply LDA as described in
Section 3.4. Since LDA requires specifying the number of topics to be detected, we empir-
ically set this parameter to 100. Each document in LDA is a mixture of various topics with
different probabilities. Here, due to the small length of tweets’ text, a tweet is most likely
to belong to a single topic, thus we assign it to the most probable one, and then calcu-
late each community’s topic diversity. The communities’ time span is calculated at a daily
granularity.

To understand each EUROGROUP meeting’s impact, we associate them with the dis-
covered communities and their features. We assume that each community expresses interest
in an event, thus it is active on it, given that interactions between its members are observed
on the current/previous/next day of the event. The number of active communities for each
meeting are depicted in Figure 3a. To qualitatively characterize active communities, we fur-
ther classify them as small (< 50 members), medium (50 ≤ members < 200), and large (
≥ 200 members), and present their distribution for each event in the same figure. Since in
total 6 large communities have been detected, we can observe that they are all active in 5
out of 8 events, which are also the events with the most tweets on the day they took place.
Examination of the most popular events with respect to the tweets’ number (20/11 and 26/11
in Brussels), reveals that although the latter has attracted the most tweets, the earlier has
more medium active communities. The meeting of 20/11 corresponds to the failure of Euro-
pean leaders to reach an understanding of how to restructure Greece’s aid package, thus
delaying the next aid tranche, whereas this of 26/11 to the IMF’s and eurozone’s e40 bil-
lion debt-reduction agreement for Greece. 5 Although apparently more buzz was generated
on the day of the later event, it seems that the previous, a long critical meeting building up
tension and failing to reach a result, has attracted the interest of more large and medium
communities combined. The later event, on the contrary, has been of interest to more small
communities, probably focused on its decision. By comparing the summer meetings of 21/6
and 9/7, we can observe that although the first has attracted less tweets than the second,
it is related to more communities which are active. June meeting’s target was to discuss
the latest developments in the eurozone, mainly in Greece, Spain, Portugal and Ireland,
whereas July’s meeting aimed at discussing EU/IMF’s rescue programs for Spain, Greece
and Cyprus6. More topics seem to be involved in the first event which may, up to a point,
explain interest’s dispersion in more communities. Some communities active on June’s
meeting might also be interested in a related topic: the announcement of the successful for-
mation of a new government in Greece (after a critical long election period associated with
the question of Greece’s continued eurozone membership), which took place a day before
the event. Communities are also characterized in terms of their interest in “Eurogroup”
based on the number of meetings on which they are active. We assess interest expressed
within a community in the following scale: constant, intense, specific, random, based on
whether the community is active on 6-8, 3-5, 1-3, or 0 meetings, respectively. As depicted
in Figure 3b, most communities appear to have specific interest on few meetings, though, a
considerable percentage of them are indeed focused on the topic (with intense or constant
interest).

5http://blogs.cfainstitute.org/investor/2011/11/21/european-sovereign-debt-crisis-overview-analysis-and-timeline-
of-major-events/
6http://www.consilium.europa.eu/
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To identify the most popular topics within tweets, we resort to the following approach.
We form 3 orderings of topics by ranking each topic based on: A) the number of tweets that
express it over all communities, B) the number of communities that are related to at least
one tweet that expresses it, C) the number of communities that are strongly-related to it.
For ordering C, we assign each community to a single topic, i.e. the one expressed in most
of its members’ interactions, and then we rank each topic by the number of communities
assigned to it. A set of 12 unique topics is generated by taking the top-5 from each ordering.
We define 3 topic features: General Intensity (GI), Inter-Community Popularity (ICP), and
Inter-Community Intensity (ICI), which characterize topics that rank high (here, in the top-
5) in ordering A, B, and C, respectively. In our set, there exist: 3 GI topics (which have the
most intense user interest overall), 3 ICP topics (which reach out to the most communities),
and 3 ICI topics (which play a major role in the most communities). There also exist 3 topics
that combine two features, GI & ICP (attracting intense general interest while also being
diffused in several communities), GI & ICI (attracting intense interest while also being
major in several communities), and ICP & ICI (spanning several dedicated communities).
Figure 4 depicts summaries of all 12 topics, where the central hexagons correspond to the
GI, ICP, and ICI features, whereas the hexagons adjacent to two central ones represent
the corresponding intersection. Topics are also divided based on their terms’ language in

