M

;£ 3 1) Informatics Department "n hOSWINDS
¢ /) Aristotle University of Thessaloniki g e

A distributed framework for early
trending topics detection on big social
networks data threads

ATHENA VAKALI, NIKOLAOS KITMERIDIS, MARIA PANOURGIA
INFORMATICS DEPARTMENT,
ARISTOTLE UNIVERSITY, THESSALONIKI, GREECE

Presentation outline

» Introduction
> Problem Addressed

» A framework for early trend detection in social networks

» A micro-blogging trending topics prediction implementation
» Experimentation and Results

» Conclusion and Future Work

Abstract

Social networks have become big data production engines and their analytics can
reveal insightful trending topics, such that hidden knowledge can be utilized in
various applications and settings.

This paper addresses the problem of popular topics’ and trends’ early prediction out
of social networks data streams which demand distributed software architectures.

Under an online time series classification model, which is implemented in a flexible
and adaptive distributed framework, trending topics are detected.

Emphasis is placed on the early detection process and on the performance of the
proposed framework. The implemented framework builds on the lambda architecture
design and the experimentation carried out highlights the usefulness of the proposed
approach in early trends detection with high rates in performance and with a
validation aligned with a popular microblogging service (Twittter).

Social Networks = Big Data Production Engines

* Many TeraBytes of user-generated content (UGC) per day...

* Hidden knowledge can be utilized in various domains :
* Advertising

* Social Sciences

* Politics

* Recommendation Systems
°* many more...

* Two crucial aspects justify such knowledge’s importance :
* capture crowd’s interests (i.e. topics)

* Monitor dynamics over time slots (i.e. emerging trends)

Twitter’s Trending Topics

WORLD WIDE

Worldwide Trends - change
#MakeAHorrorFilmLessScary

20.3K Tweets

prol_geolbeod, sols o=l olales#

51.5K Tweets
#Aprender
35.9K Tweets
#KarmaEgitimistemiyoruz

7,695 Tweets

#FelizMartes

54 . 9K Tweets

Red Dead Redemption 2
137K Tweets

Chuck Berry

22 5K Tweets

PCC e Comando WVermelho
3,824 Tweets

Forrog

16.1K Tweets

ABRACADABRA QUE APAREZCAMN
PYF
11.9K Tweeats

Trending topics are
those topics being
discussed more than
others.

Twitter Trends are
automatically generated by
an algorithm that attempts
to identify topics that are

being talked about more
right now than they were
previously.

REGIONAL

Greece Trends - change
Nebovhakncg
KeTtomaywa

H#BOEMETOEL
3,437 Tweets

Mopalg

ToaTavn
AlKaloowvng
MNoTapiow

Avbpo
#Xanadestetous

ANENA

Problem(s) Addressed

*Twitter provides information about the most discussed subjects
(trending topics) among its users any time;

*... but as the production rate of such data constantly increases,
guestions like the following arise between both in scientific and
enterprise communities :

*Can we do it better ? // qualitative issues
*Can we do it faster? // quantitative/performance wise

*How to manage such data volumes need for extracting valuable
hidden knowledge?

... both in terms of software and hardware.

from data to trends ... (I)

* Trend detection problem is not trivial
* popularity is not enough ... time of appearance the topic is a key factor too!
* Several studies address the problem as a time series classification problem

Proposed execution approach novelty is due to the next key points:

WORDPRESS

~ PINTEREST GOOGLE+ FACEBOOK FLICKR

LINKEDIN TWITTER YOUTUBE

PEOPLE SRE N EWS:

soclAL MEDIA A NETWORK

* training set’s time series are constructed by a small rate of the overall tweets dataset;

* the time series of topics to be tested are not static, but are generated in real time in a form of a
sliding window, maintaining low percentage of tweets for constructing the time series.

* Features used :
. of the topic being declared as a trending topic;

* definition of a from the moment just before the topic became trended, i.e. the time of

the last kept time slot;
* production of the final form of the time series by applying a set of

filters;

* Two distance metrics of cosine and squared Euclidean are utilized for the comparison between

time series.

from data to trends ... (1I)

* Retrospective analysis of data is usually needed, but it is not enough in many cases ... since
* The basic entity of this research, the trending topic, has a short life cycle.

* We need to be able to define a topic as trending in almost real time, i.e. shortly after the first
occurrences of the topic in users’ posts.

* To resolve such issues, we divide the dataset in two, continuously updated, categories :

* The first one is the training set which is used for the comparison with the new topics’ time
series.

* It is consisted of valid trending topics’ time series (created by the framework and validated
against Twitter’s API)

* It is continuously updated with new trending topics’ time series, to enrich the dataset and
cover new time series patterns

* The second dataset consists of every new topic’s time series, which are constructed in real time,
are divided in 2 minutes time buckets and are updated in a manner of sliding window.

