
A distributed framework for early
trending topics detection on big social

networks data threads

ATHENA VAKALI , NIKOLAOS KITMERIDIS , MARIA PANOURGIA

INFORMATICS DEPARTMENT,

ARISTOTLE UNIVERSITY, THESSALONIKI , GREECE

Informatics Department

Aristotle University of Thessaloniki

Presentation outline

 Introduction

 Problem Addressed

 A framework for early trend detection in social networks

 A micro-blogging trending topics prediction implementation

 Experimentation and Results

 Conclusion and Future Work

Abstract
 Social networks have become big data production engines and their analytics can
reveal insightful trending topics, such that hidden knowledge can be utilized in
various applications and settings.

 This paper addresses the problem of popular topics’ and trends’ early prediction out
of social networks data streams which demand distributed software architectures.

 Under an online time series classification model, which is implemented in a flexible
and adaptive distributed framework, trending topics are detected.

 Emphasis is placed on the early detection process and on the performance of the
proposed framework. The implemented framework builds on the lambda architecture
design and the experimentation carried out highlights the usefulness of the proposed
approach in early trends detection with high rates in performance and with a
validation aligned with a popular microblogging service (Twittter).

Social Networks = Big Data Production Engines

• Many TeraBytes of user-generated content (UGC) per day…

• Hidden knowledge can be utilized in various domains :

• Advertising

• Social Sciences

• Politics

• Recommendation Systems

•many more…

• Τwo crucial aspects justify such kŶoǁledge’s importance :

• capture Đroǁd’s interests (i.e. topics)

•Monitor dynamics over time slots (i.e. emerging trends)

Twitter’s Trending Topics

WORLD WIDE REGIONAL
Trending topics are

those topics being

discussed more than

others.

 Twitter Trends are

automatically generated by

an algorithm that attempts

to identify topics that are

being talked about more

right now than they were

previously.

Problem(s) Addressed

•Twitter provides information about the most discussed subjects
(trending topics) among its users any time;

•… but as the production rate of such data constantly increases,
questions like the following arise between both in scientific and
enterprise communities :

•Can we do it better ? // qualitative issues

•Can we do it faster? // quantitative/performance wise

•How to manage such data volumes need for extracting valuable
hidden knowledge?

… both in terms of software and hardware.

from data to trends … (I)
• Trend detection problem is not trivial

• popularity is not enough … time of appearance the topic is a key factor too!

• Several studies address the problem as a time series classification problem

 Proposed execution approach novelty is due to the next key points:

• training set’s time series are constructed by a small rate of the overall tweets dataset;

• the time series of topics to be tested are not static, but are generated in real time in a form of a
sliding window, maintaining low percentage of tweets for constructing the time series.

• Features used :

• timestamps and exact date of the topic being declared as a trending topic;

• definition of a time range from the moment just before the topic became trended, i.e. the time of
the last kept time slot;

• production of the final form of the time series by applying a set of normalization filters;

• Two distance metrics of cosine and squared Euclidean are utilized for the comparison between
time series.

• Retrospective analysis of data is usually needed, but it is not enough in many cases … since

• The basic entity of this research, the trending topic, has a short life cycle.

• We need to be able to define a topic as trending in almost real time, i.e. shortly after the first
occurrences of the topic in users’ posts.

• To resolve such issues, we divide the dataset in two, continuously updated, categories :

• The first one is the training set which is used for the comparison with the new topiĐs’ time
series.

• It is consisted of valid trending topiĐs’ time series (created by the framework and validated
against Tǁitter’s API)

• It is continuously updated with new trending topiĐs’ time series, to enrich the dataset and
cover new time series patterns

• The second dataset consists of every new topiĐ’s time series, which are constructed in real time,
are divided in 2 minutes time buckets and are updated in a manner of sliding window.

• Pattern similarity among real time topiĐ’s and training set’s time series is used to detect the
new trending topics.

from data to trends … (II)

Handling Big Data streams
• Complex architectures have been designed and tested on evolving big data management.

• Current work is based on an architecture that is inspired from Lambda Architecture’s principles,
allowing both batch and real-time stream data processing.

• Batch Layer

• Apache Hadoop (MapReduce, HDFS)

• Executes periodic processing in whole dataset.

• Speed Layer

• Apache Storm

• Computes data views incrementally by balancing high latencies of the batch layer with real
time views computations.

• Serving Layer

• Redis servers

• The first one gets the output from the batch layer which contains pre-computed views and
exposes views for querying

• The second one stores the real time created time series for each topic.

Handling Big Data streams

http://lambda-architecture.net/img/la-overview_small.png

An abstract view of the overall 8-step process

Handling Big Data – The initial Data Set -

• Step 1: One month of collected tweets and trending topics dataset, reported from Twitter.

• Stored in HDFS

• Step 2: Processing

• Text processing and topics detection (eg. hashtags)

• CreatioŶ of eaĐh topiĐ’s tiŵe series ďased oŶ their oĐĐurreŶĐe iŶ users’ posts

• Step 3: sampling time series and trimming

• A sample of both trending and non-treŶdiŶg topiĐs’ tiŵe series is ĐhoseŶ
• The time series trimming

• Trending topics: 2 hours before and 2 hours after the topic has been reported as trending

• Non trending topics: Random 4 hours range

• Normalization of time series

• Step 4: Storage of the training set time series to the serving layer so they can be accessible
from the speed layer

Trending topics time series example

Handling Big Data – Real time execution
• Step 5: Real time Tweets collections from twitter Streaming API

• Speed layer (Apache Storm)

• Step 6: Topics extraction from real time tweets and the creation/update of the corresponding time series.