GI

ICIICP

Warning for Grexit
Juncker announcements 
Greece's next tranche 

Spain's possible bailout 
Upcoming EG in October

November EG mee�ng 
interrup�on

Cri�cal for Greece

Troika 
Stournara's ac�ons in EG

Tranche for Greece 

Ireland crisis
IMF involvement in EU crisis

Debt management in 
Greece and Spain

Aug.-Oct 
announcements from 

News media w.r.t. Greece
Humorous remarks on EG 

failure to decide on Greece
Reference on Stournaras, 

Juncker w.r.t. July's EG 
Greece’s program remains 

on track

EG fails to decide on Greece

Agreement on Greek debt

November Mee�ngs

Shaeuble

1billion tranche to Greece 

Risk for Grexit

EG fails to decide on Greece

Draghi's views on EG decisions

Junker stays EG's head

Junker in ECB mee�ng

Figure 4 Classification of the most significant topics based on the intensity and diffusion of interest. Hor-
izontal lines separate different topics, while topics in red/blue correspond to the English/Greek language.
Greek topics have been translated in English. (Best viewed in color)
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Table 5 Dataset features

Theme Days Tweets Links Users Time frames tu length(tf )

EUROGROUP RT+ 227 29529 10305 3015 167 1day 4

EUROGROUP RT- 227 29529 2755 997 167 1day 4

TEDX RT+ 6 15247 9472 1815 69 2hours 1

English and Greek (the ones represented in the set). It can be easily observed that all topics
that combine two features (thus more significant), are in English, indicating their impact on
more users and communities.

5.2 Intra-event and inter-event analysis on the EUROGROUP and TEDX case-study

Next, we apply evolving community detection on both the EUROGROUP and TEDX
datasets aiming to uncover more fine-grained users’ interest fluctuations on the correspond-
ing events via the proposed intra-event and inter-event analysis. Table 5 summarizes the
two datasets based on their: time duration, total number of tweets for this period, num-
ber of interactions among users in the collected tweets, and the number of users. The table
also presents the total number of time-frames analyzed for each dataset, along with the
length(tf ) and tu used for the data’s temporal analysis.

EUROGROUP dataset is analyzed with a 1-day step (tu) to a tf of 4 days, whereas the
TEDX dataset is analyzed in 2-hour time-frames with no memory over previous ones (thus,
the tu is also 2 hours). This setup was selected for the TEDX dataset in order to both approx-
imately match each tf within the two days of the events with one of the event’s sessions,
and also avoid mixing tweets generated during different sessions. Despite its short dura-
tion, the percentage of interactions in TEDX tweets (∼60 %) is almost twice the percentage
of interactions in the EUROGROUP datasets. Figure 5 provides an overview of the TEDX
dataset, with two easily-observable peaks in the number of tweets corresponding to the two
days of the event, while some hours seem to be attract considerably more user interest than
others.
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Figure 5 Total number of tweets per day in the TEDX dataset
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Mentions and replies can be viewed as a more typical form of reference and communica-
tion between two users. Retweets, though, contribute not only to information propagation,
but also to content validation and engagement in a broader conversation [5]. To this end,
the retweets’ role in the formation and evolution of user communities around events is stud-
ied by having two sets: EUROGROUP RT+ with all types of the above interactions, and
EUROGROUP RT- with only mentions and replies.

Our framework identified the existing community chains in the dataset, and calcu-
lated their life span. The community chains’ distribution based on their life span, depicted
in Figure 6, indicates that few communities live for more than 4 time-frames for both
EUROGROUP RT+ and RT- datasets, while the inclusion of retweets in general prolongs
the communities’ life span.

The EUROGROUP case-study Figure 7 illustrates the community detection results (num-
ber and mean size of communities) in all time-frames for both EUROGROUP RT+ and
RT- datasets. Resulting diagrams are annotated with the eight Eurogroup meetings during
the observation period. Figures 7a and 7c show e.g. that the last two Brussels meetings
(end of November) have the largest dispersion in communities, while they are compa-
rable to the Luxembourg meeting (June) with respect to their communities’ strength.
EUROGROUP RT- exhibits lower values on average for these two features, thus some
events emerge as more retweet-driven than others. Such are the November Brussels meet-
ings, where the communities’ strength is significantly lowered by the retweets’ removal
(Figure 7d).