* Pattern similarity among real time topic’s and training set’s time series is used to detect the
new trending topics.

Handling Big Data streams

* Complex architectures have been designed and tested on evolving big data management.

* Current work is based on an architecture that is inspired from Lambda Architecture’s principles,
allowing both batch and real-time stream data processing.

* Batch Layer

* Apache Hadoop (MapReduce, HDFS)

* Executes periodic processing in whole dataset.
* Speed Layer

* Apache Storm

* Computes data views incrementally by balancing high latencies of the batch layer with real
time views computations.

* Serving Layer
* Redis servers

* The first one gets the output from the batch layer which contains pre-computed views and
exposes views for querying

* The second one stores the real time created time series for each topic.

Handling Big Data streams

- R - ™)

batch layer serving layer

baich view

o
S——————

mastar dataset query

/ batch view g
— ,,*’“;;::
I =] =
— — I"- 1_'.“.“.
N[g o

real-lime viow real-lame veaw

http.//lambda-architecture.net/img/la-overview_small.png

An abstract view of the overall 8-step process

=2y Hadoop Cluster

S |
EIaRHERIEe = |

MapReduce Y. HDFS

Tweets =
Training set El o d‘l’ralnmg Set 5
preparation =1 S |I'I'rerlw Ing &y nlot Trenl ing
e topics with time series)
|]
——————
Calculate .
~| true positivesfalsefrue Store training set
negatives & update the updates
training set E
70—
Twitter | I - Tl
Trends | Redis Server | BR
I / < | Database 1
. Training| || Topics & Trending
7l set ime serieg topics
Storm Cluster
?_v 7a
El Extract Topics & E| Calculate disEé(ot:.rZited
[=| update corresponding time series [i
time series distances topicsg

Handling Big Data — The initial Data Set -

» Step 1: One month of collected tweets and trending topics dataset, reported from Twitter.
* Stored in HDFS
* Step 2: Processing
* Text processing and topics detection (eg. hashtags)
* Creation of each topic’s time series based on their occurrence in users’ posts
* Step 3: sampling time series and trimming
* A sample of both trending and non-trending topics’ time series is chosen
* The time series trimming
* Trending topics: 2 hours before and 2 hours after the topic has been reported as trending
* Non trending topics: Random 4 hours range
* Normalization of time series

* Step 4: Storage of the training set time series to the serving layer so they can be accessible
from the speed layer

Trending topics time series example

Handling Big Data — Real time execution

» Step 5: Real time Tweets collections from twitter Streaming API
* Speed layer (Apache Storm)
* Step 6: Topics extraction from real time tweets and the creation/update of the corresponding time series.
* EXAMPLE : Time series of 180 time buckets, each one lasts 2 minutes i.e. whole range of a topic’s time series is 6 hours.
* Topic’s first appearance
 Before six hours of execution:

* The initialization of the topic’s time series is performed by calculating the specific 2 minutes time range from the
difference between the tweet’s date and the start time of the program.

* The corresponding time bucket is assigned with value 1,meaning that there is a tweet posted in the specific time
range that contains the topic.

* The rest 179 time buckets are assigned with value 0 in this phase.
 After six hours of execution:

* the first occurrence of a topic in this case signifies the construction of its time series with the first 179 time buckets’
values to be 0 and the value of the last time bucket to be 1.

* Time series update (topic’s reappearance):
* Increase corresponding time bucket by one
 Shift time buckets by one position every 2 minutes
* Discard the oldest one and add a new one

Handling Big Data — Real time execution

» Step 7a: Periodic calculation of the distance between examined time series and training set’s
time series, using the following equation:

Nobs
R (S) _ relR i=1
Nobs
TEZR:_ exp(L ; d(si, Tz—l—k—l))
r A time series of the training set
Ry The set of time series of the training set that correspond to trending topics.
R The set of time series of the training set that correspond to not trending topics.
Nyt The length of each time series of the topics of the training set.
Nsbs The length of each time series of the topics their trending probability is being observed.
S; The 74, time bucket of a topic’s time series that is being observed.
i The #;, time bucket of a topic’s time series that belong in the training set.
¥ A scaling parameter for fine-tuning.
d The distance metric been used, among Euclidean, Squared Euclidean and Cosine distances.

» Step 8a: Storage of time series that their ratio is above a predefined threshold, which means
that they are possible trending topics

Handling Big Data — Training set’s Periodic update

» Step 7b: Time series, that will be added in the training set, contributing in the next execution
cycle of the speed layer, are consisted of:

* Topics’ time series that are stored in the first Redis database of the serving layer at the
specific time that the execution cycle is performed.

* Topics’ time series that have been characterized as from the
procedure that has been executed on the speed layer until the aforementioned time.

* Topics’ time series that have been reported as trending topics form Twitter and have been
collected through the Twitter API, until the aforementioned time.