• EXAMPLE : Tiŵe series of ϭϴϬ tiŵe ďuĐkets, eaĐh oŶe lasts Ϯ ŵiŶutes i.e. ǁhole raŶge of a topiĐ’s tiŵe series is ϲ hours.
• TopiĐ’s first appearance

• Before six hours of execution:

• The iŶitializatioŶ of the topiĐ’s tiŵe series is perforŵed ďǇ ĐalĐulatiŶg the speĐifiĐ Ϯ ŵiŶutes tiŵe raŶge froŵ the
differeŶĐe ďetǁeeŶ the tǁeet’s date aŶd the start tiŵe of the prograŵ.

• The corresponding time bucket is assigned with value 1,meaning that there is a tweet posted in the specific time
range that contains the topic.

• The rest 179 time buckets are assigned with value 0 in this phase.

• After six hours of execution:

• the first oĐĐurreŶĐe of a topiĐ iŶ this Đase sigŶifies the ĐoŶstruĐtioŶ of its tiŵe series ǁith the first ϭϳϵ tiŵe ďuĐkets’
values to be 0 and the value of the last time bucket to be 1.

• Tiŵe series update ;topiĐ’s reappearaŶĐeͿ:
• Increase corresponding time bucket by one

• Shift time buckets by one position every 2 minutes

• Discard the oldest one and add a new one

Handling Big Data – Real time execution

• Step 7a: PeriodiĐ ĐalĐulatioŶ of the distaŶĐe ďetǁeeŶ eǆaŵiŶed tiŵe series aŶd traiŶiŶg set’s
time series, using the following equation:

• Step 8a: Storage of time series that their ratio is above a predefined threshold, which means
that they are possible trending topics

Handling Big Data – Training set’s Periodic update

• Step 7b: Time series, that will be added in the training set, contributing in the next execution
cycle of the speed layer, are consisted of:

• TopiĐs’ tiŵe series that are stored iŶ the first Redis database of the serving layer at the
specific time that the execution cycle is performed.

• TopiĐs’ tiŵe series that haǀe ďeeŶ ĐharaĐterized as potential trending topics from the
procedure that has been executed on the speed layer until the aforementioned time.

• TopiĐs’ tiŵe series that haǀe ďeeŶ reported as treŶdiŶg topiĐs forŵ Tǁitter aŶd haǀe ďeeŶ
collected through the Twitter API, until the aforementioned time.

• Step 8b: NorŵalizatioŶ of the preǀious step’s tiŵe series aŶd ŵigratioŶ to the serǀiŶg laǇer

• For availability in the next evaluation cycles

• Step 8c: MigratioŶ of the preǀious step’s tiŵe series iŶ the ďatĐh laǇer

• Periodic checks oŶ this dataset to aǀoid ďiased tiŵe series patterŶs’ iŶ the eǀaluatioŶ
dataset

Example of real time, time series creation & update

Experimentation and Results (I)

•The proposed framework has been stress tested under various big data tweets threads
collected via Twitter streaming API, over several time windows.

• The evaluation of the proposed methodology implemented on the lambda inspired
architecture has reached improved performance since almost 80% of the actual trending
topics were classified as potential trending topics by the method after 48 hours of execution.

• Interesting observation:

• Quantity/topics : The percentage of potential trending topics that was actually announced
as trending topics

• Cosine similarity > Square Euclidian

• Quality/strength: The percentage of actual trending topics that have been observed as
such, before being announced from Twitter

• Square Euclidian > Cosine similarity

Cosine : to measure origin/topic versus

Square Euclidian to measure strength/trend

Experimentation and Results (II)

(a)

(b)

Fig. 4: Hourly Percentages (a) and Mean times (b) fluctuation for trends detection prior and after Twit	

Experimentation and Results (IΙI)

Challenges and Future work

• While the evaluation results are quite satisfactory, further improvements can be
achieved. Some of these improvements could be:

• .. regarding the quality of results.

• T he usage of bigger initial training set, which was limited in the current work due
to luck of resources (mainly storage)

• Target increased percentage of tweets acquired from the official API

• In bigger time ranges ..

• Update implementation with usage of newer technologies in the different layers of
the presented architecture :

• Apache Spark

• Apache Flink

• Several NoSQL distributed databases

Hardware Resources details ..

• Disk Storage in total: 600GB HDD

• CPU cores in total: 48

• Ram in total: 46 GB

• 14 virtual machines

• Hadoop cluster (7 VMs)

• Storm cluster & Zookeeper Server (6 Vms)

• Redis servers (1 VM)

• Special thanks to GRNET (https://grnet.gr/) for providing these resources through its
Cloud Provider Platform Okeanos (https://okeanos.grnet.gr/)

https://grnet.gr/
https://grnet.gr/
https://okeanos.grnet.gr/

Image copyright by © Web Buttons Inc

http://oswinds.csd.auth.gr/