To characterize events, we apply our dual intra-event and cross-event analysis approach.
We first perform intra-event analysis for the three EUROGROUP meetings of the biggest
impact to community formation and tweet frequency, namely meetings of: Luxembourg
(21/06), Brussels (9/07) and Brussels (20/11). The analysis’ results are visualized for each
event in Figure 8 via the so called EventWheels, which enable the joint presentation of
the evolution of two networks based on several quantitative features corresponding to
the same time-frames. Here, the EventWheels’ left and right hemisphere correspond to
EUROGROUP RT+ and RT- networks, respectively.

EventWheels comprise concentric circles representing the different time-frames relevant
to an event instance, with the outermost and innermost circles representing the latest and
earliest tf , respectively. The circles’ number may vary depending on the event’s actual
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Figure 6 Distribution of communities in the EUROGROUP datasets based on their life span
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Figure 7 Community detection quantitative results for EUROGROUP: a and b depict the number of
detected communities per tf , while c and d the mean community size, for R+ and R- datasets, respectively
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Figure 8 EventWheels for selected meetings in the EUROGROUP datasets which took place: a in Luxem-
bourg on 21/06, b in Brussels on 9/07, c in Brussels on 20/11. E wheel represents the early event tf ; C1, C2,
C3 wheels represent the central event time-frames; and L wheel represents the late event tf

duration, the length(tf ), and tu, while circles are categorized in: Early-event (E), Central-
event (C), and Late-event (L), based on the time-frames’ sequence and the distance of their
center from the instance’s central time point. Each EventWheel is intersected by a set of
axes: one for each measured feature. Colored circles lie at these intersections, whose radius
represents the relative value of the axis feature in the given circle’s tf with respect to the
other values in the axis of this event. EUROGOUP datasets have one E circle, three C circles,
and one L circle (due to the selected length(tf )), as depicted in Figure 8.

Figure 8a for Luxembourg meeting shows strong user interest even from the event’s
beginning, as indicated by the communities’ number, their mean size, and users involvement
in the RT+ dataset. Interest on the event seems to weaken while it evolves, whereas in the
L tf interest rejuvenates as indicated by the RT+ and especially the RT- dataset. In the RT+
dataset, users appear more dispersed at the event’s end compared to its beginning, as the
communities’ number is governed by expansion forces while shrinkage forces are observed
in the communities’ mean size. The significant effect of retweets is also implied, as an
opposite behavior is observed in the RT- dataset. Observations are inline with the actual
event focus, discussed in Section 5.1, since it led to specific decisions for several countries
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of the agenda. Vivid interest at the event’s end is justifiable as some decisions (for Greece:
troika missions will be resumed, for Spain: formal assistance request is expected) left open
unresolved issues.

Figures 8b and 8c depict the Brussels EventWheels with the 9/07 meeting having its
most axes to be governed by expansion forces. Low values in the E circle indicate low inter-
est and user networking at the beginning of the event, while soon boosted interest resulted
in increased users’ participation in communities and much more communities of varying
sizes (but generally of a larger mean size). Expansion forces are observed in almost all
axes, with the exception of the mean size of communities axis for the 20/11 event. While at
their beginning, both meetings seem to be at the same scale, the decrease of the mean size
of communities and the concurrent increase of both their number and the number of users
towards the end of the 20/11 event (L circle), indicates that in this event users are much
more dispersed compared to the 9/07 event. This large number of small communities indi-
cates unresolved issues at the end of the 20/11 event, while on the contrary in the 9/07 event
users seem to reach faster to some kind of consensus. These results are inline with the 9/07
event’s positive conclusion of reaching political understanding on the Spain’s recapitaliza-
tion and financial institutions restructure program. Our results also capture the 20/11 event
momentum of Eurogroup’s failure to reach consensus, discussed in Section 5.1.

Table 6 depicts the EUROGROUP cross-event analysis with results indicating that, on
average, in relatively small events (with respect to the number of tweets), community users
are not well-connected. Life spans are comparable in all events, however it seems that
smaller events have a slightly prolonged life span. By comparing the Luxembourg meeting
of June and the Brussels meeting of 20/11, we can observe that in the first one the per-
centage of clustered users versus outliers is higher, however the number of communities is
considerably smaller. This may indicate that in the Luxembourg event most users are con-
nected and gathered in fewer and on average stronger communities, whereas in the Brussels
event there is more dispersion, having a higher number of outliers and several communities
of smaller scale.