 Step 8b: Normalization of the previous step’s time series and migration to the serving layer
* For availability in the next evaluation cycles

* Step 8c: Migration of the previous step’s time series in the batch layer

. on this dataset to avoid biased time series patterns’ in the evaluation
dataset

Example of real time, time series creation & update

14:00 - 12:00 = 2h
-> 120m -> 60th t.b.

#topicl
1st appearance:
1/1/2014 14:00

#topic2

1st appearance: . {0} . {0}
1/1/2014 19:00
#topicl
2nd appearance: . {0} ‘ o] ‘ 1 ‘ T) ¢ ‘ 1 ‘ {0} ‘ 0 ‘ (4] ‘
1/1/2014 16:00
#topicl
3rd appearance: . {0} ‘ 0 ‘ 1 ‘ B s ‘ 2 ‘ {0} ‘ 0 ‘ 0 ‘

1/1/2014 16:01

#topic2

timeseriesat: }————> N 0 ([O | e {0} . {0}
1/1/2014 19:04

#topic2
2nd appearance: >IN 0 0 | 0 e {0} . {0}

1/1/2014 19:06

Experimentation and Results (I)

*The proposed framework has been stress tested under various big data tweets threads
collected via Twitter streaming API, over several time windows.

* The evaluation of the proposed methodology implemented on the lambda inspired
architecture has reached improved performance since almost 80% of the actual trending
topics were classified as potential trending topics by the method after 48 hours of execution.

* Interesting observation:

* Quantity/topics : The percentage of potential trending topics that was actually announced
as trending topics

* Cosine similarity > Square Euclidian

* Quality/strength: The percentage of actual trending topics that have been observed as
such, before being announced from Twitter

4)
Cosine : to measure origin/topic versus
Square Euclidian to measure strength/trend

* Square Euclidian > Cosine similarity

- J

Experimentation and Results (II)

[EE S

= p—

Pases
s
ST
)
T
maes
(LT

LT

Casing Sq. Euclidean ho

3 3 % B
i] H

:

(a) true positives percentages at the
end of the 48 hour execution, for Co-
sine and Squared Euclidean

(c) 36 hours of execution

7 £ 7 B
i § i] H

i

[
i

i
_—
i

i

(b) 24 hours of execution (d) 48 hours of execution

Experimentation and Results (11I)

00

150 +
B — Befoee Tuimer Besare Titter

—— difes Ttz — ity Twimer

100 1

o
§ Hr—r—r—rrrrrrrrrr-’ererTT T T T T T T T T T T T T T T T T T 11345678 910111243 18154p 171619 20 H 223 M 2516 2726 19 30 M 3 3334 35 36 37 19 3040 41 A1 43 3445 64T 44
11342678 9I010121514151817 LE19 207123 2324 25 16 27 18 20 30 31 33 5 34 33 36 37 55 39 4041 42 43 44 4548 4738

fore Ty T
5 1 R el Turme
— dar T
— e Todter e Ttz

e
L 11345678 51001313 191516171815 0211023 14 15261726 193031 32 2334 35 1537 19 3540 31 42 33 4345 46 47 46

11345878 BI1011121314151817 181920712733 24 20 34 27 18 20 20 31 51 33 34 15 38 17 3B 29 40414242 4435 48 4748

(a) | (b)

Fig. 4: Hourly Percentages (a) and Mean times (b) fluctuation for trends detection prior and after Twit[?]

Challenges and Future work

* While the evaluation results are quite satisfactory, further improvements can be
achieved. Some of these improvements could be:

* .. regarding the quality of results.

* T he usage of bigger initial training set, which was limited in the current work due
to luck of resources (mainly storage)

* Target increased percentage of tweets acquired from the official API
* In bigger time ranges ..

* Update implementation with usage of newer technologies in the different layers of
the presented architecture :

* Apache Spark
* Apache Flink
* Several NoSQL distributed databases

Hardware Resources details ..

* Disk Storage in total: 600GB HDD
* CPU cores 1n total: 48
 Ram 1n total: 46 GB

* 14 virtual machines
* Hadoop cluster (7 VMs)
* Storm cluster & Zookeeper Server (6 Vms)
* Redis servers (1 VM)

* Special thanks to GRNET (https://grnet.gr/) for providing these resources through its
Cloud Provider Platform Okeanos (https://okeanos.grnet.gr/)

https://grnet.gr/
https://grnet.gr/
https://okeanos.grnet.gr/

----- nuw&hunua
o mmm H"kﬁﬂﬁﬁ |EEE ir ederin

35 hankyoE-

dziek ua=m,m_ 3
ﬂhﬂ[lﬂﬂ[l sukrnra i |3E” =l .EEL'“‘ rﬂﬂﬂﬂlﬂi K |

ilmmatam A tn MepeH

Merci

Image copyright by © Web Buttons Inc

kt

i} OSWINDS

research group

http://oswinds. csd.auth.gr/