To zoom-in a specific community chain we indicatively pick Brussels 20/11
EUROGROUP RT+ dataset in C1 tf and follow its evolution across time in Figure 9 (link’s
color indicates type, with ’blue’ for retweets, ’red’ for mentions, and ’yellow’ for replies).
Here, mentions are shown to be stronger than replies and retweets regarding their weight,
and retweets create star-like structures in communities, as anticipated. Figures 9a, 9b
and 9c show the community’s rise from C1 to C3, and its split in smaller communities in L,

Table 6 Cross-event features for the EUROGROUP (RT+/RT-) datasets

Event 21/06 09/07 20/07 14/09 08/10 12/11 20/11 26/11

Luxembourg Brussels Telecon. Nicosia Luxembourg Brussels Brussels Brussels

Time period 17-25Jun 5-13Jul 16-24Jul 9-17Sep 4-12Oct 8-16Nov 16-24Nov 22-30Nov

mean life span 3/3 4/3 4/ 4 4/ 4 4/ 4 4/3 3/ 4 3/ 4

tweets 2613/718 789/227 49/23 335/71 249/79 161/68 4431/1037 2805/659

communities 46/18 27/3 4/1 26/4 14/2 7/4 62/ 34 77/29

users in com 1372 471 479 230 95 44 1294 1395

users in com. (%) 77 62 60 63 30 35 70 66

retweets (%) 73 71 53 79 68 58 76 77

Bold entries indicate the highest value per feature
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Figure 9 Evolution of a EUROGROUP RT+ community within C1,C2, C3, and L time-frames. a depicts
the community’s birth in C1, b its evolution into a slightly larger community in C2, c a larger size increase
in C3, and d its split into a number of small communities in L. Green straight/dashed circles indicate the
enclosed nodes’ appearance/disappearance in the current/next tf . (Best viewed in color)

indicating that this community chain was created in the event’s start, and gradually, as the
event progressed, more users with similar interest joined it, leading to its dissolve near its
ending. Table 7 shows some popular tweets exchanged between users of two snapshots of
this community chain taken in C1 and C3, comprising both news-broadcasts and opinions.
Tweets in C1 show the dissatisfaction of this community’s users and their low expectations
of the event, while tweets in C3, when the event’s outcome has almost been stabilized, show
aspects of official Eurogroup members’ statements and news media articles on the event.

The TEDX case-study Community detection results for the TEDX dataset, in terms of
the number and mean size of communities per tf , are depicted in Figures 10a) and 10b,
respectively. The event spans the warmup (23/11) and main day (24/11), and is analyzed
in 2-hours sessions (corresponding to the actual event sessions), which we handle similarly
to event instances. Identifiers W1-W2 are used to reference the warmup day’s time-frames
(18:00-22:00), and identifiers M1-M7 are used for the main day’s time-frames (08:00-
22:00). Diagrams in Figure 10 are annotated with these sessions and assist in quantifying
their effect on users’ interactions. These diagrams combined with the cross-event features
of Table 8 indicate that in the warmup day, users’ interactions in Twitter are more intense
during the first session (W1), whereas in W2, a small number of users is distributed in four
communities. The main day attracted much more interactions with vivid users networking
even from M1 (characterized by few communities of relatively large mean size), indicating

Table 7 Popular tweets within the communities depicted in Figure 9a (C1 tf ) and Figure 9c (C3 tf )

C1 Anyone still want to take my bet? That Eurogroup will approve Greek bailout cash but

there’s no way it will pass national parliaments

I have #Eurogroup fatigue, my poor journalist friends have Eurogroup fatigue heck even

the Eurogroup is bored with itself

Another Eurogroup “thriller” about Greek debt

C3 Dear #Eurogroup Serious talk of #Greek bond buy back = increase in mkt prices. OK?

Talk of #Grexit = fall in mkt prices

Another Eurogroup on Greece needed after Bundestag vote, before money can be disbursed,

says German govt spokeswoman.

We had to destroy Greece to save it #EU #IMF
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Figure 10 Community detection quantitative results for the TEDX dataset depicting: a the number of
detected communities per tf ; b the mean community size per tf

low dispersion and high communities’ strength, whereas M3, a session in the middle of the
event’s main day, is characterized by high dispersion and small communities, possibly as
discussions may also involve presentations of previous sessions.

Table 8 Cross-event features for the TEDX dataset

Event W1 W2 M1 M2 M3 M4 M5 M6 M7

tweets 834 234 1410 1177 766 833 884 822 504

communities 3 4 2 4 6 4 2 1 2

users in com. 712 282 1004 984 730 796 758 662 416

users in com. (%) 93 84 94 92 89 90 89 93 89

retweets (%) 69 65 69 65 69 69 69 70 70
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Table 9 Most frequent terms in four communities of the M3 event session of the TEDX dataset

com. index most frequent terms per community

1 sam conniff, marykatrantzou, walzer, tgeorgakopoulos, papadimitriou, failure, bookshop,

offenders

2 craig, walzer, craig walzer, emeaportal, stakon, alex walex, santorini, bookstore, no more

ebooks

3 adiasistos, 45 euro, ticket, tweet all time, rotten innovation

4 news247gr, greece eats its children, sam conniff

To gain some insight in the thematic focus of communities discovered within a given
tf we examine tweets in four communities of the M2 session. Upon cleaning the tweets,
we perform a most frequent n-gram analysis (n ∈ 1, 4), and present the most frequent
terms/ phrases within each community (Table 9). M3 session had four speakers: Sam Con-
niff (Social Entrepreneur), Mary Katrantzou (Fashion Designer), Craig Walzer (Founder of
Atlantis Bookstore), and Andreas Mershin (Research Scientist). Community 1 is of mixed
theme, but is mainly dominated by references to the presentation of Conniff, and especially
his proposal about the rehabilitation of ex-offenders into society with the aid of technology.
Other topics involve presentations of Katrantzou and Walzer, Paul Papadimitriou, a presen-
ter of the previous session, and the event’s live streaming. Community 2 is more focused
in topic, since it revolves mainly around Walzer and his inspired bookshop in Santorini,
Greece. On the other hand, community 3 is rather driven by opinions regarding the event
itself, comprising mostly users who express negative opinions about the event organization,
complaining about the ticket’s price and criticizing its innovation focus. Finally, community
4 is a small group of users of limited topic, mainly discussing the phrase greece eats its own
children included in Conniff’s presentation.

The comparison of results from EUROGROUP and TEDX indicates that in TEDX there
is a lower outliers percentage compared to EUROGROUP. Also, it generally has a much
smaller number of communities, while the total number of users in communities is com-
parable for both cases. This is reasonable since a TEDX tf is constrained to 2 hours, thus
users’ interest concentrates around few topics, whereas a EUROGROUP tf covers 4 days,
thus a larger sub-topic variety.

6 Conclusions

This work’s contribution was to: i) present a generic framework for community tracking
in real world interaction networks, instantiated with a suitable algorithm, ii) identify com-
munity as well as community chain features which can be leveraged for revealing events
impact on social media users and their interactions, iii) propose approaches for global-,
intra-, and cross- event analysis and demonstrate their potential on two exemplary event-
related case studies. Role of weights in community detection approaches is studied based on
structural similarity and on automatic parameter selection. Our proposed community detec-
tion approach leverages network’s structural properties and interactions intensities and it is
validated over a series of synthetic networks. The three proposed event analysis approaches
have revealed different aspects of the underlying events, and exhibit different merits. In
specific, global event analysis provides a generic overview of relevant social media users’
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activity, while the other two approaches provide a zoom-in analysis, at different granulari-
ties, by identifying communities in a time period which is synchronized with a given event
instance. Revealing reciprocities among people communities and real word events via social
media analysis embeds significant challenges with several promising future research direc-
tions. Next research work is foreseen in studying and assessing the effect of the tf and tu

parameters, and extending our approach further under a different scenario, where the event
instances and their duration are not known in advance, but should be rather derived based
on the monitored activity in social media. Another interesting future extension is to proceed
to qualitative assessment of the identified communities by a methodology which will cap-
ture their polarity with respect to the underlying events and will identify users roles within
and across them.
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